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Abstract: We in this paper improve a method of establishing the existence of finite time blow-up
solutions, and then apply it to study the finite time blow-up, the blow-up time and the blow-up rate
of the weak solutions on the initial boundary problem of ut − ∆ut − ∆ut = |u|p−1u. By applying this
improved method, we prove that I(u0) < 0 is a sufficient condition of the existence of the finite time

blow-up solutions and
2(p−1)−1‖u0‖2H1

0

(p−1)‖∇u0‖22−2(p+1)J(u0)
is an upper bound for the blow-up time, which generalize

the blow-up results of the predecessors in the sense of the variation. Moreover, we estimate the upper
blow-up rate of the blow-up solutions, too.
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1 Introductions

There are many ways in which we can solve the finite time blow-up problem of the parabolic or
pseudo parabolic equations, among which the method used in [6, 8] is one of the simpler ways,
we can summarized it as follows:

(i) It is constructed to some auxiliary functions f(t) = ‖u‖22(or ‖u‖2
H1

0
) and ψ(t) = −(4 +

µ)J(u);
(ii) It is verified to f ′(t) ≥ (4 + µ)ψ(t), where µ > 0 is a constant, and d

dtψ(t) ≥ 0 and
f ′(t) > 0 on [0, T ) under J(u0) < 0;

(iii) It is proved to ψ′(t)f(t) ≥ 4+µ
4 ψ(t)f ′(t);

(iv) It is established to ‖u‖22(or ‖u‖2
H1

0
) blow-up in a finite time, and it is estimated to the

upper bound for the blow-up time.
Inspired by [3, 6, 7, 8], we modify the (i)-(iv) above as follows:
(I) It is constructed to some auxiliary functions f(t) = ‖u‖22 (or ‖u‖2

H1
0
) and ψ(t) = −(4 +

µ)J(u);
(II) It is verified to f ′(t) ≥ (4 + µ)ψ(t) + µ

2‖∇u‖
2
2, and f ′(t) > 0 on [0, T ) under I(u0) < 0;

(III) It is proved to ψ′(t)f(t) ≥ 4+µ
4 ψ(t)f ′(t) + µ(4+µ)

8 ‖∇u‖22f ′(t) and f(0) > 0;
(IV) It is established to ‖u‖2

H1
0

blow-up in a finite time, and it is estimated to the upper
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bound for the blow-up time. Here

J(u) =
1

2
‖∇u‖22 −

∫
Ω
F (u)dx and I(u) = ‖∇u‖22 −

∫
Ω
uf(u)dx,

respectively, here sf(s) ≥ 4+µ
2 F (s) and F (u) :=

∫ u
0 f(s)ds.

We next are going to apply (I)-(IV ) to study the finite time blow-up problems of the weak
solutions on the initial boundary value problem

ut −∆ut −∆ut = |u|p−1u, x ∈ Ω, t ∈ (0, T ),
u = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = u0, x ∈ Ω,

(1.1)

where Ω is a bounded domain with the sufficiently smooth boundary ∂Ω in Rn, T ∈ (0,+∞] is
the maximal existence time of the weak solutions and p > 1.

The problem (1.1) has been applied to characterize many physical phenomena, such as the
aggregation of population [4], the theory of seepage of homogeneous fluids through a fissured
rock [9] and the unidirectional propagation of nonlinear, dispersive, long waves [10].

The problem (1.1) comprehensively studied by Xu et al. in [1]. In [1], authors studied the
global existence, finite time blow-up, asymptotic decay and uniqueness of the weak solutions
at three different initial energy levels, i.e. subcritical initial energy level J(u0) < d, critical
initial energy level J(u0) = d and sup-critical initial energy level J(u0) > d, where the depth
of potential well d is defined as d = infu∈N J(u), the Nehari manifold N is defined as N ={
u ∈ H1

0 |, I(u) = 0, ‖u‖H1
0
6= 0
}
, and the energy and Nehari functionals are defined as

J(u) =
1

2
‖∇u‖22 −

1

p+ 1
‖u‖p+1

p+1, (1.2)

I(u) = ‖∇u‖22 − ‖u‖
p+1
p+1, (1.3)

respectively. In addition, there are many articles on the finite time blow-up and blow-up time
of problem (1.1), such as [2, 5, 6, 7]. Now let’s review some of the results related to the upper
bound for the blow-up time. Under J(u0) < 0, author [6] proved that the upper bound for the
blow-up time is given by

T ≤ T0 :=
‖u0‖2H1

0

(1− p2)J(u0)
.

Under J(u0) <
(p−1)λ1‖u0‖2

H1
0

2(p+1)(1+λ1) , authors [5] verified that the upper bound for the blow-up time is
given by

T ≤ T1 :=
8(p+ 1)(1 + λ1)‖u0‖2H1

0

(p− 1)2
[
λ1(p− 1)‖u0‖2H1

0
− 2(p+ 1)(1 + λ1)J(u0)

] ,
and under J(u0) < 0, the lower bound for the blow-up time is refined by comparing T0 and T1.

Under 0 < J(u0) <
(p−1)λ1‖u0‖2

H1
0

2(p+1)(1+λ1) , authors [7] derived that the upper bound for the blow-up time
is given by

T ≤ T2 :=
2εc

(α− 1)‖u0‖4H1
0

,
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where

c >
1

4ε2
‖u0‖4H1

0
, (1.4)

0 < ε <
1

2α‖u0‖2H1
0

(
2(p− 1)λ1‖u0‖2H1

0

(p+ 1)(1 + λ1)
− 4αJ(u0)

)
(1.5)

and

1 < α <
(p− 1)λ1‖u0‖2H1

0

2(p+ 1)(1 + λ1)J(u0)
. (1.6)

From the above reviews, we note that

QUE1. the blow-up and lifespan are still unsolved when
(p−1)λ1‖u0‖2

H1
0

2(p+1)(1+λ1) ≤ J(u0) < p−1
2(p+1)‖∇u0‖22;

QUE2. the blow-up rate is still unsolved when J(u0) < p−1
2(p+1)‖∇u0‖22.

We now explain the reasonableness of QUE1. According to the eigenvalue problem, it is well
known that if λ1 is the principal eigenvalue of −∆w = λ1w in H1

0 , then there must exist u ∈ H1
0

such that ‖∇u‖22 > λ1‖u‖22, which implies ‖∇u‖22 > λ1
1+λ1
‖u‖2

H1
0
.

We in this article try to solve the two unknown problems mentioned above. Before we state
the main results, we first introduce the definition of weak solutions.

Definition 1.1 ([1]) A function u = (x, t) is called a weak solution of problem (1.1) on Ω ×
[0, T ), if u ∈ L∞

(
[0, T );H1

0 (Ω)
)

with ut ∈ L2
(
[0, T );H1

0

)
satisfying

(1) ∀v ∈ H1
0 , t ∈ (0, T )∫

Ω
utv −∆utv −∆uvdx =

∫
Ω
|u|p−1vdx;

(2) u(x, 0) = u0(x) ∈ H1
0 and for t ∈ [0, T ),∫ t

0
‖uτ‖2H1

0
dτ + J(u) ≤ J(u0).

The local existence, uniqueness and continuity of the solutions have been given by Xu et al.
[7]. The main results of this paper can be stated as the following theorem.

Theorem 1.2 Let p > 1 and u0 ∈ H1
0 such that I(u0) < 0. If u(x, t;u0) is a weak solution of

problem (1.1), then ‖u‖2
H1

0
blows up at finite time T , which satisfies

T ≤ T3 :=
2(p− 1)−1‖u0‖2H1

0

(p− 1)‖∇u0‖22 − 2(p+ 1)J(u0)
. (1.7)

Moreover, the upper blow-up rate is (T − t)−
1

p−1 , with the ‖u‖H1
0

of this solution satisfies

‖u‖H1
0
≤ C1(T − t)−

1
p−1 . (1.8)

Where

C1 =
2

1
p−1 ‖u0‖

p+1
p−1

H1
0{

(p− 1)
[
(p− 1)‖∇u0‖22 − 2(p+ 1)J(u0)

]} 1
p−1

.
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Remark 1.3 (a) Theorem 1.2 shows that, by this improved method, we can establish not only
the blow-up in finite time of the solutions with non-positive initial energy but also the blow-up
in finite time of the solutions with positive initial energy.

(b) By the comparison method, we easily get that the upper bound for the blow-up time
obtained by the modified method is smaller than that obtained by the original method which is
used in [6, 8].

2 Proof of Theorem 1.2

We divide the proof of Theorem 1.2 into two subsections. We in Subsection I prove I(u) < 0 by
means of arguing by contradiction, taking full advantage of the monotonicity of energy functional
and modified the method in [7] under I(u0) < 0. We in Subsection II prove the weak solution
blow-up in a finite time, and estimate the upper blow-up rate and the new upper bound for the
blow-up time by using (I)-(IV ).

2.1 The invariance of I(u) under I(u0) < 0

Before to prove Theorem 1.2, we first introduce the following two Lemmas.
We begin by describing the monotonicity of the energy functional J(u) on the problem (1.1).

Lemma 2.1 Let u0 ∈ H1
0 . If u(x, t;u0) ∈ H1

0 is a weak solution of problem (1.1), then the
energy functional is decreasing on [0,∞). Moreover,

d

dt
J(u) = −‖ut‖2H1

0
. (2.1)

Proof. Let u(x, t;u0) is a weak solution of problem (1.1). Multiplying (1.1) by ut, and
integrating on Ω, it derives that∫

Ω
u2
t + |∇ut|2dx = − d

dt

(
1

2

∫
Ω
|∇u|2dx− 1

p+ 1

∫
Ω
|u|p+1dx

)
,

together with (1.2), we easily obtain the conclusions of Lemma 2.1.
We now prove that the Nehari functional I(u) is negative under the initial Nehari functional

I(u0) < 0.

Lemma 2.2 Under the assumption of Theorem 1.2, one has I(u) < 0 on [0, T ).

Proof. Let u(x, t;u0) is a weak solution of problem (1.1). Multiplying (1.1) by u, and
integrating on Ω, we get

d

2dt

∫
Ω
u2 + |∇u|2dx = −

∫
Ω
|∇u|2dx+

∫
Ω
|u|p+1dx,

i.e.
d

dt
‖u‖2H1

0
= −2‖∇u‖2 + 2‖u‖p+1

p+1. (2.2)

The rest of proof is similar to that of Lemma 2.3 in [7].
Since ‖u‖2

H1
0

is equivalent to ‖∇u‖22 in H1
0 , by (2.2), (1.3) and Lemma 2.2, we get the following

Corollary.

Corollary 2.3 Under the assumption of Theorem 1.2, we get d
dt‖u‖

2
H1

0
> 0 and d

dt‖∇u‖
2
2 > 0

on [0, T ).
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2.2 Upper bound for the blow-up time and upper blow-up rate

Proof of Theorem 1.2. We will apply the arguing by contradiction to prove the solutions
blow-up in a finite time under I(u0) < 0. Assume that u(x, t;u0) is a global solution of problem
(1.1), then the maximal existence time T satisfies T = ∞. We now construct an auxiliary
function

f(t) = ‖u‖2H1
0
. (2.3)

Then, by (2.2) and (1.3), one has

d

dt
f(t) =

d

dt
‖u‖2H1

0
= −2(p+ 1)J(u) + (p− 1)‖∇u‖22. (2.4)

Denote ϕ(t) = −2(p+ 1)J(u). Employing (2.1), (2.3) and the inequality

1

2

d

dt
‖u‖2H1

0
≤ ‖ut‖H1

0
‖u‖H1

0
,

we get
d

dt
ϕ(t)f(t) = 2(p+ 1)‖ut‖2H1

0
‖u‖2H1

0
≥ p+ 1

2

d

dt
f(t)

d

dt
f(t). (2.5)

Inserting (2.4) into (2.5), we can obtain

d

dt
ϕ(t)f(t) ≥ p+ 1

2

d

dt
f(t)ϕ(t) +

(p+ 1)(p− 1)

2
‖∇u‖22

d

dt
f(t). (2.6)

Note that employing Lemma 2.2 and (2.3), we can conclude from (2.5) that f(t) > 0 for all
t ∈ [0, T ). Hence, it follows from Corollary 2.3 and (2.6) that

d

dt

(
ϕ(t)

f
p+1
2 (t)

)
≥ −(p− 1)‖∇u0‖22

d

dt

(
1

f(t)
p+1
2

)
. (2.7)

Integrating (2.7) over [0, t], it follows that

ϕ(t)

f
p+1
2 (t)

≥ ϕ(0)

f
p+1
2 (0)

+
p− 1

f
p+1
2 (0)

‖∇u0‖22 −
p− 1

f
p+1
2 (t)

‖∇u0‖22. (2.8)

Once again employing Corollary 2.3 and (2.4), it derives from (2.8) that(
1

f
p−1
2 (t)

)′
< −(p+ 1)(p− 1)

f
p+1
2 (0)

(
−J(u0) +

p− 1

2(p+ 1)
‖∇u0‖22

)
. (2.9)

Integrating (2.9) over [0, t], it follows that

1

f
p−1
2 (t)

≤ 1

f
p+1
2 (0)

(
f(0)− (p+ 1)(p− 1)

(
−J(u0) +

p− 1

2(p+ 1)
‖∇u0‖22

)
t

)
, (2.10)

which implies that there exists a finite time T > 0 such that the right side of (2.10) is equal to
zero at t = T , with T satisfies

T ≤ 2(p− 1)−1f(0)

(p− 1)‖∇u0‖22 − 2(p+ 1)J(u0)
, (2.11)

which contradicts T =∞. Therefore, under the initial Nehari functional I(u0) < 0, the solution
u(x, t;u0) of problem (1.1) blows up at finite time T . Combining (2.11) and (2.3), it follows that
(1.7) holds.

Integrating (2.10) on [t, T ) and once again employing (2.3), it easily follows that (1.8) holds
indeed.
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