table 1. Overview of the
strengths and weaknesses of each flap-assessment technique
Conclusion
The primary goal of perioperative assessment is to ensure optimal flap
perfusion, minimizing the risk of necrosis or flap loss. Despite
technological advancements, direct clinical assessment remains the gold
standard [79], emphasizing the importance of trained medical
professionals in evaluating skin colour, temperature, turgor, and
capillary refill. Our comparative analysis highlighted the strengths and
weaknesses of both non-invasive and invasive techniques. Non-invasive
methods, such as Acoustic Doppler Sonography (HHD), Near Infrared
Spectroscopy (NIRS), Thermal Imaging (TI), and Photoplethysmography
(PPG), excel in accessibility and safety. However, they may sacrifice
specificity. Invasive techniques, including Contrast-Enhanced Ultrasound
(CEUS), Computed Tomography Angiography (CTA), Near-Infrared
Fluorescence Angiography with Indocyanine Green (ICG), and Implantable
Doppler Probe, offer high accuracy but introduce additional risks or
high cost. The choice of assessment technique should be tailored to the
specific clinical scenario, considering factors like patient
characteristics, procedural requirements, and the surgeon’s expertise.
Recommendations for selecting appropriate techniques for different flap
types involve weighing the advantages and limitations of each method
against the clinical context. Looking ahead, areas for further research
and development in flap assessment techniques include refining
non-invasive methods for enhanced specificity, dedicated flap assessment
systems for NIRS, and exploring novel technologies. The impact of
patient preference, clinical setting, and resource availability should
be considered when choosing assessment techniques. In essence,
navigating the array of flap-assessment tools requires a discerning
understanding of their unique attributes. Surgeons must make informed
decisions, balancing accuracy, safety, and practicality to ensure
successful outcomes in cutaneous reconstructive surgery.
Future perspective
In the realm of reconstructive cutaneous surgery, the future promises an
exciting evolution in assessment techniques, with a notable emphasis on
the integration of artificial intelligence (AI) and the fusion of
current and emerging technologies. As we venture into this era, the
convergence of rPPG (remote photoplethysmography) technology, deep
learning algorithms, and the principles of ”deep medicine” holds
substantial potential for transforming the landscape of flap assessment.
Further, these techniques hold great potential to steep the learning
curve of young surgeons with bio-feedback techniques to consequently and
therefore, improve patient care.
References
1. Simman, R., Wound closure and the reconstructive ladder in
plastic surgery. J Am Col Certif Wound Spec, 2009. 1 (1): p.
6-11.
2. Veldhuizen, I.J., et al., Nasal skin reconstruction: Time to
rethink the reconstructive ladder? J Plast Reconstr Aesthet Surg, 2022.75 (3): p. 1239-1245.
3. Dragu A, J.J., Bach AD, Horch RE, Prinzipien der
Lappenplastiken: Eine Übersicht , in CHAZ . 2008. p. 59-66.
4. Schraven, S.P., et al., Continuous intraoperative perfusion
monitoring of free microvascular anastomosed fasciocutaneous flaps using
remote photoplethysmography. Sci Rep, 2023. 13 (1): p. 1532.
5. Rozen, W.M., et al., Preoperative imaging for DIEA perforator
flaps: a comparative study of computed tomographic angiography and
Doppler ultrasound. Plast Reconstr Surg, 2008. 121 (1): p.
9-16.
6. Scott, J.R., et al., Computed tomographic angiography in
planning abdomen-based microsurgical breast reconstruction: a comparison
with color duplex ultrasound. Plast Reconstr Surg, 2010.125 (2): p. 446-453.
7. Bootz, F., Postoperative Überwachung (Monitoring) , inExpertise Lappenplastiken und Transplantate im Kopf-Hals-Bereich ,
S.H. Lang, F. Bootz, and S. Remmert, Editors. 2018, Georg Thieme Verlag
KG.
8. Whitaker, I.S., et al., Postoperative monitoring of free flaps
in autologous breast reconstruction: a multicenter comparison of 398
flaps using clinical monitoring, microdialysis, and the implantable
Doppler probe. J Reconstr Microsurg, 2010. 26 (6): p. 409-16.
9. Nagel, S.S., et al., Postoperatives Monitoring freier
Muskellappenplastiken mittels perforatorbasierten adipokutanen
Monitorinseln: Ökonomie, Versorgungsqualität und Ästhetik.Hand-/Mikro-/Plastische Chirurgie, 2022. 54 (02): p. 139-148.
10. Spiegel, J.H. and J.K. Polat, Microvascular flap
reconstruction by otolaryngologists: prevalence, postoperative care, and
monitoring techniques. Laryngoscope, 2007. 117 (3): p. 485-90.
11. Gross, J.E. and J.D. Friedman, Soft tissue reconstruction.
Monitoring. Orthop Clin North Am, 1993. 24 (3): p. 531-6.
12. Rettinger, G., Chirurgische Anatomie der Haut , inHNO-Operationslehre , G. Rettinger, et al., Editors. 2017, Georg
Thieme Verlag KG.
13. I Anatomy, Principles of Facial Surgery, and Coverage of
Defects , in Reconstructive Facial Plastic Surgery: A
Problem-Solving Manual , H. Weerda, Editor. 2014, Georg Thieme Verlag
KG.
14. Lüllmann-Rauch, R., Taschenlehrbuch Histologie . Vol. 3.
Auflage. 2009, Stuttgart, New York: Thieme.
15. Al-Qattan, M.M., One Pedicled Superficial Temporal Artery
Hair-bearing Flap to Reconstruct Three Different Anatomical Areas of the
Burnt Face: A Personal Technique. Ann Plast Surg, 2021. 86 (2):
p. 159-161.
16. Tayfur, V., et al., Supraclavicular artery flap. J Craniofac
Surg, 2010. 21 (6): p. 1938-40.
17. Kim, H.S., et al., Reconstruction of a Full-thickness Lateral
Alar Defect Using a Superiorly Based Folded Nasolabial Flap Without a
Cartilage Graft: A Single-stage Operation. J Craniofac Surg, 2021.32 (2): p. e162-e165.
18. Kunert, P., [A simple classification system for all skin
flaps]. Handchir Mikrochir Plast Chir, 1995. 27 (3): p.
124-31.
19. Rettinger, G. and O. Guntinas-Lichius, [Not Available].Laryngorhinootologie, 2019. 98 (10): p. 745-750.
20. Berkane, Y., et al., The Autonomization Principle in
Vascularized Flaps: An Alternative Strategy for Composite Tissue
Scaffold In Vivo Revascularization. Bioengineering (Basel), 2023.10 (12).
21. Ludolph, I., et al., Indocyanine green angiography and the old
question of vascular autonomy - Long term changes of microcirculation in
microsurgically transplanted free flaps. Clin Hemorheol Microcirc,
2019. 72 (4): p. 421-430.
22. Mehta, A.G., J.J. , axial flaps , in StatPearls . 2024.
23. Pavletic, M.M., Canine axial pattern flaps, using the
omocervical, thoracodorsal, and deep circumflex iliac direct cutaneous
arteries. Am J Vet Res, 1981. 42 (3): p. 391-406.
24. Lim, J., J. Oh, and S. Eun, Flap reconstruction of soft tissue
defect after resecting a huge hemangioma of the nose. Arch Craniofac
Surg, 2020. 21 (1): p. 69-72.
25. Lamberty, B.G., The supra-clavicular axial patterned flap. Br
J Plast Surg, 1979. 32 (3): p. 207-12.
26. Pallua, N. and B.S. Kim, Pre-expanded Supraclavicular Artery
Perforator Flap. Clin Plast Surg, 2017. 44 (1): p. 49-63.
27. Yassin, A.M., et al., Uses of Smartphone Thermal Imaging in
Perforator Flaps as a Versatile Intraoperative Tool: The Microsurgeon’s
Third Eye. JPRAS Open, 2023. 38 : p. 98-108.
28. Jones, B., Microvascular free tissue transfer. Br Med J (Clin
Res Ed), 1984. 288 (6414): p. 345-6.
29. Cheung ME, S.V., Firstenberg MS. , Duplex Ultrasound. . 2022,
StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing;.
30. Bigdeli, A.K., A. Momeni, and U. Kneser, Erhöhung der
Sicherheit in der mikrochirurgischen Brustrekonstruktion – Technik und
Technologie. Hand-/Mikro-/Plastische Chirurgie, 2022. 54 (04):
p. 314-325.
31. Malvern, P. Near-infrared (NIR) spectroscopy . 2024; Available
from:
https://www.malvernpanalytical.com/en/products/technology/spectroscopy/near-infrared-spectroscopy.
32. Barstow, T.J., Understanding near infrared spectroscopy and
its application to skeletal muscle research. Journal of Applied
Physiology, 2019. 126 (5): p. 1360-1376.
33. Bian, H.Z., C.H. Pek, and J. Hwee, Current evidence on the use
of near-infrared spectroscopy for postoperative free flap monitoring: A
systematic review. Chinese Journal of Plastic and Reconstructive
Surgery, 2022. 4 (4): p. 194-202.
34. Kumbasar, D.E., et al., Monitoring Breast Reconstruction Flaps
Using Near-Infrared Spectroscopy Tissue Oximetry. Plast Surg Nurs,
2021. 41 (2): p. 108-111.
35. Lindelauf, A., et al., Near-Infrared Spectroscopy (NIRS)
versus Hyperspectral Imaging (HSI) to Detect Flap Failure in
Reconstructive Surgery: A Systematic Review. Life (Basel), 2022.12 (1).
36. Repez, A., D. Oroszy, and Z.M. Arnez, Continuous postoperative
monitoring of cutaneous free flaps using near infrared spectroscopy. J
Plast Reconstr Aesthet Surg, 2008. 61 (1): p. 71-7.
37. Ghidini, F., et al., Transcutaneous near-infrared spectroscopy
(NIRS) for monitoring kidney and liver allograft perfusion. Int J Clin
Pract, 2021. 75 (5): p. e14034.
38. Wisotzky, E., HSI in der diagnostischen und therapeutischen
Medizin . 2019: online.
39. Thiem, D.G.E., et al., Hyperspectral analysis for
perioperative perfusion monitoring-a clinical feasibility study on free
and pedicled flaps. Clin Oral Investig, 2021. 25 (3): p.
933-945.
40. Schulz, T., et al., Diagnostical accuracy of hyperspectral
imaging after free flap surgery. J Plast Surg Hand Surg, 2023.58 : p. 48-55.
41. Nischwitz, S.P., et al., Thermal, Hyperspectral, and Laser
Doppler Imaging: Non-Invasive Tools for Detection of The Deep Inferior
Epigastric Artery Perforators-A Prospective Comparison Study. J Pers
Med, 2021. 11 (10).
42. Tattersall, G.J., Infrared thermography: A non-invasive window
into thermal physiology. Comp Biochem Physiol A Mol Integr Physiol,
2016. 202 : p. 78-98.
43. Luximon, A., et al., Theory and applications of InfraRed and
thermal image analysis in ergonomics research. Frontiers in Computer
Science, 2022. 4 .
44. Hallock, G.G., The use of smartphone thermography to more
safely unmask and preserve circulation to keystone advancement flaps in
the lower extremity. Injury, 2020. 51 Suppl 4 : p. S121-s125.
45. Nischwitz, S.P., H. Luze, and L.P. Kamolz, Thermal imaging via
FLIR One - A promising tool in clinical burn care and research. Burns,
2020. 46 (4): p. 988-989.
46. Xue, E.Y., et al., Use of FLIR ONE Smartphone Thermography in
Burn Wound Assessment. Ann Plast Surg, 2018. 80 (4 Suppl 4): p.
S236-s238.
47. Meyer, A., et al., Thermal imaging for microvascular free
tissue transfer monitoring: Feasibility study using a low cost,
commercially available mobile phone imaging system. Head Neck, 2020.42 (10): p. 2941-2947.
48. Luze, H., et al., Assessment of Mastectomy Skin Flaps for
Immediate Reconstruction with Implants via Thermal Imaging-A Suitable,
Personalized Approach? J Pers Med, 2022. 12 (5).
49. Rabbani, M.J., A.Z. Bhatti, and A. Shahzad, Flap Monitoring
using Thermal Imaging Camera: A Contactless Method. J Coll Physicians
Surg Pak, 2021. 30 (6): p. 703-706.
50. Obinah, M.P.B., M. Nielsen, and L.R. Hölmich, High-end versus
Low-end Thermal Imaging for Detection of Arterial Perforators. Plast
Reconstr Surg Glob Open, 2020. 8 (10): p. e3175.
51. Weum, S., A. Lott, and L. de Weerd, Detection of Perforators
Using Smartphone Thermal Imaging. Plast Reconstr Surg, 2016.138 (5): p. 938e-940e.
52. Xu, W.H., et al., [Application of infrared thermal imaging
technology in the design of free anterolateral thigh perforator flap
transplantation]. Zhongguo Gu Shang, 2019. 32 (11): p.
1053-1057.
53. Chen, R., et al., Value of a smartphone-compatible thermal
imaging camera in the detection of peroneal artery perforators:
Comparative study with computed tomography angiography. Head Neck,
2019. 41 (5): p. 1450-1456.
54. Cevik, J., et al., A History of Innovation: Tracing the
Evolution of Imaging Modalities for the Preoperative Planning of
Microsurgical Breast Reconstruction. J Clin Med, 2023. 12 (16).
55. Hudson, T., et al., The Utility of Smartphone-Based Thermal
Imaging in the Management and Monitoring of Microvascular Flap
Procedures: A Systematic Review and Meta-Analysis. Ann Plast Surg,
2023. 90 (6S Suppl 4): p. S420-s425.
56. Just, M., et al., Monitoring of microvascular free flaps
following oropharyngeal reconstruction using infrared thermography:
first clinical experiences. Eur Arch Otorhinolaryngol, 2016.273 (9): p. 2659-67.
57. Cruz-Segura, A., et al., Early Detection of Vascular
Obstruction in Microvascular Flaps Using a Thermographic Camera. J
Reconstr Microsurg, 2019. 35 (7): p. 541-548.
58. Mironenko, Y., et al., Remote Photoplethysmography: Rarely
Considered Factors. 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2020: p. 1197-1206.
59. Wukitsch, M.W., et al., Pulse oximetry: analysis of theory,
technology, and practice. J Clin Monit, 1988. 4 (4): p.
290-301.
60. Wang, W., S. Stuijk, and G. de Haan, Unsupervised Subject
Detection via Remote PPG. IEEE Trans Biomed Eng, 2015. 62 (11):
p. 2629-37.
61. Wang, W., S. Stuijk, and G. de Haan, A Novel Algorithm for
Remote Photoplethysmography: Spatial Subspace Rotation. IEEE Trans
Biomed Eng, 2016. 63 (9): p. 1974-1984.
62. Hammer, A., et al., Camera-based assessment of cutaneous
perfusion strength in a clinical setting. Physiol Meas, 2022.43 (2).
63. Karthik, S., J. Joseph, and M. Sivaprakasam, A study on the
use of PPG in quantifying circulatory disruptions. Annu Int Conf IEEE
Eng Med Biol Soc, 2014. 2014 : p. 1739-42.
64. Chubb, D., W.M. Rozen, and M.W. Ashton, Early survival of a
compromised fasciocutaneous flap without pedicle revision: monitoring
with photoplethysmography. Microsurgery, 2010. 30 (6): p.
462-5.
65. Dietrich, C.F., et al., How to perform Contrast-Enhanced
Ultrasound (CEUS). Ultrasound Int Open, 2018. 4 (1): p. E2-e15.
66. Baliyan, V., et al., Vascular computed tomography angiography
technique and indications. Cardiovasc Diagn Ther, 2019.9 (Suppl 1): p. S14-s27.
67. Goncalves, L.N., et al., Perfusion Parameters in Near-Infrared
Fluorescence Imaging with Indocyanine Green: A Systematic Review of the
Literature. Life (Basel), 2021. 11 (5).
68. Smit, J.M., et al., Intraoperative evaluation of perfusion in
free flap surgery: A systematic review and meta-analysis. Microsurgery,
2018. 38 (7): p. 804-818.
69. Lee, B.T., et al., Intraoperative near-infrared fluorescence
imaging in perforator flap reconstruction: current research and early
clinical experience. J Reconstr Microsurg, 2010. 26 (1): p.
59-65.
70. Tange, F.P., et al., Near-infrared fluorescence angiography
with indocyanine green for perfusion assessment of DIEP and msTRAM
flaps: A Dutch multicenter randomized controlled trial. Contemp Clin
Trials Commun, 2023. 33 : p. 101128.
71. Manning-Geist, B.L., et al., Assessment of wound perfusion
with near-infrared angiography: A prospective feasibility study.Gynecol Oncol Rep, 2022. 40 : p. 100940.
72. Matsui, A., et al., Predictive capability of near-infrared
fluorescence angiography in submental perforator flap survival. Plast
Reconstr Surg, 2010. 126 (5): p. 1518-1527.
73. Lohman, R.F., et al., An Analysis of Current Techniques Used
for Intraoperative Flap Evaluation. Ann Plast Surg, 2015.75 (6): p. 679-85.
74. Swartz, W.M., et al., Direct monitoring of microvascular
anastomoses with the 20-MHz ultrasonic Doppler probe: an experimental
and clinical study. Plast Reconstr Surg, 1988. 81 (2): p.
149-61.
75. Guillemaud, J.P., et al., The Implantable Cook-Swartz Doppler
Probe for Postoperative Monitoring in Head and Neck Free Flap
Reconstruction. Archives of Otolaryngology–Head & Neck Surgery, 2008.134 (7): p. 729-734.
76. Oliver, D.W., et al., The Cook-Swartz venous Doppler probe for
the post-operative monitoring of free tissue transfers in the United
Kingdom: a preliminary report. Br J Plast Surg, 2005. 58 (3):
p. 366-70.
77. Paprottka, F.J., et al., Cook-Swartz Doppler Probe
Surveillance for Free Flaps-Defining Pros and Cons. Surg J (N Y), 2020.6 (1): p. e42-e46.
78. Frost, M.W., et al., Direct comparison of postoperative
monitoring of free flaps with microdialysis, implantable cook-swartz
Doppler probe, and clinical monitoring in 20 consecutive patients.Microsurgery, 2015. 35 (4): p. 262-71.
79. Thoenissen, P., et al., Hyperspectral Imaging Allows
Evaluation of Free Flaps in Craniomaxillofacial Reconstruction. J
Craniofac Surg, 2023. 34 (3): p. e212-e216.