Acknowledgments
We thank all authors who published the information on their intensive
urban avian surveys. We are also indebted to Dario Moreira for helping
assemble the dataset. We finally thank Phillip Clergeau, Mariana
Villegas and Ivan Diaz for providing unpublished data, María Moirón,
Gabriel Garcıa-Peña, Miquel Vall-llosera and Louis Lefebvre for
insightful comments, Liam Revell for sharing scripts to plot
phylogenies, and the R-team and package contributors for the R free
software. We are also grateful to Natural History Museum Tring, American
Museum of Natural History and numerous other research collections for
access to specimens. Collection of functional trait data was supported
by Natural Environment Research Council grants NE/I028068/1 and
NE/P004512/1 (to JAT). This paper is part of the project CGL2013-47448-P
from the Spanish Government (to DS). CG-L was supported by FONDECYT
11160271 and PIA/BASAL FB0002 from ANID, Chile. JGP was supported by a
Juan de la Cierva Fellowship from the Ministry of Economy, Industry and
Competitivity of Spain (FJCI‐2014‐20380).
Adams, D.C. (2014). A Generalized K Statistic for Estimating
Phylogenetic Signal from Shape and Other High-Dimensional Multivariate
Data. Syst Biol , 63, 685–697.
Adams, D.C. & Otárola-Castillo, E. (2013). Geomorph: an r package for
the collection and analysis of geometric morphometric shape data.Methods Ecol Evol , 4, 393–399.
Bartomeus, I., Sol, D., Pino, J., Vicente, P. & Font, X. (2012).
Deconstructing the native-exotic richness relationship in plants.Glob Ecol Biogeogr , 21, 524–533.
Blackburn, T.M., Lockwood, J.L. & Cassey, P. (2009). Avian
Invasions . Avian Invasions Ecol Evol Exot Birds . Oxford
University Press.
Bürkner, P.-C. (2017). Brms: An R Package for Bayesian Multilevel Models
Using Stan. J Stat Softw , 80, 1–28.
De Cáceres, M., Sol, D., Lapiedra, O. & Legendre, P. (2011). A
framework for estimating niche metrics using the resemblance between
qualitative resources. Oikos , 120, 1341–1350.
Cadotte, M.W., Campbell, S.E., Li, S.-P., Sodhi, D.S. & Mandrak, N.E.
(2018). Preadaptation and Naturalization of Nonnative Species: Darwin’s
Two Fundamental Insights into Species Invasion. Annu Rev Plant
Biol , 69, 661–684.
Cadotte, M.W., Yasui, S.L.E., Livingstone, S. & MacIvor, J.S. (2017).
Are urban systems beneficial, detrimental, or indifferent for biological
invasion? Biol Invasions , 19, 3489–3503.
Daehler, C.C. (2001). Darwin’s Naturalization Hypothesis Revisited.Am Nat , 158, 324–330.
Darwin, C. (1859). On the Origin of Species by Means of Natural
Selection . D Applet Co .
Diez, J.M., Sullivan, J.J., Hulme, P.E., Edwards, G. & Duncan, R.P.
(2008). Darwin’s naturalization conundrum: Dissecting taxonomic patterns
of species invasions. Ecol Lett , 11, 674–681.
Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012). Bayesian
Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol , 29,
1969–1973.
Duncan, R.P., Blackburn, T.M. & Sol, D. (2003). The Ecology of Bird
Introductions. Annu Rev Ecol Evol Syst , 34, 71–98.
Dyer, E.E., Redding, D.W. & Blackburn, T.M. (2017). The global avian
invasions atlas, a database of alien bird distributions worldwide.Sci Data , 4, 170041.
Elton, C. (1958). The ecology of invasions by animals and plants .
Chapman and Hall, London.
Ericson, P.G.P., Zuccon, D., Ohlson, J.I., Johansson, U.S., Alvarenga,
H. & Prum, R.O. (2006). Higher-level phylogeny and morphological
evolution of tyrant flycatchers, cotingas, manakins, and their allies
(Aves: Tyrannida). Mol Phylogenet Evol , 40, 471–483.
Gower, J.C. (1971). A General Coefficient of Similarity and Some of Its
Properties. Biometrics , 27, 857.
Hackett, S.J., Kimball, R.T., Reddy, S., Bowie, R.C.K., Braun, E.L.,
Braun, M.J., et al. (2008). A Phylogenomic Study of Birds Reveals
Their Evolutionary History. Science (80- ) , 320, 1763–1768.
Hadfield, J.D. (2010). MCMC Methods for Multi-Response Generalized
Linear Mixed Models: The MCMCglmm R Package. J Stat Softw , 33,
1–22.
Hulme, P.E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D.,et al. (2008). Grasping at the routes of biological invasions: A
framework for integrating pathways into policy. J Appl Ecol , 45,
403–414.
Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012).
The global diversity of birds in space and time. Nature , 491,
444–448.
Jiang, L., Tan, J. & Pu, Z. (2010). An Experimental Test of Darwin’s
Naturalization Hypothesis. Am Nat , 175, 415–423.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H.,
Ackerly, D.D., et al. (2010). Picante: R tools for integrating
phylogenies and ecology. Bioinformatics , 26, 1463–1464.
Lambdon, P.W. & Hulme, P.E. (2006). How strongly do interactions with
closely-related native species influence plant invasions? Darwin’s
naturalization hypothesis assessed on Mediterranean islands. J
Biogeogr , 33, 1116–1125.
Levine, J.M., Adler, P.B. & Yelenik, S.G. (2004). A meta-analysis of
biotic resistance to exotic plant invasions. Ecol Lett , 7,
975–989.
Li, S. peng, Cadotte, M.W., Meiners, S.J., Hua, Z. shuang, Shu, H. yue,
Li, J. tian, et al. (2015). The effects of phylogenetic
relatedness on invasion success and impact: Deconstructing Darwin’s
naturalisation conundrum. Ecol Lett , 18, 1285–1292.
Lovell, R.S.L., Blackburn, T.M., Dyer, E.E. & Pigot, A.L. (2021).
Environmental resistance predicts the spread of alien species. Nat
Ecol Evol .
Mouquet, N., Devictor, V., Meynard, C.N., Munoz, F., Bersier, L.-F.F.,
Chave, J., et al. (2012). Ecophylogenetics: Advances and
perspectives. Biol Rev , 87, 769–785.
Park, D.S., Feng, X., Maitner, B.S., Ernst, K.C. & Enquist, B.J.
(2020). Darwin’s naturalization conundrum can be explained by spatial
scale. Proc Natl Acad Sci , 117, 10904–10910.
Penone, C., Davidson, A.D., Shoemaker, K.T., Di Marco, M., Rondinini,
C., Brooks, T.M., et al. (2014). Imputation of missing data in
life-history trait datasets: which approach performs the best?Methods Ecol Evol , 5, 961–970.
Pigot, A.L., Sheard, C., Miller, E.T., Bregman, T.P., Freeman, B.G.,
Roll, U., et al. (2020). Macroevolutionary convergence connects
morphological form to ecological function in birds. Nat Ecol
Evol , 4, 230–239.
Pysek, P., Jarosik, V., Hulme, P.E., Kuhn, I., Wild, J., Arianoutsou,
M., et al. (2010). Disentangling the role of environmental and
human pressures on biological invasions across Europe. Proc Natl
Acad Sci , 107, 12157–12162.
Pyšek, P. & Richardson, D.M. (2010). Invasive Species, Environmental
Change and Management, and Health. Annu Rev Environ Resour , 35,
25–55.
Redding, D.W., Pigot, A.L., Dyer, E.E., Şekercioğlu, Ç.H., Kark, S. &
Blackburn, T.M. (2019). Location-level processes drive the establishment
of alien bird populations worldwide. Nature , 571, 103–106.
Romanuk, T.N., Zhou, Y., Brose, U., Berlow, E.L., Williams, R.J. &
Martinez, N.D. (2009). Predicting invasion success in complex ecological
networks. Philos Trans R Soc B Biol Sci , 364, 1743–1754.
Sax, D.F. & Brown, J.H. (2000). The paradox of invasion. Glob
Ecol Biogeogr , 9, 363–371.
Sayol, F., Maspons, J., Lapiedra, O., Iwaniuk, A.N., Székely, T. & Sol,
D. (2016). Environmental variation and the evolution of large brains in
birds. Nat Commun , 7, 13971.
Shea, K. & Chesson, P. (2002). Community ecology theory as a framework
for biological invasions. Trends Ecol Evol , 17, 170–176.
Sol, D., Bartomeus, I., González-Lagos, C. & Pavoine, S. (2017a).
Urbanisation and the loss of phylogenetic diversity in birds. Ecol
Lett , 20, 721–729.
Sol, D., Bartomeus, I. & Griffin, A.S. (2012a). The paradox of invasion
in birds: Competitive superiority or ecological opportunism?Oecologia , 169, 553–564.
Sol, D., González-Lagos, C., Lapiedra, O. & Díaz, M. (2017b). Why Are
Exotic Birds So Successful in Urbanized Environments? In: Ecology
and Conservation of Birds in Urban Environments (eds. Murgui, E. &
Hedblom, M.). Springer International Publishing, Cham, pp. 75–89.
Sol, D., Gonzalez-Lagos, C. & Moreira, D. (2020a). Worldwide bird
assemblages across urban-wildland gradients. Dryad, Dataset,
https://doi.org/10.5061/dryad.2rbnzs7jf .
Sol, D., González-Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O.
(2014a). Urbanisation tolerance and the loss of avian diversity.Ecol Lett , 17, 942–950.
Sol, D., Lapiedra, O. & Vilà, M. (2014b). Do close relatives make bad
neighbors ? Proc Nat Acad Sci USA , 111, 534–535.
Sol, D. & Maspons, J. (2016). Life History, Behaviour and Invasion
Success. In: Biological Invasions and Animal Behaviour (eds.
Weis, J.S. & Sol, D.). Cambridge University Press, Cambridge, pp.
63–81.
Sol, D., Maspons, J., Vall-llosera, M., Bartomeus, I., Garcia-Pena,
G.E., Piñol, J., et al. (2012b). Unraveling the life history of
successful Invaders. Science (80- ) , 337, 580–583.
Sol, D., Trisos, C., Múrria, C., Jeliazkov, A., González‐Lagos, C.,
Pigot, A.L., et al. (2020b). The worldwide impact of urbanisation
on avian functional diversity. Ecol Lett , 23, 962–972.
Sol, D., Trisos, C., Múrria, C., Jeliazkov, A., González‐Lagos, C.,
Pigot, A.L., et al. (2020c). Worldwide bird assemblages
across urban-wildland gradients . Ecol Lett . John Wiley & Sons,
Ltd.
Thuiller, W., Gallien, L., Boulangeat, I., de Bello, F., Münkemüller,
T., Roquet, C., et al. (2010). Resolving Darwin’s naturalization
conundrum: A quest for evidence. Divers Distrib , 16, 461–475.
Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S.,
Fritz, S.A., et al. (2017). A guide to phylogenetic metrics for
conservation, community ecology and macroecology. Biol Rev , 92,
698–715.
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B.,
Cornell, H. V., et al. (2010). Niche conservatism as an emerging
principle in ecology and conservation biology. Ecol Lett , 13,
1310–1324.