Reference
1. Li Y, Wei X, Chen L, and Shi J. Electrocatalytic Hydrogen Production
Trilogy. Angew. Chem. Int. Ed. 2021; 60 (36): 19550-19571.
2. Kou T, Wang S, and Li Y. Perspective on High-Rate Alkaline Water
Splitting. ACS Mater. Lett. 2021; 3 (2): 224-234.
3. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, and
Jaramillo TF. Combining theory and experiment in electrocatalysis:
Insights into materials design. Science. 2017; 355 (6321): eaad4998
4. Hsu S-H, Hung S-F, Wang H-Y, Xiao F-X, Zhang L, Yang H, Chen HM, Lee
J-M, and Liu B. Tuning the Electronic Spin State of Catalysts by Strain
Control for Highly Efficient Water Electrolysis. Small Methods. 2018; 2
(5): 1800001.
5. Jothi VR, Karuppasamy K, Maiyalagan T, Rajan H, Jung CY, and Yi SC.
Corrosion and Alloy Engineering in Rational Design of High Current
Density Electrodes for Efficient Water Splitting. Adv. Energy Mater.
2020; 10 (24): 1904020.
6. Caban-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC,
Tsai ML, He JH, and Jin S. Efficient hydrogen evolution catalysis using
ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015; 14 (12):
1245-51.
7. Lu X and Zhao C. Electrodeposition of hierarchically structured
three-dimensional nickel-iron electrodes for efficient oxygen evolution
at high current densities. Nat. Commun. 2015; 6: 6616.
8. Jeon D, Park J, Shin C, Kim H, Jang J-W, Lee DW, and Ryu J.
Superaerophobic hydrogels for enhanced electrochemical and
photoelectrochemical hydrogen production. Sci. Adv. 2020; 6: eaaz3944
9. Wang JG, Shi L, Su Y, Liu L, Yang Z, Huang R, Xie J, Tian Y, and Li
D. In-situ plasmonic tracking oxygen evolution reveals multistage oxygen
diffusion and accumulating inhibition. Nat. Commun. 2021; 12 (1): 2164.
10. Angulo A, van der Linde P, Gardeniers H, Modestino M, and Fernández
Rivas D. Influence of Bubbles on the Energy Conversion Efficiency of
Electrochemical Reactors. Joule. 2020; 4 (3): 555-579.
11. Wang L, Huang X, Jiang S, Li M, Zhang K, Yan Y, Zhang H, and Xue JM.
Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven
Stainless Steel Fabrics. ACS Appl. Mater. Interfaces. 2017; 9 (46):
40281-40289.
12. Beck VA, Ivanovskaya AN, Chandrasekaran S, Forien JB, Baker SE,
Duoss EB, and Worsley MA. Inertially enhanced mass transport using
3D-printed porous flow-through electrodes with periodic lattice
structures. Proc. Natl. Acad. Sci. U. S. A. 2021; 118 (32).
13. Yang W and Chen S. Recent progress in electrode fabrication for
electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng.
J. 2020; 393.
14. Bae M, Kang Y, Lee DW, Jeon D, and Ryu J. Superaerophobic
Polyethyleneimine Hydrogels for Improving Electrochemical Hydrogen
Production by Promoting Bubble Detachment. Adv. Energy Mater. 2022; 12
(29): 2201452-9.
15. Shen J, Li J, Li B, Zheng Y, Bao X, Guo J, Guo Y, Lai C, Lei W, Wang
S, and Shao H. Ambient Fast Synthesis of
Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic
Water Oxidation. Energy Environ. Mater. 2022.
16. Guo Y, Yao Z, Shang C, and Wang E. Amorphous Co2B Grown on CoSe2
Nanosheets as a Hybrid Catalyst for Efficient Overall Water Splitting in
Alkaline Medium. ACS Appl. Mater. Interfaces. 2017; 9 (45): 39312-39317.
17. Chang S, Zhang Y, Zhang B, Cao X, Zhang L, Huang X, Lu W, Ong CYA,
Yuan S, Li C, Huang Y, Zeng K, Li L, Yan W, and Ding J. Conductivity
Modulation of 3D‐Printed Shellular Electrodes through Embedding
Nanocrystalline Intermetallics into Amorphous Matrix for
Ultrahigh‐Current Oxygen Evolution. Adv. Energy Mater. 2021; 11 (28):
2100968.
18. Li Y, Zhang H, Xu T, Lu Z, Wu X, Wan P, Sun X, and Jiang L.
Under-Water Superaerophobic Pine-Shaped Pt Nanoarray Electrode for
Ultrahigh-Performance Hydrogen Evolution. Adv. Funct. Mater. 2015; 25
(11): 1737-1744.
19. Ge K, Zeng Y, Dong G, Zhao L, Wang Z, and Huang M. 3D self-standing
grass-like cobalt phosphide vesicles-decorated nanocones grown on
Ni-foam as an efficient electrocatalyst for hydrogen evolution reaction.
Int. J. Hydrogen Energy. 2019; 44 (26): 13490-13501.
20. Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, Wang X, Wang H, Wang J, Luo
J, Lei X, and Jiang L. Ultrahigh hydrogen evolution performance of
under-water ”superaerophobic” MoS(2) nanostructured electrodes. Adv.
Mater. 2014; 26 (17): 2683-7, 2615.
21. Lu Z, Sun M, Xu T, Li Y, Xu W, Chang Z, Ding Y, Sun X, and Jiang L.
Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater.
2015; 27 (14): 2361-6.
22. Liu Y, Pan L-m, Liu H, Chen T, Yin S, and Liu M. Effects of magnetic
field on water electrolysis using foam electrodes. Int. J. Hydrogen
Energy. 2019; 44 (3): 1352-1358.
23. Swiegers GF, Terrett RNL, Tsekouras G, Tsuzuki T, Pace RJ, and
Stranger R. The prospects of developing a highly energy-efficient water
electrolyser by eliminating or mitigating bubble effects. Sustainable
Energy Fuels. 2021; 5 (5): 1280-1310.
24. Wang M, Wang Z, Gong X, and Guo Z. The intensification technologies
to water electrolysis for hydrogen production – A review. Renewable
Sustainable Energy Rev. 2014; 29: 573-588.
25. Darband GB, Aliofkhazraei M, and Shanmugam S. Recent advances in
methods and technologies for enhancing bubble detachment during
electrochemical water splitting. Renewable Sustainable Energy Rev. 2019;
114.
26. Chen J, Fan S, Chen Y, Wang Y, Bai K, Mai Z, and Xiao Z.
Electrocatalytic Composite Membrane with Deep-Permeation Nano Structure
Fabricated by Flowing Synthesis for Enhanced Catalysis. J. Membr. Sci.
2021; 636: 119616-10.
27. Vedharathinam V, Qi Z, Horwood C, Bourcier B, Stadermann M, Biener
J, and Biener M. Using a 3D Porous Flow-Through Electrode Geometry for
High-Rate Electrochemical Reduction of CO2 to CO in Ionic Liquid. ACS
Catal. 2019; 9 (12): 10605-10611.
28. Buffa A, Erel Y, and Mandler D. Carbon Nanotube Based Flow-Through
Electrochemical Cell for Electroanalysis. Anal. Chem. 2016; 88 (22):
11007-11015.
29. Chen Y, Fan S, Qiu B, Chen J, Mai Z, Wang Y, Bai K, and Xiao Z.
Cu-Ag Bimetallic Core-shell Nanoparticles in Pores of a Membrane
Microreactor for Enhanced Synergistic Catalysis. ACS Appl. Mater.
Interfaces. 2021; 13 (21): 24795-24803.
30. Chen Y, Fan S, Chen J, Deng L, and Xiao Z. Catalytic Membrane
Nanoreactor with Cu-Agx Bimetallic Nanoparticles Immobilized in Membrane
Pores for Enhanced Catalytic Performance. ACS Appl. Mater. Interfaces.
2022; 14 (7): 9106-9115.
31. Sun H, Xu X, Yan Z, Chen X, Jiao L, Cheng F, and Chen J.
Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with
Pt-like activity and durability for the hydrogen evolution reaction. J.
Mater. Chem. A. 2018; 6 (44): 22062-22069.