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Abstract

A second-order time stepping scheme is developed for the binary fluid-surfactant phase field model
coupled with hydrodynamics by using the scalar auxiliary variable approach and pressure correction
method. The free energy contains a double-well potential, a nonlinear coupling entropy and a Flory-
Huggins potential. By introducing one scalar auxiliary variable, the system is transformed into an
equivalent form so that the nonlinear terms can be treated semi-explicitly. The scheme is linear and
decoupled; thus, they can be solved efficiently. We further prove that the semidiscretized scheme in
time is unconditionally energy stable. Numerical experiments are performed to validate the accuracy
and energy stability of the proposed scheme.

keywords: binary fluid-surfactant, scalar auxiliary variable approach, pressure correction method, un-
conditional energy stability, Navier-Stokes equation, BDF2.

1 Introduction

Surfactants move toward the fluid interface in binary fluid due to their amphiphilic structure which
contains hydrophile and hydrophobe groups. As a result, they can reduce the interfacial tension and
system energy [30]. Surfactants play a very important role in many fields for their property. For example,
in biotechnology, surfactants can reduce the risk from bubbles formed in blood due to rapid decompression
[2], and in industry applications, surfactants can improve food and shampoo processing and enhance oil
recovery [29].

Modeling interfacial dynamics with soluble surfactants in a multiphase system is a challenging task.
In the past twenty years, there have been appearing numerous studies related to surfactants [14, 24, 26, 42,
50, 52]. As a matter of fact, there are two fundamental methods of modeling the binary fluid-surfactant
system. One of which is the sharp interface model, which has a long history dated back to one century
ago [16, 37]. This kind of model is adopted in [21, 23]. In fact, sharp interface models have made great
progress in explaining the kinetics of diffusional phase transformations and simulating multiphase systems
with surfactants. Nevertheless, there are some difficulties stemming from the interface interactions with
various complex processes during the course of phase transformations [29]. The other is the phase
field model[13, 25, 15, 43]. Phase field model makes use of an appropriate free energy functional to
characterize the interfacial dynamics. This kind of method is adopted to investigate interfacial dynamics
with surfactants in [14, 26, 38, 40, 41]. In [26], the phase-field method was used to study the phase
transition behaviors of the monolayer microemulsion system, formed by surfactant molecules. Generally,
the free energy of the binary fluid-surfactant model consists of the following two parts: The first part
is the classical Ginzburg-Landau double well potential, which is used to describe a binary mixture. The
other is the nonlinear coupling entropy term to account for the influence of the surfactant in boosting the
formation of interfaces. The Ginzburg-Landau double well potential has a historical evolution process for
this part of energy. In their pioneering work, Laradji et al. [26] introduced two phase field variables to
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represent the local densities of the fluids, as well as the local concentration of the surfactant. As mentioned
in [24], the authors added an extra diffusion term to prevent the model from becoming unbounded and a
Ginzburg-Landau type potential for the concentration variable to allow the coexistence of the two bulk
states. To restrict the range of the concentration variable, the authors in [42] added the logarithmic
Flory-Huggins potential based on the nonlinear coupling entropy, which is similar to that in [24, 26].
In consideration of penalizing the concentration to accumulate along the fluid interface, the author
marginally changed the nonlinear coupled entropy in [14]. In [39], the authors further modified the model
in [14] by adding the Flory-Huggins potential for the local concentration variable as well.

In this paper, we focus on constructing a second-order unconditional energy stable numerical scheme
for a hydrodynamics coupled binary fluid-surfactant phase-field model [39, 47, 58]. The governing system
consists of incompressible Navier-Stokes equations and two Cahn-Hilliard type equations. For the sake
of simplicity, many authors work on the partial model, i.e., the phase field model without fluid flow.
There have been some excellent studies which focus on numerical approximations for multi-phase models
[8, 22]. Owing to the stiff nonlinear terms that originate from the thin interface thickness parameter, there
are many difficulties to handle in constructing numerical schemes with unconditional energy stability,
especially for the second-order scheme. Many efforts have been made to deal with these problems [8,
48, 55]. The simple fully implicit or explicit type discretization brings extremely severe time step size
constraints on the interfacial width [1, 12, 36]. The semi-implicit method is adopted in [39]. However, the
author mentioned that the semi-implicit method has a serious constraint on the time step. Lately, Gu et
al. [17] constructed an energy stable finite difference scheme for the binary fluid-surfactant system, whose
scheme is first order in time based on a convex splitting approach [11, 31, 44, 46]. The scheme managed
the convex part of the free energy potential implicitly, while treating the concave part explicitly. There
is only first order in time. In addition, algebraic multigrid and Newton-multigrid methods are adopted
to solve the linear and nonlinear systems, respectively [17]. More recently, Yang et al. constructed linear
and unconditionally energy stable schemes for binary fluid-surfactant systems with constant mobility in
[52] using the invariant energy quadratization (IEQ) technique[6, 19, 20, 49, 51, 53, 54, 56]. The free
energy is transformed into an equivalent quadratic form by introducing appropriate auxiliary variables.
All the nonlinear terms in this system are treated semi-explicitly [52]. Their schemes are linear and
unconditionally energy stable. In addition, their schemes can achieve both first-order and second-order
accuracy in time. In fact, the IEQ approach leads to a coupled system with a variable coefficient to be
solved. Recently, Zhu et al. proposed energy stable schemes in [57] based on the scalar auxiliary variable
(SAV) method [34, 35]. Their schemes are decoupled and linear. They introduce two scalar auxiliary
variables and demonstrate energy stability for the first-order scheme. Furthermore, they show the energy
stability of the second-order scheme by a series of numerical tests. Newly, Shen et al. in [28, 32] proved
the convergence and error estimate for the SAV approach for the typical Cahn-Hilliard equation with
double-well potential. Here, we focus on the SAV approach to the binary fluid-surfactant system with
hydrodynamics, and the numerical analysis will be achieved in our future work.

However, there are numerous excellent works related to phase field models with surfactants. It is
extremely difficult to numerically develop unconditionally energy stable schemes for phase-field surfactant
models of two-phase incompressible flow. The three difficulties originate from: (1) the strong nonlinear
couplings between multiple phase field variables; (2) the coupling between the velocity and multiple
phase-field variables through convection terms and nonlinear stresses; and (3) the coupling of the velocity
and pressure. When no flow field is considered, the inherent numerical challenges of (2) and (3) are
greatly ignored. Compared with the model without flow fields, the hydrodynamic surfactant model is
conceivably more complicated for algorithm design. By combining some well-known approaches such
as the projection method for Navier-Stokes equations, the scalar auxiliary variable (SAV) approach for
nonlinear stiff terms, and implicit-explicit treatments for nonlinear stresses, we obtain a linear, second
order, and provably unconditionally energy stable time stepping scheme.

Therefore, in this paper, our primary purpose is to construct a more efficient and effective numerical
scheme to solve the binary fluid-surfactant phase field model coupled with hydrodynamics that had been
developed in [14, 39, 47]. The proposed scheme is expected to possess the following properties: (1)
the theoretical proofs are provided, maintaining the energy dissipation; (2) the proposed second-order
scheme in time is efficient and accurate; (3) only several linear systems at each time step need to be
solved and are easy to implement. We adopt the SAV approach to deal with nonlinear terms about the
phase field variables. The SAV approach is built on the recently introduced IEQ approach. Therefore,
the SAV approach inherits all the advantages of the IEQ approach but conquers most of its weaknesses.
The IEQ approach will lead to coupled systems with variable coefficients and requires the energy density
function to be bounded from below rather than the energy [34]. For the Navier-Stokes equations, we use
the pressure correction method to decouple the velocity and pressure. This means that our scheme is
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decoupled and easy to implement. Furthermore, we demonstrate unconditional energy stability for the
proposed scheme.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction to the
hydrodynamical binary fluid surfactant phase field model and its energy law. In Section 3, our numerical
scheme with respect to second-order temporal accuracy for this model are presented, and we rigorously
prove that the schemes satisfy unconditional energy stability. A certain number of numerical experiments
are carried out in Section 4. We present the conclusions of this paper in Section 5.

2 Governing equations and energy law

In this section, we first give a brief description of the hydrodynamic binary fluid-surfactant phase field
model developed by [47]. The total free energy for the hydrodynamical binary fluid-surfactant system is
given by

E (u, φ, ρ) =

∫
Ω

(1

2
|u|2 +

f (φ)

ε
+
ε

2
|∇φ|2 +

η

2
|∇ρ|2 +

α

2
(ρ− |∇φ|)2

+ βH (ρ)
)

dx, (2.1)

where

f (φ) =
1

4

(
φ2 − 1

)2
, H (ρ) = ρ ln ρ+ (1− ρ) ln (1− ρ) .

The phase field variables φ(x, t) and ρ(x, t) are order parameters, where φ(x, t) = −1 or 1 represents two
different fluids, and ρ(x, t) describes the local density of the surfactant. There is a thin smooth transition
layer between the two different fluids, and the width is described by a small positive constant ε. Thus,
the interface of the mixture is represented by the zero level set Γt = {x : φ(x, t) = 0}. In addition, we
use u to represent the volume-averaged velocity field. It is clear that we can divide the total free energy
functional into four parts and we will give a brief description about them.

Ek(u) =
∫

Ω
1
2 |u|

2dx is the kinetic energy for the binary mixture fluid-surfactant system. The so-

called Cahn-Hilliard energy ECH (φ) =
∫

Ω

( f(φ)
ε + ε

2 |∇φ|
2
)
dx is the mixture energy functional describing

the coarsening dynamics, where the first term represents the hydrophobic type (tendency of separation)
of interactions and the second term in ECH contributes to the hydrophilic type (tendency of mixing) of
the interactions between the materials. As a consequence of the competition between the two types of
interactions, the equilibrium configuration will include a diffusive interface. Different from [14], an extra

energy density |∇ρ|2 is added to enhance the stability in entropy Een (ρ) =
∫

Ω

(
η
2 |∇ρ|

2
+ βH (ρ)

)
dx,

where η, β are both two small positive constants. H (ρ) is a Flory-Huggins energy density, and it restricts

the value of ρ to be in (0, 1). Finally, the coupled energy functional Ecp (φ, ρ) =
∫

Ω
α
2 (ρ− |∇φ|)2

dx, is
the penalty term that enables the concentration to accumulate near the interface with a relatively high
value.

The equations for the hydrodynamical binary fluid-surfactant phase field model are given as follows:

ut + (u · ∇)u +∇p− ν∆u + λ1φ∇µφ + λ2ρ∇µρ = 0, (2.2a)

∇ · u = 0, (2.2b)

φt + λ1∇ · (uφ) = M1∆µφ, (2.2c)

ρt + λ2∇ · (uρ) = M2∆µρ, (2.2d)

µφ = δφE, (2.2e)

µρ = δρE. (2.2f)

We impose the system under the initial conditions as

u (x, 0) = u0 (x) , φ (x, 0) = φ0 (x) , ρ (x, 0) = ρ0 (x) , (2.3)

and use the following boundary conditions:

u · n|∂Ω = 0, ∂nφ|∂Ω = ∂nρ|∂Ω = 0, ∂nµφ|∂Ω = ∂nµρ|∂Ω = 0, (2.4)

where n is the unit outward normal vector of boundary ∂Ω.
The above system (2.2)− (2.4) follows the dissipation law. By taking the L2 inner products of (2.2a)

with u, of (2.2c) with µφ, of ρ with (2.2d) with µρ, of (2.2e) with −φt, and of (2.2f) with −ρt, by using
integration by parts and combining all the equalities, we obtain

3



d

dt
E (u, φ, ρ) = −ν‖∇u‖2 −M1‖∇µφ‖2 −M2‖∇µρ‖2 ≤ 0. (2.5)

Next, our goal is to design a temporal approximation scheme which satisfies the discrete version of the
continuous energy law (2.5).

First, we regularize the Flory-Huggins potential from the interval (0, 1) to R. We mainly follow the
work in [7]. That is, for any ξ > 0, the regularized Flory-Huggins potential is expressed by

Ĥ(ρ) =


ρ ln ρ+ (1−ρ)2

2ξ + (1− ρ) ln ξ − ξ
2 , ρ ≥ 1− ξ,

ρ ln ρ+ (1− ρ) ln(1− ρ), ξ ≤ ρ ≤ 1− ξ,
(1− ρ) ln(1− ρ) + ρ2

2ξ + ρ ln ξ − ξ
2 , ρ ≤ ξ.

Notice that when ξ → 0, Ĥ(ρ) → H(ρ). We consider the numerical solution to the model formulated
with the regularized function Ĥ(ρ). For convenience, we omit the notation .̂ Now, we will construct first
order and second order numerical schemes in time using the scalar auxiliary variable approach.

Note that

E (u, φ, ρ) =

∫
Ω

(
1

2
|u|2 +

f (φ)

ε
+
ε

2
|∇φ|2 +

η

2
|∇ρ|2 +

α

2
(ρ− |∇φ|)2

+ βH (ρ)

)
dx

=

∫
Ω

(
1

2
|u|2 +

ε+ θ

2
|∇φ|2 +

σ

2
φ2 +

η

2
|∇ρ|2 +

δ

2
ρ2

)
dx− C

+

∫
Ω

(
f (φ)

ε
+
α

2
(ρ− |∇φ|)2 − θ

2
|∇φ|2 − σ

2
φ2 − δ

2
ρ2 + βH (ρ)

)
dx + C,

where C is a constant that maintains the nonlinear energy bounded from below. After denoting

E0 =

∫
Ω

(
f (φ)

ε
+
α

2
(ρ− |∇φ|)2 − θ

2
|∇φ|2 − σ

2
φ2 − δ

2
ρ2 + βH (ρ)

)
dx + C and r (t) =

√
E0,

We have the equivalent equation system as follows:

ut + (u · ∇)u +∇p− ν∆u + λ1φ∇µφ + λ2ρ∇µρ = 0, (2.6a)

∇ · u = 0, (2.6b)

φt + λ1∇ · (uφ) = M1∆µφ, (2.6c)

ρt + λ2∇ · (uρ) = M2∆µρ, (2.6d)

µφ = − (ε+ θ) ∆φ+ σφ+
r√
E0

δφE0, (2.6e)

µρ = −η∆ρ+ δρ+
r√
E0

δρE0, (2.6f)

rt =
1

2
√
E0

((δφE0, φt) + (δρE0, ρt)) . (2.6g)

where

δφE0 =
1

ε

(
φ2 − 1

)
φ− (α− θ) ∆φ+ α∇ ·

(
ρ
∇φ
|∇φ|

)
− σφ, (2.7)

δρE0 = (α− δ) ρ− α|∇φ|+ βH ′ (ρ) . (2.8)

Similar to (2.5), the energy stability is obtained by taking the L2 inner products of (2.6a) with u, of
(2.6c) with µφ, of (2.6d) with (2.6d) with µρ, of (2.6e) with −φt, of (2.6f) with −ρt, and of (2.6g) with
2r.Using integration by parts and combining all equalities, we obtain

d

dt
Ẽ (u, φ, ρ, r) = −ν‖∇u‖2 −M1‖∇µφ‖2 −M2‖∇µρ‖2 ≤ 0. (2.9)

where

Ẽ (u, φ, ρ, r) =

∫
Ω

(
1

2
|u|2 +

ε+ θ

2
|∇φ|2 +

σ

2
φ2 +

η

2
|∇ρ|2 +

δ

2
ρ2

)
dx− C + r2

is the modified energy functional, which equals the original energy functional.
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3 Second order unconditionally energy stable numerical scheme

In this section, we use the scalar auxiliary variable approach to decouple the phase field equations
and the pressure correction method for the hydrodynamic equations. The resulting system is decoupled
and linear.

Step 1: Solve
(
φn+1, ρn+1, rn+1, ũn+1

)
using

3ũn+1 − 4un + un−1

2∆t
+B

(
ûn+1, ũn+1

)
+∇pn − ν∆ũn+1 + λ1φ̂

n+1∇µn+1
φ + λ2ρ̂

n+1∇µn+1
ρ = 0,

(3.1a)

3φn+1 − 4φn + φn−1

2∆t
+ λ1∇ · (ũn+1φ̂n+1) = M1∆µn+1

φ , (3.1b)

3ρn+1 − 4ρn + ρn−1

2∆t
+ λ2∇ · (ũn+1ρ̂n+1) = M2∆µn+1

ρ , (3.1c)

µn+1
φ = − (ε+ θ) ∆φn+1 + σφn+1 + V nφ r

n+1, (3.1d)

µn+1
ρ = −η∆ρn+1 + δρn+1 + V nρ r

n+1, (3.1e)

3rn+1 − 4rn + rn−1 =
1

2

(
V nφ , 3φ

n+1 − 4φn + φn−1
)

+
1

2

(
V nρ , 3ρ

n+1 − 4ρn + ρn−1
)
, (3.1f)

where

B (u,v) = (u · ∇)v +
1

2
(∇ · u)v,

ûn+1 = 2un − un−1, φ̂n+1 = 2φn − φn−1, ρ̂n+1 = 2ρn − ρn−1,

V nφ =
δφE0

(
φ̂n+1, ρ̂n+1

)
√
E0

(
φ̂n+1, ρ̂n+1

) , V nρ =
δρE0

(
φ̂n+1, ρ̂n+1

)
√
E0

(
φ̂n+1, ρ̂n+1

) ,
and the boundary condition is as follows:

ũn+1|∂Ω = 0, ∂nφ
n+1|∂Ω = ∂nρ

n+1|∂Ω = 0, ∂nµ
n+1
φ |∂Ω = ∂nµ

n+1
ρ |∂Ω = 0. (3.2)

From equation (3.1f), we have

rn+1 =
4

3
rn − 1

3
rn−1 +

1

2

(
V nφ , φ

n+1 − 4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ , ρ

n+1 − 4

3
ρn +

1

3
ρn−1

)
. (3.3)

We substitute (3.3) into (3.1d) and (3.1e), respectively, then we obtain

µn+1
φ = −(ε+ θ)∆φn+1 + σφn+1 + V nφ

[4

3
rn − 1

3
rn−1

+
1

2

(
V nφ , φ

n+1 − 4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ , ρ

n+1 − 4

3
ρn +

1

3
ρn−1

)]
, (3.4a)

µn+1
ρ = −η∆ρn+1 + δρn+1 + V nρ

[4

3
rn − 1

3
rn−1

+
1

2

(
V nφ , φ

n+1 − 4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ , ρ

n+1 − 4

3
ρn +

1

3
ρn−1

)]
. (3.4b)

When we substitute (3.4a) and (3.4b) into (3.1b) and (3.1c) respectively, it gives

3φn+1 − 4φn + φn−1

2∆t
+ λ1∇ · (ũn+1φ̂n+1) = −(ε+ θ)M1∆2φn+1 +M1σ∆φn+1

+M1∆V nφ

[4

3
rn − 1

3
rn−1 +

1

2

(
V nφ , φ

n+1 − 4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ , ρ

n+1 − 4

3
ρn +

1

3
ρn−1

)]
,

3ρn+1 − 4ρn + ρn−1

2∆t
+ λ2∇ · (ũn+1ρ̂n+1) = −ηM2∆2ρn+1 +M2δ∆ρ

n+1

+M2∆V nρ

[4

3
rn − 1

3
rn−1 +

1

2

(
V nφ , φ

n+1 − 4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ , ρ

n+1 − 4

3
ρn +

1

3
ρn−1

)]
,
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and we have[
I +

2∆t (ε+ θ)M1

3
∆2 − 2∆tM1σ

3
∆
]
φn+1 − ∆tM1

3

[(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]

∆V nφ +
2∆t

3
λ1∇ · (ũn+1φ̂n+1)

=
4

3
φn − 1

3
φn−1 +

2∆tM1

3

[4

3
rn − 1

3
rn−1 +

1

2

(
V nφ ,−

4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ ,−

4

3
ρn +

1

3
ρn−1

)]
∆V nφ = gnφ ,[

I +
2∆tηM2

3
∆2 − 2∆tM2

3
δ∆
]
φn+1 − ∆tM2

3

[(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]

∆V nρ +
2∆t

3
λ2∇ · (ũn+1ρ̂n+1)

=
4

3
ρn − 1

3
ρn−1 +

2∆tM2

3

[4

3
rn − 1

3
rn−1 +

1

2

(
V nφ ,−

4

3
φn +

1

3
φn−1

)
+

1

2

(
V nρ ,−

4

3
ρn +

1

3
ρn−1

)]
∆V nρ = gnρ .

Denoting

A = I +
2∆t (ε+ θ)M1

3
∆2 − 2∆tM1

3
σ∆, B = I +

2∆tηM2

3
∆2 − 2∆tM2

3
δ∆,

we have

Aφn+1 − ∆tM1

3

[(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]

∆V nφ +
2∆t

3
λ1∇ · (ũn+1φ̂n+1) = gnφ ,

Bρn+1 − ∆tM2

3

[(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]

∆V nρ +
2∆t

3
λ2∇ · (ũn+1ρ̂n+1) = gnρ ,

and thus

φn+1 − ∆tM1

3

[(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]
A−1∆V nφ +

2∆t

3
λ1A−1∇ · (ũn+1φ̂n+1) = A−1gnφ , (3.6a)

ρn+1 − ∆tM2

3

[(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]
B−1∆V nρ +

2∆t

3
λ2B−1∇ · (ũn+1ρ̂n+1) = B−1gnρ . (3.6b)

After taking the L2 inner product of (3.6a) with V nφ and of (3.6b) with V nρ , we have

(V nφ , φ
n+1)− ∆tM1

3
[(V nφ , φ

n+1) + (V nρ , ρ
n+1)](V nφ ,A−1∆V nφ ) +

2∆t

3
λ1(V nφ ,A−1∇ · (ũn+1φ̂n+1)) = (V nφ ,A−1gnφ),

(V nρ , ρ
n+1)− ∆tM2

3
[(V nφ , φ

n+1) + (V nρ , ρ
n+1)](V nρ ,B−1∆V nρ ) +

2∆t

3
λ2(V nρ ,B−1∇ · (ũn+1ρ̂n+1)) = (V nρ ,B−1gnρ ),

then we obtain[
I − ∆tM1

3

(
V nφ ,A−1∆V nφ

)
− ∆tM2

3

(
V nρ ,B−1∆V nρ

)][(
V nφ , φ

n+1
)

+
(
V nρ , ρ

n+1
)]

+
2∆t

3
λ1

(
V nφ ,A−1∇ ·

(
ũn+1φ̂n+1

))
+

2∆t

3
λ2

(
V nρ ,B−1∇ ·

(
ũn+1ρ̂n+1

))
=
(
V nφ ,A−1gnφ

)
+
(
V nρ ,B−1gnρ

)
.

Up to now, the following equations need to be solved

A−1∆V nφ , A−1∇ · (ũn+1φ̂n+1), A−1gnφ ,

B−1∆V nρ , B−1∇ · (ũn+1ρ̂n+1), B−1gnρ ,

which requires solving 6 linear equations. Then, we can obtain ũn+1 by the following equation:

ũn+1 +
2∆t

3
B
(
ûn+1, ũn+1

)
− 2∆t

3
ν∆ũn+1 =

4

3
un − 1

3
un−1 − 2∆t

3

(
∇pn + φ̂n+1∇µn+1

φ + ρ̂n+1∇µn+1
ρ

)
.

Step 2: We solve (ũn+1, pn+1) using

3
un+1 − ũn+1

2∆t
+∇

(
pn+1 − pn

)
= 0, (3.7a)

∇ · un+1 = 0, (3.7b)

with the boundary condition un+1 · n|∂Ω = 0. We only need to solve the following linear equation.

3

2∆t
∇ ·
(
un+1 − ũn+1

)
+ ∆

(
pn+1 − pn

)
= 0.

We frequently use the following equation in the proof of the energy stability of the scheme.

2
(
an+1, 3an+1 − 4an + an−1

)
= |an+1|2 + |2an+1 − an|2 − |an|2 − |2an − an−1|2 + |an+1 − 2an + an−1|2 .
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Theorem 3.1. The second-order linear scheme (3.1a) − (3.7b) is unconditionally energy stable, i.e.; it
satisfies the following discrete energy dissipation law:

1

∆t

(
En+1,n

2nd − En,n−1
2nd

)
≤ −M1∆t‖∇µn+1

φ ‖2 −M2∆t‖∇µn+1
ρ ‖2 − γ∆t‖∇ũn+1‖2 ≤ 0, (3.8)

where

En+1,n
2nd =

ε+ θ

4

(∥∥∇φn+1
∥∥2

+
∥∥2∇φn+1 −∇φn

∥∥2
)

+
σ

4

(∥∥φn+1
∥∥2

+
∥∥2φn+1 − φn

∥∥2
)

+
η

4

(∥∥∇ρn+1
∥∥2

+
∥∥2∇ρn+1 −∇ρn

∥∥2
)

+
δ

4

(∥∥ρn+1
∥∥2

+
∥∥2ρn+1 − ρn

∥∥2
)

+
1

2

(
|rn+1|2 + |2rn+1 − rn|2

)
+

1

4

(
‖un+1‖2 + ‖2un+1 − un‖2

)
+

∆t2

3
‖∇pn+1‖2.

Proof. First, we take the L2 inner product of equations (3.1b), (3.1c), (3.1d), (3.1e) with 2∆tµn+1
φ , 2∆tµn+1

ρ ,

3φn+1 − 4φn + φn−1, 3ρn+1 − 4ρn + ρn−1respectively. Multiplying (3.1f) by 2rn+1 yields

(3φn+1 − 4φn + φn−1, µn+1
φ ) + 2∆tλ1(ũn+1, φ̂n+1∇µn+1

φ )− 2M1∆t‖∇µn+1
φ ‖2, (3.9)

(3ρn+1 − 4ρn + ρn−1, µn+1
ρ ) + 2∆tλ2(ũn+1, ρ̂n+1∇µn+1

ρ ) = −2M2∆t‖∇µn+1
ρ ‖2, (3.10)

(
3φn+1 − 4φn + φn−1, µn+1

φ

)
=
(
3φn+1 − 4φn + φn−1,−(ε+ θ)∆φn+1 + σφn+1

)
+
(
3φn+1 − 4φn + φn−1, V nφ r

n+1
)

=
ε+ θ

2

( ∥∥∇φn+1
∥∥2

+
∥∥2∇φn+1 −∇φn

∥∥2 − ‖∇φn‖2 −
∥∥2∇φn −∇φn−1

∥∥2
+
∥∥∇φn+1 − 2∇φn +∇φn−1

∥∥2 )
+
σ

2

( ∥∥φn+1
∥∥2

+
∥∥2φn+1 − φn

∥∥2 − ‖φn‖2 −
∥∥2φn − φn−1

∥∥2
+
∥∥φn+1 − φn + φn−1

∥∥2 )
+
(
3φn+1 − 4φn + φn−1, V nφ r

n+1
)
, (3.11)

(
3ρn+1 − 4ρn + ρn−1, µn+1

ρ

)
=
(
3ρn+1 − 4ρn + ρn−1,−η∆ρn+1 + δρn+1

)
+
(
3ρn+1 − 4ρn + ρn−1, V nρ r

n+1
)

=
η

2

( ∥∥∇ρn+1
∥∥2

+
∥∥2∇ρn+1 −∇ρn

∥∥2 − ‖∇ρn‖2 −
∥∥2∇ρn −∇ρn−1

∥∥2
+
∥∥∇ρn+1 − 2∇ρn +∇ρn−1

∥∥2 )
+
δ

2

(∥∥ρn+1
∥∥2

+
∥∥2ρn+1 − ρn

∥∥2 − ‖ρn‖2 − ‖2ρn − ρn‖2 +
∥∥ρn+1 − 2ρn + ρn−1

∥∥2
)

+
(
3ρn+1 − 4ρn + ρn−1, V nρ r

n+1
)
, (3.12)

(
V nφ r

n+1, 3φn+1 − 4φn + φn−1
)

+
(
V nφ r

n+1, 3φn+1 − 4φn + φn−1
)

=2rn+1
(
3rn+1 − 4rn + rn−1

)
=|rn+1|2 + |2rn+1 − rn|2 − |rn|2 − |2rn − rn−1|2 + |rn+1 − 2rn + rn−1|2. (3.13)

Then, we take the L2 inner product of (2.6a) with 2∆tũn+1, and we obtain(
3ũn+1 − 4un + un−1, ũn+1

)
+ 2γ∆t‖∇ũn+1‖2 + 2∆t

(
∇pn, ũn+1

)
+ 2∆tλ1

(
φ̂n+1∇µn+1

φ , ũn+1
)

+ 2∆tλ2

(
ρ̂n+1∇µn+1

ρ , ũn+1
)

= 0. (3.14)

From (3.7a), for any function v with ∇ · v = 0, we can derive

(un+1,v) = (ũn+1,v).

Then, for the first term in (3.14), we have(
3ũn+1 − 4un + un−1, ũn+1

)
=
(
3ũn+1 − 4un + un−1,un+1

)
+
(
3ũn+1 − 4un + un−1, ũn+1 − un+1

)
=
(
3ũn+1 − 4un + un−1,un+1

)
+
(
3ũn+1, ũn+1 − un+1

)
=
(
3un+1 − 4un + un−1,un+1

)
+ 3

(
ũn+1 + un+1, ũn+1 − un+1

)
=

1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)
+ 3

(
‖ũn+1‖2 − ‖un+1‖2

)
.
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For the projection step, we rewrite (3.7a) as

3

2∆t
un+1 +∇pn+1 =

3

2∆t
ũn+1 +∇pn.

By squaring both sides of the above equality, we obtain

9

4∆t2
‖un+1‖2 + ‖∇pn+1‖2 =

9

4∆t2
‖ũn+1‖2 + ‖∇pn+1‖2 +

3

∆t

(
ũn+1,∇p

)
.

namely, by multiplying by 2∆t2/3, we have

3

2

(
‖un+1‖2 − ‖ũn+1‖2

)
+

2∆t2

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)
= 2∆t

(
ũn+1,∇p

)
.

By taking the L2 inner product of (3.7a) with 2∆tun+1, we have

3

2

(
‖un+1‖2 − ‖ũn+1‖2 + ‖2un+1 − ũn+1‖2

)
= 0.

Combinating the above equations gives

1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)
+ 2γ∆t‖∇ũn+1‖2 +

3

2
‖un+1 − ũn+1‖2 +

2∆t2

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)
+ 2∆tλ1(φ̂n+1∇µn+1

φ , ũn+1) + 2∆tλ2(ρ̂n+1∇µn+1
ρ , ũn+1) = 0. (3.15)

The combination of (3.9), (3.10), (3.11), (3.12), (3.13) and (3.15) gives us

ε+ θ

2

(∥∥∇φn+1
∥∥2

+
∥∥2∇φn+1 −∇φn

∥∥2 − ‖∇φn‖2 −
∥∥2∇φn −∇φn−1

∥∥2
+
∥∥∇φn+1 − 2∇φn +∇φn−1

∥∥2
)

+
σ

2

(∥∥φn+1
∥∥2

+
∥∥2φn+1 − φn

∥∥2 − ‖φn‖2 −
∥∥2φn − φn−1

∥∥2
+
∥∥φn+1 − φn + φn−1

∥∥2
)

+
η

2

(∥∥∇ρn+1
∥∥2

+
∥∥2∇ρn+1 −∇ρn

∥∥2 − ‖∇ρn‖2 −
∥∥2∇ρn −∇ρn−1

∥∥2
+
∥∥∇ρn+1 − 2∇ρn +∇ρn−1

∥∥2
)

+
δ

2

(∥∥ρn+1
∥∥2

+
∥∥2ρn+1 − ρn

∥∥2 − ‖ρn‖2 − ‖2ρn − ρn‖2 +
∥∥ρn+1 − 2ρn + ρn−1

∥∥2
)

+
(
|rn+1|2 + |2rn+1 − rn|2 − |rn|2 − |2rn − rn−1|2 + |rn+1 − 2rn + rn−1|2

)
+

1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2

)
+

3

2
‖un+1 − ũn+1‖2 +

2∆t2

3

(
‖∇pn+1‖2 − ‖∇pn‖2

)
=− 2M1∆t‖∇µn+1

φ ‖2 − 2M2∆t‖∇µn+1
ρ ‖2 − 2γ∆t‖∇ũn+1‖2 ≤ 0.

Finally, we obtain the result (3.8) after dropping some positive terms from the above equation.

Remark 3.1. In theorem 3.1, we only prove the energy stability about the modified energy functional.
There is no strict proof for the energy stability about the original energy functional with the SAV approach.
However, first, in the numerical result, we will find that the original and modified energy functional have
the same decay tendency, and we will give the corresponding numerical results in Figure 1 and 2. In fact,
the modified energy functional is the same as the original energy functional in the sense of continuity.
We believe the modified energy functional is an approximation of the original energy functional in the
discrete sense. Second, in recent work [5], the authors propose a new Lagrange multiplier approach for
gradient flows, and a theoretical result for the stability of the original energy is given. We will study
the theoretical result for this approximation. In addition, convex splitting is a constructive method for
establishing an energy stable numerical scheme. We will also consider using this method to construct an
energy stable scheme for the original energy functional.

Remark 3.2. Since the function ρ represents the density of surfactant, it is necessary that we must keep
the value of ρ bounded in (0, 1). Giving theoretical justification for the positivity-preserving property is
valuable. However, this is a challenging analysis, and we will consider this property in our future work.
Additionally, there have been a few existing works to establish the positivity-preserving property for the
gradient flow with the logarithmic Flory-Huggins energy potential using the convex splitting approaches,
such as [4, 9, 10]. There are some excellent resources related to bound preserving [18, 33]. We will refer
to these associated analyses in our future work.
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Remark 3.3. Undoubtedly, unconditional energy stability is an important property in the computation
of gradient flows. However, we cannot neglect other properties, such as the convergence and stability.
There is some excellent work related to numerical analysis for gradient flows with the SAV approach,
such as [3, 27, 32]. However, we cannot obtain these hydrodynamic properties for binary fluid-surfactant
phase field model with the SAV approach. To date, there is no more work about the theoretical numerical
analysis of this model. because of its strong singularity and coupling. We will consider the error estimates
of the binary fluid-surfactant phase field model in our future work.

Remark 3.4. One can also easily develop an alternative version of the second-order scheme based on
the Crank-Nicolson-type scheme. Assuming that φn−1, ρn−1, un−1 and φn, ρn, and un are known, then
we can derive φn+1, ρn+1, and un+1 with the following system.

Step 1: We can obtain φn+1, ρn+1, and ũn+1 by using the following equations:

ũn+1 − un

∆t
+B(ǔ, ũn+ 1

2 ) +∇pn − ν∆ũn+ 1
2 + λ1φ̌∇µ

n+ 1
2

φ + λ2ρ̌∇µ
n+ 1

2
ρ = 0, (3.16a)

φn+1 − φn

∆t
+ λ1∇ · (ũn+ 1

2 φ̌) = M1∆µ
n+ 1

2

φ , (3.16b)

ρn+1 − ρn

∆t
+ λ2∇ · (ũn+ 1

2 ρ̌) = M2∆µ
n+ 1

2
ρ , (3.16c)

µ
n+ 1

2

φ = − (ε+ θ) ∆φn+ 1
2 + σφn+ 1

2 + V̌
n+ 1

2

φ rn+ 1
2 , (3.16d)

µ
n+ 1

2
ρ = −η∆ρn+ 1

2 + δρn+ 1
2 + V̌

n+ 1
2

ρ rn+ 1
2 , (3.16e)

rn+1 − rn =
1

2
(V̌

n+ 1
2

φ , φn+1 − φn) +
1

2
(V̌

n+ 1
2

ρ , ρn+1 − ρn), (3.16f)

with the boundary condition

ũn+1|∂Ω = 0, ∂nφ
n+1|∂Ω = ∂nρ

n+1|∂Ω = 0, ∂nµ
n+1
φ |∂Ω = ∂nµ

n+1
ρ |∂Ω = 0, (3.17)

where

B (u,v) = (u · ∇)v +
1

2
(∇ · u)v,

ǔ =
3

2
un − 1

2
un−1, φ̌ =

3

2
φn − 1

2
φn−1, ρ̌ =

3

2
ρn − 1

2
ρn−1,

V̌
n+ 1

2

φ =
δφE0(φ̌, ρ̌)√
E0(φ̌, ρ̌)

, V̌
n+ 1

2
ρ =

δρE0(φ̌, ρ̌)√
E0(φ̌, ρ̌)

.

Step 2: Solve ũn+1, pn+1 by using

un+1 − ũn+1

∆t
+

1

2
∇
(
pn+1 − pn

)
= 0, (3.18a)

∇ · un+1 = 0. (3.18b)

with the boundary condition un+1 · n|∂Ω = 0.
The unconditional energy stability of the Crank-Nicolson-type scheme can be easily proved in a similar

way of handling the BDF2 scheme. Therefore, we leave the detailed proof for the interested readers.

4 Numerical experiments

We now present some numerical experiments to validate the theoretical results derived in the previous
section and demonstrate the efficiency, unconditionally energy stability and accuracy of the proposed
numerical scheme. In all the examples, we set the domain as Ω = [0; 2π]2. Here, we use the block-
centered finite difference method to discretize the space. The main advantage of the block-centered
finite difference method is not only that it approximates the phase functions with Neumann boundary
conditions to second-order accuracy, but also it guarantees local mass conservation. If not specified, we
use 128×128 grid in the following sections.

4.1 Accuracy and unconditional energy stability test

In this section, we focus on testing the convergence rate of the phase field functions φ and ρ, and
the velocity u. In addition, we provide a numerical test to illustrate the unconditional energy stability
for the proposed scheme.
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Table 1: The L2 numerical error and convergence order at t = 0.1 based on the SAV approach and
pressure correction method with the initial condition (4.1).

∆t Error(φ) Order Error(ρ) Order Error(u) Order Error(v) Order

5× 10−3 1.64E–05 – 8.46E–09 – 3.63E–11 – 3.63E–11 –
2.5× 10−3 4.87E–06 1.75 2.58E–09 1.72 9.01E–12 2.01 9.01E–12 2.01
1.25× 10−3 1.31E–06 1.89 6.91E–10 1.90 2.25E–12 2.00 2.25E–12 2.00
6.25× 10−4 3.38E–07 1.95 1.78E–10 1.96 5.65E–13 1.99 5.65E–13 1.99
3.125× 10−4 8.60E–07 1.98 4.52E–11 1.98 1.54E–13 1.87 1.54E–13 1.87

4.1.1 Accuracy test

To test the convergence rates of the proposed BDF2 scheme (3.1) and (3.7) in time, we choose the
following initial conditions: 

φ0(x, y) = 0.5 + 0.4 cos(x) cos(y),

ρ0(x, y) = 0.5 + 0.3 cos(x) cos(y),

u0(x, y) = 0.

(4.1)

where the parameters are chosen as follows:

M1 = 0.01, M2 = 0.01, ν = 1, λ1 = 1e− 6, λ2 = 1e− 6, ε = 0.05,

β = 0.05, α = 0.001, η = 0.05, σ =
2

ε
, δ = 10, θ = 0.0005, C = 10000.

Since the exact solutions are not known, we measure the Cauchy error in time, which is similar to
that of [45]. Specifically, the error between two different time step spacings ∆t and ∆t

2 is calculated by
‖eζ‖ = ‖ζ∆t − ζ∆t/2‖, where ζ = φ, ρ oru. Additional data for φ1, ρ1 and u1 can be obtained by the
first order scheme with an extremely fairly small time step. We present the L2 errors of all the variables
at time t = 0.1. We observe that the scheme is almost perfect second-order accuracy in time. The
convergence order shown in Table 1 approaches 2 if the time step ∆t tends to 0, which agrees with the
theoretical analysis.

4.1.2 Unconditionally energy stable test

In this section, we will test the unconditional energy stability and the relation between the original
and modified energy. Here, we take the initial condition as

φ0(x, y) = 0.1 cos(3x) + 0.4 cos(y),

ρ0(x, y) = 0.5 + 0.2 cos(x) cos(y),

u0(x, y) = 0.

(4.2)

The parameters are taken the same as those in 4.1.1.
On the one hand, Figure 1 and 2 show the original energy curves and modified energy curves with

time steps ∆t = 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, respectively. The initial condition is taken as
(4.2). We observe that these two figures show the decreasing trend of the original and modified energy
with different time steps, and this phenomenon illustrates that both the original and modified energy
numerically satisfy unconditional energy stability. On the other hand, we find that the energy stable
curves are almost coincident with ∆t = 0.002 and ∆t = 0.001. This means that when we take the time
step as less than 0.002, there is a small numerical error. We will take the time step as ∆t = 0.001 in the
following numerical experiments and take the original energy curve to describe the energy stability.

Besides, in Figure 3 the original and modified energy curves obtained by using the same time step
∆t = 0.001 are shown in the same picture. We find that the two curves almost coincide, which indicates
that the modified energy is a good approximation to the original one in discrete sense, though we do not
have a serious proof theoretically.

4.2 Spinodal decomposition

In this example, we study a common phenomenon-phase separation behavior called spinodal decom-
position. It can be studied by considering a homogeneous binary mixture, quenched into the unstable
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Figure 1: Time evolution of the original free energy functional for example (4.2). The energy curves with
different time steps ∆t = 0.05, 0.02, 0.01, 0.005, 0.002, 0.001 show monotone decay for this example.
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Figure 2: Time evolution of the modified free energy functional for example (4.2). The energy curves with
different time steps ∆t = 0.05, 0.02, 0.01, 0.005, 0.002, 0.001 show monotone decay for this example.
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Figure 3: The comparison between the original and modified energy curves with time step ∆t = 0.001.
The energy curves show the same monotone decay for the original and modified energy.
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Figure 4: Time evolution of the free energy functional for the example (4.3).

part of its miscibility gap. After that, spinodal decomposition takes place, which reveals spontaneous
growth of the concentration fluctuations that lead the system from the homogeneous to the two-phase
state. Shortly after the phase separation starts, the domains of the binary components are formed and
the interface between the two phases can be specified. Here, we take the random initial condition as

φ0(x, y) = 0.4 + 0.001rand(x, y),

ρ0(x, y) = 0.3,

u0(x, y) = 0,

(4.3)

where rand is a function that can generate a random number in [0, 1]. The parameters are taken as

M1 = 1.0, M2 = 1.0, ν = 1, λ1 = 1e− 6, λ2 = 1e− 6, ε = 0.05,

β = 0.05, α = 0.01, η = 0.05, θ = 0.005, σ =
2

ε
, δ = 10, C = 10000.

In Figure 4, we present the evolution of the total free energy for this experiment. It is observed that
the energy decays quickly in the initial stage (the random initial data becomes ordered), then the curve
tends to flat and monotonically decreases slowly until it reaches steady state. This phenomenon agrees
with those numerical results reported in literatures.

Figure 5 shows snapshots of φ, ρ a, and velocity u, where we find the coarsening dynamics of the fluid
component with less volume accumulates to small satellite drops everywhere. When the time evolves,
the small drops will collide, merge and form drops with larger sizes. The final equilibrium solution is
obtained around after t = 35, where all small bubbles accumulate into a large bubble.

4.3 Surfactant absorption

4.3.1 Surfactant uniformly distributed initially

In this example, we assume the fluid interface and the surfactant are initially uniformly distributed
over the domain and the initial conditions are chosen as

φ0(x, y) = 0.3 + 0.01 cos(6x) cos(6y),

ρ0(x, y) = 0.1 + 0.01 cos(6x) cos(6y),

u0(x, y) = 0,

(4.4)

where the parameters are chosen as

M1 = 1.0, M2 = 1.0, ν = 1, λ1 = 1e− 6, λ2 = 1e− 6, ε = 0.05,

α = 0.01, β = 0.05, η = 0.05, θ = 0.005, δ = 10, σ =
2

ε
, C = 10000.
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Figure 5: The phase transition process and velocity with the initial condition (4.3) at different times
t = 0.03, 0.2, 5, 50, where the left column is the phase diagram for φ, the middle column is the phase
diagram for ρ, and the right column is the velocity diagram for u.

Figure 6 shows snapshots of the coarsening dynamics at t = 0.1, 1, 3, 200 for example (4.4). We can
see that the surfactant is initially uniformly distributed in the domain with periodic structures. Then,
quickly small structures merge to larger structures (some small structures are vanishing, while some ones
are getting larger). Meanwhile, coarsening dynamics occur, driven by the coupling entropy energy term,
and the surfactant is absorbed into the binary fluid interfaces so that a higher concentration appears near
the interfaces than in other regions. The coupled velocity field is also presented in Figure 6.

Figure 7 displays the time evolution of the free energy functional for the examples (4.4). It is observed
that the energy decreases with increasing time, which confirms the energy stability proved in the previous

13



Figure 6: Snapshots of the phase variables φ and ρ and the velocity u are taken at t = 0.1, 1, 3, 200 for
example (4.5), where the surfactants are initially distributed uniformly. The left panel is the profile of φ,
the middle panel is the profile of ρ and the right panel is the profile of velocity u.

section. In this experiment, the energy quickly goes down before t = 10, then it goes slowly down until
the curve becomes almost flat after t = 30, which implies the system reaches equilibrium stage.
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Figure 7: Time evolution of the free energy functional for example (4.4).

0 20 40 60 80 100 120 140 160 180 200

time

0

50

100

150

200

e
n
e
rg

y

Figure 8: Time evolution of the free energy functional for example (4.5).

4.3.2 Surfactant locally distributed initially

Unlike example (4.4), in the last example, we assume the fluid interface and the surfactant field are
initially mismatched over the domain. The initial conditions are chosen as

φ0(x, y) = 0.1 + 0.01 cos(6x) cos(6y),

ρ0(x, y) = 0.8 exp
(
− (x− π)2 + (y − π)2

1.252

)
,

u0(x, y) = 0,

(4.5)

where the parameters are chosen as

M1 = 0.1, M2 = 0.1, ν = 1, λ1 = 1e− 6, λ2 = 1e− 6, ε = 0.05,

α = 0.04, β = 0.05, η = 0.05, θ = 0.03, δ = 10, σ =
2

ε
, C = 10000.

Initially, the phase field variable φ is the same as that in the previous example, but the surfactant
concentration variable ρ is locally distributed around the center of the domain. we plot the evolution of
the energy curves in Figure 8, where the same phenomenon as the ones shown in the previous examples
are observed. Figure 9 shows the snapshots of the dynamic behaviors of φ, ρ and u at various times. We
observe that, since the surfactant is initially concentrated at the center, it takes longer for the surfactant
to diffuse away from this center region. Consequently, during the early stage of the evolution, the higher
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Figure 9: Snapshots of the phase variables φ and ρ are taken at t = 0.2, 3, 100, 200 for example (4.5),
where the surfactants are initially distributed in a center circle. The left panel is the profile of φ, the
middle panel is the profile of ρ and the right panel is the profile of velocity u.

concentration of surfactant only appears around the center area of the domain. The surfactant completely
diffuses and is absorbed into the binary fluid interfaces after t = 200.

5 Conclusion

In this paper, an efficient numerical scheme is developed for solving binary fluid-surfactant phase
field model coupled with hydrodynamics. This scheme is designed by combining the pressure correction
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method and the newly developed SAV approach. The obtained scheme is not only linear and second-
order accurate in time but also decoupled about the two phase variables and velocity and pressure.
We rigorously prove that the resulting linear system is unconditionally energy stable. Finally, various
numerical examples are presented to validate the accuracy and stability of the proposed scheme.
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