Mathilde Huon

and 5 more

1. Understanding the animal-habitat relationship at local scale is crucial in ecology, particularly to develop strategies for wildlife management and conservation. As this relationship is governed by environmental features and intra and inter-specific interactions, habitat selection of a population may vary locally between its core and edges. 2. This is particularly true for central place foragers, such as grey and harbour seals, whose trends in numbers vary among different regions in the Northeast Atlantic. Here, we aimed at studying how foraging habitat selection may vary locally with the influence of population trends and physical habitat features 3. Using GPS/GSM tags deployed in grey and harbour seal colonies of contrasting sizes, we investigate spatial patterns and foraging habitat selection by comparing trip characteristics and home range similarities, and fitting GAMM to the seal distribution and environmental data respectively. 4. We show that grey seal foraging habitat selection and spatial patterns differed markedly between regions. Grey seals may select environmental characteristics for their foraging habitat accounting for local differences in prey consumed. Spatial patterns were different might depend on local seal density and regional productivity, located from inshore to offshore areas for the limit ranges and core population respectively. Our results on foraging habitat selection reflected the coastal and sedentary behaviour of harbour seals. We found no difference in spatial patterns between colonies, except for the Inner Hebrides where seals foraged further, potentially reflecting density dependence pressure, as the number in this colony is higher. 5. These results suggest that local conditions might have a strong influence on population spatial ecology, highlighting as well the relevance of studying foraging habitat selection based on foraging behaviour at fine geographical scale, particularly if species are managed within regional units.

Yann Planque

and 4 more

Competition between the sympatric harbour (Phoca vitulina) and grey seals (Halichoerus grypus) is thought to underlie some recent local declines of the former while the population of the latter remains stable or increases. A better understanding of the interactions between these two species is critical to elucidate current changes. This study aims at identifying and quantifying the niche overlap between harbour and grey seals at their Southern European limit range, in the baie de Somme (Eastern English Channel, France), in a context of exponential increase in the number of resident harbour seals and visiting grey seals. Isotopic niche overlap was quantified between both species using whisker δ13C and δ15N isotopic values, taking intra- and interindividual variability into account. Dietary overlap was quantified from scat contents using hierarchical clustering. A high degree of trophic niche overlap was identified between both species. The narrower isotopic niche of harbour seals was nested within that of grey seals (58.2% [CI95%: 22.7-100%] overlap). Six diet clusters were identified from scat content analysis. Two of them gathered most of harbour seals’ scats (85.5 % [80.3-90.2%]) and around half of grey seals’ ones (46.8% [35.1-58.4%]) that almost exclusively contained benthic flatfish. Consumption of this type of prey was identified here to be the root cause of trophic overlap. This highlighted the potential for competition between the two species at their Southern European limit range, linked to foraging on benthic flatfish, in coastal waters close to their haulout sites, especially during spring/summer. We suggest that (1) interspecific competition for prey could occur/increase in the future if the number of grey and harbour seals still increase and/or if flatfish supply decrease in this area, and (2) harbour seals would be disadvantaged in such a case if they do not adapt, as being specialised on flatfish at the colony scale.