Reference
1. Bohannon RW. Muscle strength: clinical and prognostic value of hand-grip dynamometry. Current Opinion in Clinical Nutrition & Metabolic Care. 2015;18(5).
2. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, et al. Sarcopenia: an overview. Aging Clinical and Experimental Research. 2017 2017/02/01;29(1):11-7.
3. Firth J, Firth JA, Stubbs B, Vancampfort D, Schuch FB, Hallgren M, et al. Association Between Muscular Strength and Cognition in People With Major Depression or Bipolar Disorder and Healthy Controls. JAMA Psychiatry. 2018;75(7):740-6.
4. Sayer AA, Kirkwood TBL. Grip strength and mortality: a biomarker of ageing? The Lancet. 2015 2015/07/18/;386(9990):226-7.
5. Finkel D, Pedersen NL, Reynolds CA, Berg S, de Faire U, Svartengren M. Genetic and Environmental Influences on Decline in Biobehavioral Markers of Aging. Behavior Genetics. 2003 2003/03/01;33(2):107-23.
6. Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et al. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun. 2017;8:16015-.
7. Petersen I, Pedersen NL, Rantanen T, Kremen WS, Johnson W, Panizzon MS, et al. G×E Interaction Influences Trajectories of Hand Grip Strength. Behavior genetics. 2016;46(1):20-30.
8. Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et al. Global epidemiology of use of and disparities in caesarean sections. The Lancet. 2018 2018/10/13/;392(10155):1341-8.
9. Cho CE, Norman M. Cesarean section and development of the immune system in the offspring. American Journal of Obstetrics and Gynecology. 2013 2013/04/01/;208(4):249-54.
10. Hansen S, Halldorsson TI, Olsen SF, Rytter D, Bech BH, Granström C, et al. Birth by cesarean section in relation to adult offspring overweight and biomarkers of cardiometabolic risk. International Journal of Obesity. 2018 2018/01/01;42(1):15-9.
11. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63(4):559.
12. Sandall J, Tribe RM, Avery L, Mola G, Visser GHA, Homer CSE, et al. Short-term and long-term effects of caesarean section on the health of women and children. The Lancet. 2018 2018/10/13/;392(10155):1349-57.
13. Nava-Gonzalez EJ, Gallegos-Cabriales EC, Leal-Berumen I, Bastarrachea RA. Mini-Review: The Contribution of Intermediate Phenotypes to GxE Effects on Disorders of Body Composition in the New OMICS Era. Int J Environ Res Public Health. 2017;14(9):1079.
14. Arnau-Soler A, Macdonald-Dunlop E, Adams MJ, Clarke T-K, MacIntyre DJ, Milburn K, et al. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland. Transl Psychiatry. 2019;9(1):14-.
15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779-e.
16. Hamilton GF, McDonald C, Chenier TC. Measurement of Grip Strength: Validity and Reliability of the Sphygmomanometer and Jamar Grip Dynamometer. Journal of Orthopaedic & Sports Physical Therapy. 1992 1992/11/01;16(5):215-9.
17. UK Biobank: Grip-strength measurement using ACE. [cited; Available from:http://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=100232
18. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.
19. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867-73.
20. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7-.
21. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting Gene-Environment Interaction to Detect Genetic Associations. Human Heredity. 2007;63(2):111-9.
22. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8(1):1826-.
23. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739-40.
24. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82-ra82.
25. Hyde MJ, Mostyn A, Modi N, Kemp PR. The health implications of birth by Caesarean section. Biological Reviews. 2012 2012/02/01;87(1):229-43.
26. Sharples AP, Polydorou I, Hughes DC, Owens DJ, Hughes TM, Stewart CE. Skeletal muscle cells possess a ‘memory’ of acute early life TNF-α exposure: role of epigenetic adaptation. Biogerontology. 2016 2016/06/01;17(3):603-17.
27. Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, et al. Gut bacteria are critical for optimal muscle functiona potential link with glucose homeostasis. AJP Endocrinology and Metabolism. 2019 05/01;317.
28. Sire R, Rizzatti G, Ingravalle F, Pizzoferrato M, Petito V, Lopetuso L, et al. Skeletal muscle-gut axis: emerging mechanisms of sarcopenia for intestinal and extra intestinal diseases. Minerva gastroenterologica e dietologica. 2018 07/18;64.
29. Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019;11(502):eaan5662.
30. Korpela K, Salonen A, Vepsäläinen O, Suomalainen M, Kolmeder C, Varjosalo M, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6(1):182-.
31. Grosicki GJ, Fielding RA, Lustgarten MS. Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif Tissue Int. 2018;102(4):433-42.
32. Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9(1):5091-.
33. Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M, et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature. 2018 2018/08/01;560(7719):489-93.
34. Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biology International. 2017 2017/07/01;41(7):706-15.
35. Myers KA, Nasioulas S, Boys A, McMahon JM, Slater H, Lockhart P, et al. ADGRV1 is implicated in myoclonic epilepsy. Epilepsia. 2018 2018/02/01;59(2):381-8.
36. Urano T, Shiraki M, Yagi H, Ito M, Sasaki N, Sato M, et al. GPR98/Gpr98 Gene Is Involved in the Regulation of Human and Mouse Bone Mineral Density. The Journal of Clinical Endocrinology & Metabolism. 2012;97(4):E565-E74.
37. Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets. 2010;14(9):923-34.
38. Langen RCJ, Schols AMWJ, Kelders MCJM, Wouters EFM, Janssen-Heininger YMW. Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κΒ. The FASEB Journal. 2001 2001/05/01;15(7):1169-80.
39. Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition improves muscle strength and insulin sensitivity and restores bone mass. J Clin Invest. 2019;129(8):3214-23.
40. Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, et al. Muscle-bone interactions: From experimental models to the clinic? A critical update. Molecular and Cellular Endocrinology. 2016 2016/09/05/;432:14-36.
41. McQueen C, Hughes GL, Pownall ME. Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. Developmental Biology. 2019 2019/10/01/;454(1):74-84.
42. Dominguez R. Actin filament nucleation and elongation factors–structure-function relationships. Crit Rev Biochem Mol Biol. 2009 Nov-Dec;44(6):351-66.
43. Mitra P, Thanabalu T. Myogenic differentiation depends on the interplay of Grb2 and N-WASP. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2017 2017/03/01/;1864(3):487-97.
44. Cai G-Q, Chou C-F, Hu M, Zheng A, Reichardt LF, Guan J-L, et al. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) is critical for formation of α-smooth muscle actin filaments during myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol. 2012;303(8):L692-L702.
45. Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, et al. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain. 2013;136(Pt 1):269-81.
46. Riemersma M, Froese DS, van Tol W, Engelke Udo F, Kopec J, van Scherpenzeel M, et al. Human ISPD Is a Cytidyltransferase Required for Dystroglycan O-Mannosylation. Chemistry & Biology. 2015 2015/12/17/;22(12):1643-52.
47. Strecker P, Ludewig S, Rust M, Mundinger TA, Görlich A, Krächan EG, et al. FE65 and FE65L1 share common synaptic functions and genetically interact with the APP family in neuromuscular junction formation. Sci Rep. 2016;6:25652-.
48. Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, et al. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J. 2015;29(6):2628-39.
49. Soerensen M, Li W, Debrabant B, Nygaard M, Mengel-From J, Frost M, et al. Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. Biogerontology. 2019;20(5):627-47.
50. Pandey R, Bakay M, Hain HS, Strenkowski B, Elsaqa BZB, Roizen JD, et al. CLEC16A regulates splenocyte and NK cell function in part through MEK signaling. PLoS One. 2018;13(9):e0203952-e.
51. Tam RCY, Li MWM, Gao YP, Pang YT, Yan S, Ge W, et al. Human CLEC16A regulates autophagy through modulating mTOR activity. Experimental Cell Research. 2017 2017/03/15/;352(2):304-12.
52. Cadwell K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nature Reviews Immunology. 2016 2016/11/01;16(11):661-75.
53. Ilha J, do Espírito-Santo CC, de Freitas GR. mTOR Signaling Pathway and Protein Synthesis: From Training to Aging and Muscle Autophagy. In: Xiao J, editor. Muscle Atrophy. Singapore: Springer Singapore; 2018. p. 139-51.
54. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS Journal. 2013 2013/09/01;280(17):4294-314.
55. Federico P, Perez MA. Distinct Corticocortical Contributions to Human Precision and Power Grip. Cereb Cortex. 2017;27(11):5070-82.
56. Kara M, Özçakar L, Kaymak B, Ata A, Frontera W. A ”Neuromuscular Look” to sarcopenia: Is it a movement disorder? Journal of rehabilitation medicine. 2020 04/07;52.
Table1. Characteristics of the study population