Reference
1. Bohannon RW. Muscle strength: clinical and prognostic value of
hand-grip dynamometry. Current Opinion in Clinical Nutrition &
Metabolic Care. 2015;18(5).
2. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, et
al. Sarcopenia: an overview. Aging Clinical and Experimental Research.
2017 2017/02/01;29(1):11-7.
3. Firth J, Firth JA, Stubbs B, Vancampfort D, Schuch FB, Hallgren M, et
al. Association Between Muscular Strength and Cognition in People With
Major Depression or Bipolar Disorder and Healthy Controls. JAMA
Psychiatry. 2018;75(7):740-6.
4. Sayer AA, Kirkwood TBL. Grip strength and mortality: a biomarker of
ageing? The Lancet. 2015 2015/07/18/;386(9990):226-7.
5. Finkel D, Pedersen NL, Reynolds CA, Berg S, de Faire U, Svartengren
M. Genetic and Environmental Influences on Decline in Biobehavioral
Markers of Aging. Behavior Genetics. 2003 2003/03/01;33(2):107-23.
6. Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, et
al. Large-scale GWAS identifies multiple loci for hand grip strength
providing biological insights into muscular fitness. Nat Commun.
2017;8:16015-.
7. Petersen I, Pedersen NL, Rantanen T, Kremen WS, Johnson W, Panizzon
MS, et al. G×E Interaction Influences Trajectories of Hand Grip
Strength. Behavior genetics. 2016;46(1):20-30.
8. Boerma T, Ronsmans C, Melesse DY, Barros AJD, Barros FC, Juan L, et
al. Global epidemiology of use of and disparities in caesarean sections.
The Lancet. 2018 2018/10/13/;392(10155):1341-8.
9. Cho CE, Norman M. Cesarean section and development of the immune
system in the offspring. American Journal of Obstetrics and Gynecology.
2013 2013/04/01/;208(4):249-54.
10. Hansen S, Halldorsson TI, Olsen SF, Rytter D, Bech BH, Granström C,
et al. Birth by cesarean section in relation to adult offspring
overweight and biomarkers of cardiometabolic risk. International Journal
of Obesity. 2018 2018/01/01;42(1):15-9.
11. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C,
Jernberg C, et al. Decreased gut microbiota diversity, delayed
Bacteroidetes colonisation and reduced Th1 responses in infants
delivered by Caesarean section. Gut. 2014;63(4):559.
12. Sandall J, Tribe RM, Avery L, Mola G, Visser GHA, Homer CSE, et al.
Short-term and long-term effects of caesarean section on the health of
women and children. The Lancet. 2018 2018/10/13/;392(10155):1349-57.
13. Nava-Gonzalez EJ, Gallegos-Cabriales EC, Leal-Berumen I,
Bastarrachea RA. Mini-Review: The Contribution of Intermediate
Phenotypes to GxE Effects on Disorders of Body Composition in the New
OMICS Era. Int J Environ Res Public Health. 2017;14(9):1079.
14. Arnau-Soler A, Macdonald-Dunlop E, Adams MJ, Clarke T-K, MacIntyre
DJ, Milburn K, et al. Genome-wide by environment interaction studies of
depressive symptoms and psychosocial stress in UK Biobank and Generation
Scotland. Transl Psychiatry. 2019;9(1):14-.
15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al.
UK biobank: an open access resource for identifying the causes of a wide
range of complex diseases of middle and old age. PLoS Med.
2015;12(3):e1001779-e.
16. Hamilton GF, McDonald C, Chenier TC. Measurement of Grip Strength:
Validity and Reliability of the Sphygmomanometer and Jamar Grip
Dynamometer. Journal of Orthopaedic & Sports Physical Therapy. 1992
1992/11/01;16(5):215-9.
17. UK Biobank: Grip-strength measurement using ACE. [cited; Available
from:http://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=100232
18. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al.
The UK Biobank resource with deep phenotyping and genomic data. Nature.
2018;562(7726):203-9.
19. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M.
Robust relationship inference in genome-wide association studies.
Bioinformatics. 2010;26(22):2867-73.
20. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ.
Second-generation PLINK: rising to the challenge of larger and richer
datasets. Gigascience. 2015;4:7-.
21. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting
Gene-Environment Interaction to Detect Genetic Associations. Human
Heredity. 2007;63(2):111-9.
22. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional
mapping and annotation of genetic associations with FUMA. Nat Commun.
2017;8(1):1826-.
23. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics.
2011;27(12):1739-40.
24. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al.
Antibiotics, birth mode, and diet shape microbiome maturation during
early life. Sci Transl Med. 2016;8(343):343ra82-ra82.
25. Hyde MJ, Mostyn A, Modi N, Kemp PR. The health implications of birth
by Caesarean section. Biological Reviews. 2012 2012/02/01;87(1):229-43.
26. Sharples AP, Polydorou I, Hughes DC, Owens DJ, Hughes TM, Stewart
CE. Skeletal muscle cells possess a ‘memory’ of acute early life TNF-α
exposure: role of epigenetic adaptation. Biogerontology. 2016
2016/06/01;17(3):603-17.
27. Nay K, Jollet M, Goustard B, Baati N, Vernus B, Pontones M, et al.
Gut bacteria are critical for optimal muscle functiona potential link
with glucose homeostasis. AJP Endocrinology and Metabolism. 2019
05/01;317.
28. Sire R, Rizzatti G, Ingravalle F, Pizzoferrato M, Petito V, Lopetuso
L, et al. Skeletal muscle-gut axis: emerging mechanisms of sarcopenia
for intestinal and extra intestinal diseases. Minerva gastroenterologica
e dietologica. 2018 07/18;64.
29. Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, et al.
The gut microbiota influences skeletal muscle mass and function in mice.
Sci Transl Med. 2019;11(502):eaan5662.
30. Korpela K, Salonen A, Vepsäläinen O, Suomalainen M, Kolmeder C,
Varjosalo M, et al. Probiotic supplementation restores normal microbiota
composition and function in antibiotic-treated and in caesarean-born
infants. Microbiome. 2018;6(1):182-.
31. Grosicki GJ, Fielding RA, Lustgarten MS. Gut Microbiota Contribute
to Age-Related Changes in Skeletal Muscle Size, Composition, and
Function: Biological Basis for a Gut-Muscle Axis. Calcif Tissue Int.
2018;102(4):433-42.
32. Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J,
Herold M, et al. Birth mode is associated with earliest strain-conferred
gut microbiome functions and immunostimulatory potential. Nat Commun.
2018;9(1):5091-.
33. Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M, et
al. Neonatal selection by Toll-like receptor 5 influences long-term gut
microbiota composition. Nature. 2018 2018/08/01;560(7719):489-93.
34. Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of
TGF-β1 during skeletal muscle regeneration. Cell Biology International.
2017 2017/07/01;41(7):706-15.
35. Myers KA, Nasioulas S, Boys A, McMahon JM, Slater H, Lockhart P, et
al. ADGRV1 is implicated in myoclonic epilepsy. Epilepsia. 2018
2018/02/01;59(2):381-8.
36. Urano T, Shiraki M, Yagi H, Ito M, Sasaki N, Sato M, et al.
GPR98/Gpr98 Gene Is Involved in the Regulation of Human and Mouse Bone
Mineral Density. The Journal of Clinical Endocrinology & Metabolism.
2012;97(4):E565-E74.
37. Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling
pathways as new therapeutic strategies for osteoporosis. Expert Opin
Ther Targets. 2010;14(9):923-34.
38. Langen RCJ, Schols AMWJ, Kelders MCJM, Wouters EFM,
Janssen-Heininger YMW. Inflammatory cytokines inhibit myogenic
differentiation through activation of nuclear factor-κΒ. The FASEB
Journal. 2001 2001/05/01;15(7):1169-80.
39. Bonnet N, Bourgoin L, Biver E, Douni E, Ferrari S. RANKL inhibition
improves muscle strength and insulin sensitivity and restores bone mass.
J Clin Invest. 2019;129(8):3214-23.
40. Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren
D, Gielen E, et al. Muscle-bone interactions: From experimental models
to the clinic? A critical update. Molecular and Cellular Endocrinology.
2016 2016/09/05/;432:14-36.
41. McQueen C, Hughes GL, Pownall ME. Skeletal muscle differentiation
drives a dramatic downregulation of RNA polymerase III activity and
differential expression of Polr3g isoforms. Developmental Biology. 2019
2019/10/01/;454(1):74-84.
42. Dominguez R. Actin filament nucleation and elongation
factors–structure-function relationships. Crit Rev Biochem Mol Biol.
2009 Nov-Dec;44(6):351-66.
43. Mitra P, Thanabalu T. Myogenic differentiation depends on the
interplay of Grb2 and N-WASP. Biochimica et Biophysica Acta (BBA) -
Molecular Cell Research. 2017 2017/03/01/;1864(3):487-97.
44. Cai G-Q, Chou C-F, Hu M, Zheng A, Reichardt LF, Guan J-L, et al.
Neuronal Wiskott-Aldrich syndrome protein (N-WASP) is critical for
formation of α-smooth muscle actin filaments during myofibroblast
differentiation. Am J Physiol Lung Cell Mol Physiol.
2012;303(8):L692-L702.
45. Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, et al.
ISPD gene mutations are a common cause of congenital and limb-girdle
muscular dystrophies. Brain. 2013;136(Pt 1):269-81.
46. Riemersma M, Froese DS, van Tol W, Engelke Udo F, Kopec J,
van Scherpenzeel M, et al. Human ISPD Is a Cytidyltransferase Required
for Dystroglycan O-Mannosylation. Chemistry & Biology. 2015
2015/12/17/;22(12):1643-52.
47. Strecker P, Ludewig S, Rust M, Mundinger TA, Görlich A, Krächan EG,
et al. FE65 and FE65L1 share common synaptic functions and genetically
interact with the APP family in neuromuscular junction formation. Sci
Rep. 2016;6:25652-.
48. Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, et al. FE65
and FE65L1 amyloid precursor protein-binding protein compound null mice
display adult-onset cataract and muscle weakness. FASEB J.
2015;29(6):2628-39.
49. Soerensen M, Li W, Debrabant B, Nygaard M, Mengel-From J, Frost M,
et al. Epigenome-wide exploratory study of monozygotic twins suggests
differentially methylated regions to associate with hand grip strength.
Biogerontology. 2019;20(5):627-47.
50. Pandey R, Bakay M, Hain HS, Strenkowski B, Elsaqa BZB, Roizen JD, et
al. CLEC16A regulates splenocyte and NK cell function in part through
MEK signaling. PLoS One. 2018;13(9):e0203952-e.
51. Tam RCY, Li MWM, Gao YP, Pang YT, Yan S, Ge W, et al. Human CLEC16A
regulates autophagy through modulating mTOR activity. Experimental Cell
Research. 2017 2017/03/15/;352(2):304-12.
52. Cadwell K. Crosstalk between autophagy and inflammatory signalling
pathways: balancing defence and homeostasis. Nature Reviews Immunology.
2016 2016/11/01;16(11):661-75.
53. Ilha J, do Espírito-Santo CC, de Freitas GR. mTOR Signaling Pathway
and Protein Synthesis: From Training to Aging and Muscle Autophagy. In:
Xiao J, editor. Muscle Atrophy. Singapore: Springer Singapore; 2018. p.
139-51.
54. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms
regulating skeletal muscle growth and atrophy. The FEBS Journal. 2013
2013/09/01;280(17):4294-314.
55. Federico P, Perez MA. Distinct Corticocortical Contributions to
Human Precision and Power Grip. Cereb Cortex. 2017;27(11):5070-82.
56. Kara M, Özçakar L, Kaymak B, Ata A, Frontera W. A ”Neuromuscular
Look” to sarcopenia: Is it a movement disorder? Journal of
rehabilitation medicine. 2020 04/07;52.
Table1. Characteristics of the study population