References:
[1] Jie Chen, Zixin Weng, Yanru Tang, Xuezhuan Yi, Yanna Tian, Di Zhao, Hui Lin, Shengming Zhou, Fabrication of ternary ZrO2-Al2O3-YAG:Ce ceramic phosphors for white light-emitting diodes, Journal of the European Ceramic Society, 2020, https://doi.org/10.1016/j.jeurceramsoc.2020.10.027.
[2] Lida Heng, Jeong Su Kim, Juei-Feng Tu, Sang Don Mun, Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing, Ceramics International, Volume 46, Issue 11, Part A, 2020, Pages 17335-17346, https://doi.org/10.1016/j.ceramint.2020.04.022.
[3] Jie Wu, Lin Chen, Yao Qu, Lei Dong, Jinliang Guo, Dejun Li, Wenbin Xue, In-situ high temperature electrochemical investigation of ZrO2/CrN ceramic composite film on zirconium alloy, Surface and Coatings Technology, Volume 359, 2019, Pages 366-373, https://doi.org/10.1016/j.surfcoat.2018.12.093.
[4] Jun Yu, Feng-Xiu Yu, Shan Wang, Jie-Feng Zhang, Feng-Qiang Fan, Qiang Long, Effect of dispersant content and drying method on ZrO2@Al2O3 multiphase ceramic powders, Ceramics International, Volume 44, Issue 15, 2018, Pages 17630-17634, https://doi.org/10.1016/j.ceramint.2018.06.224.
[5] Yana Xia, Jun Mou, Guanyu Deng, Shanhong Wan, Kiet Tieu, Hongtao Zhu, Qi Xue, Sintered ZrO2–TiO2 ceramic composite and its mechanical appraisal, Ceramics International, Volume 46, Issue 1, 2020, Pages 775-785, https://doi.org/10.1016/j.ceramint.2019.09.032.
[6] Rana, S.; Fangueiro, R. Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications; Wood head Publishing: Cambridge, UK, 2016.
[7] Asl, M. S.; Nayebi, B.; Ahmadi, Z.; Zamharir, M.J.; Shokouhimehr, M. Eects of carbon additives on the properties of ZrB2–based composites: A review. Ceram. Int. 2018, 44, 7334–7348.
[8] C. Dong, X. Li, J. Qi, First-principles investigation on electronic properties of quantum dot-sensitized solar cells based on anatase TiO2 nanotubes, J. Phys. Chem. C 115 (2011) 20307e20315.
[9] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem. 19 (2009) 5442e5451.
[10] M. Helgesen, R. Søndergaard, F.C. Krebs, Advanced materials and processes for polymer solar cell devices, J. Mater. Chem. 20 (2010) 36e60.
[11] A. Cerdan-Pasaran, T. Lopez-Luke, D. Esparza, I. Zarazua, E. De la Rosa, R. Fuentes-Ramirez, A. Alatorre-Ordaz, A. Sanchez-Solis, A. Torres-Castro, J. Z. Zhang, Photovoltaic properties of multilayered quantum dot/quantum rod-sensitized TiO2 solar cells fabricated by SILAR and elctrophoresis, Phys. Chem. Chem. Phys. 17 (2015) 18590e18599.
[12] D. Esparza, I. Zarazua, T. Lopez-Luke, A. Cerdan-Pasaran, A. Sanchez-Solís, A. Torres-Castro, I. Mora-Sero, E. De la Rosa, Effect of different sensitization technique on the photo conversion efficiency of CdS quantum dot and Cd Sequantum rod sensitized TiO2solar cells, J. Phys. Chem. C 119 (2015)13394e13403.
[13] Yanxing Zhang, Zongxian Yang, The mechanism of the high resistance to sulfur poisoning of the rhenium doped nickel/yttria-stabilized zirconia, Applied Surface Science, Volume 447, 2018, Pages 561-568, https://doi.org/10.1016/j.apsusc.2018.04.010.
[14] A. Yella, H. -W. Lee, H.N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629e634
[15] D. Komaraiah, E. Radha, J. Sivakumar, M.V. Ramana Reddy, R. Sayanna, Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films, Optical Materials, Volume 108, 2020, 110401, https://doi.org/10.1016/j.optmat.2020.110401.
[16] Sujubili Narzary, K. Alamelu, V. Raja, B.M. Jaffar Ali, Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants, Journal of Environmental Chemical Engineering, Volume 8, Issue 5, 2020, 104373, https://doi.org/10.1016/j.jece.2020.104373.
[17] Z.F. Liu, M. Miyauchi, Y. Uemura, Y. Cui, K. Hara, Z.G. Zhao, K. Sunahara, A. Furube, Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating, Appl. Phys. Lett. 96 (2010) 233107.
[18] Fabrice Kwefeu Mbakop, Ahmat Tom, Abdouramani Dadjé, Aloyem Kazé Claude Vidal, Noël Djongyang, One-dimensional comparison of Tio2/SiO2 and Si/SiO2 photonic crystals filters for thermophotovoltaic applications in visible and infrared, Chinese Journal of Physics, Volume 67, 2020, Pages 124-134, https://doi.org/10.1016/j.cjph.2020.06.004.
[19] E. Barea, X.Q. Xu, V. González-Pedro, T. Ripollés-Sanchis, F. Fabregat-Santiago,J. Bisquert, Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nano rod based dye sensitized solar cells, Energy Environ. Sci. 4 (2011)3414e3419.
[20] J. Wang, T. Ming, Z. Jin, J. Wang, L.-D. Sun, C.-H. Yan, Photon energy up con-version through thermal radiation with the power efficiency reaching 16%, Nat. Commun. 5 (2014) 5669,http://dx.doi.org/10.1038/ncomms6669.
[21] L.A. Diaz-Torres, P. Salas, C. Angeles-Chavez, O. Meza, T. Lopez-Luke, Greenup conversion emission dependence on size and surface residual contaminants in nano-crystalline ZrO2:Er3þ, J. Sol-Gel Sci. Technol. 63 (2012) 473e480.
[22] L.A. Diaz-Torres, O. Meza, D. Solis, P. Salas, E. De la Rosa, Visible up conversion emission and non radiative direct Yb 3p to Er 3p energy transfer processes in nano-crystalline ZrO2:Yb3þ,Er3þ, Opt. Laser Eng. 49 (2011) 703e708.
[23] V.H. Romero, E. De la Rosa, T. Lopez-luke, P. Salas, C. Angeles, Brilliant blue,green and orange-red emission band on Tm 3p,Tb 3p and Eu 3p doped ZrO2 nanocrystals, J. Phys. D. Appl. Phys. 43 (2010) 465105 (8pp).
[24] D. Solís, E. De la Rosa, P. Salas, C. Angeles-Chavez, Green up converted emission enhancement of ZrO2: Yb 3p –Ho 3p nanocrystals, J. Phys. D. Appl. Phys. 42 (2009) 235105 (8pp).
[26] K. Zhao, Z.X. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X.Q. Gong, J. Wang, M. Bonn, J. Bisquert, X.H. Zhong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control, J. Am. Chem. Soc. 137 (2015) 5602e5609.
[27] D. Ramachari, D. Esparza, T. López-Luke, V.H. Romero, L. Perez-Mayen, E. De la Rosa, C.K. Jayasankar, Synthesis of co-doped Yb3+-Er3+:ZrO2 up conversion nanoparticles and their applications in enhanced photovoltaic properties of quantum dot sensitized solar cells, Journal of Alloys and Compounds, Volume 698, 2017, Pages 433-441,https://doi.org/10.1016/j.jallcom.2016.12.026.
[28] Albert Veved, Geh Wilson Ejuh, Noël Djongyang, Study of the optoelectronic and piezoelectric properties of ZrO2 doped PVDF from quantum chemistry calculations, Chinese Journal of Physics, Volume 63, 2020, Pages 213-219, https://doi.org/10.1016/j.cjph.2019.10.022.
[29] Yanyan Li, Li Zhao, Shoubin Wei, Meng Xiao, Binghai Dong, Li Wan, Shimin Wang, Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells, Applied Surface Science, Volume 439, 2018, Pages 506-515, https://doi.org/10.1016/j.apsusc.2018.01.005.
[30] Mohammad Zarei, Sensitive visible light-driven photoelectrochemical aptasensor for detection of tetracycline using ZrO2/g-C3N4 nanocomposite, Sensors International, Volume 1, 2020, 100029, https://doi.org/10.1016/j.sintl.2020.100029.
[31] Ibrahim M.A. Mohamed, Van-Duong Dao, Ahmed S. Yasin, Hamouda M. Mousa, Mohamed A. Yassin, Muhammad Yasir Khan, Ho-Suk Choi, Nasser A.M. Barakat,Physicochemical and photo-electrochemical characterization of novel N-doped nanocomposite ZrO2/TiO2 photoanode towards technology of dye-sensitized solar cells,Materials Characterization, Volume 127, 2017, Pages 357-364, https://doi.org/10.1016/j.matchar.2017.03.014.
[32] Xiaojie Yang, Li Zhao, Kangle Lv, Binghai Dong, Shimin Wang, Enhanced efficiency for dye-sensitized solar cells with ZrO2 as a barrier layer on TiO2 nanofibers, Applied Surface Science, Volume 469, 2019, Pages 821-828, https://doi.org/10.1016/j.apsusc.2018.10.242.
[33] Mohammad Zarei, Ultrasonic-assisted preparation of ZrO2/g-C3N4 nanocomposites with high visible-light photocatalytic activity for degradation of 4-chlorophenol in water, Water-Energy Nexus, Volume 3, 2020, Pages 135-142, https://doi.org/10.1016/j.wen.2020.08.002.
[34] Xiaojie Yang, Li Zhao, Kangle Lv, Binghai Dong, Shimin Wang, Enhanced efficiency for dye-sensitized solar cells with ZrO2 as a barrier layer on TiO2 nanofibers, Applied Surface Science, Volume 469, 2019, Pages 821-828, https://doi.org/10.1016/j.apsusc.2018.10.242.
[35] Abdulmenan M. Hussein, Anastasiia V. Iefanova, Ranjit T. Koodali, Brian A. Logue, Rajesh V. Shende, Interconnected ZrO2 doped ZnO/TiO2 network photoanode for dye-sensitized solar cells, Energy Reports, Volume 4, 2018, Pages 56-64,https://doi.org/10.1016/j.egyr.2018.01.007.
[36] Fert, A. Nobel Lecture: Origin, Development, and Future of Spintronic. Rev. Mod. Phys. 2008, 80, 1517−1529.
[37] Rahman, M. A.; Rout, S.; Thomas, J. P.; McGillivray, D.; Leung, K. T. Defect-Rich Dopant-free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties. J. Am. Chem. Soc. 2016, 138, 11896−11906.
[38] Chandragiri Venkata Reddy, I. Neelakanta Reddy, Bhargav Akkinepally, V.V.N. Harish, Kakarla Raghava Reddy, Shim Jaesool, Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation, Ceramics International, Volume 45, Issue 12, 2019, Pages 15298-15306, https://doi.org/10.1016/j.ceramint.2019.05.020.
[39] Zeitschrift für Kristallographie - Crystalline Materials, Volume 232, Issue 1-3, Pages 161–183, eISSN 2196-7105, ISSN 2194-4946, DOI: https://doi.org/10.1515/zkri-2016-1981.
[40] Zippel, J.; et al. Defect-Induced Ferromagnetism in Undoped and Mn-Doped Zirconia Thin Films. Phys. Rev. B 2010, 82, No. 125209.
[41] Dietl, T. A Ten-year Perspective on Dilute Magnetic Semiconductors and Oxides. Nat. Mater. 2010, 9, 965−974.
[42] Ogale, S. B. Dilute Doping, Defect, and Ferromagnetism in Metal Oxide Systems. Adv. Mater. 2010, 22, 3125−3155.
[43] Zhu, H.; Li, J.; Chen, K.; Yi, X.; Cheng, S.; Gan, F. Nature of Charge Transport and p- electron Ferromagnetism in Nitrogen-doped ZrO2: An Ab-initio Perspective. Sci. Rep. 2015, 5, No. 8586.
[44] T. Ohno, M. Akiyoshi, T. Umebaysshi, K. Asai, T. Mitsui, M. MatsumuraPreparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light Appl. Catal. A: Gen., 265 (2004), pp. 115-121
[45] Lijing Zhang, Xiufang Zhu, Zhihui Wang, Shan Yun, Tan Guo, Jiadong Zhang, Tao Hu, Jinlong Jiang and Jing Chen10.1039/C8RA07751G(Paper) RSC Adv., 2019, 9 , 4422-4427
[46] A. Kokalj, XCrySDen-a new program for displaying crystalline structures and electron densities, J. Mol. Graphics Modelling, 1999, 17, 176–179.
[47] D. A. WRIGHT, J, S. THORP, A. AYPAR, H. P. BUCKLEY; JOURNAL OF MATERIALS SCIENCE 8 (1973) 876-882.
[48] J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.W. Leite, Alves, S. C. P. Rodrigues, E.F. da Silva Jr., Structural, electronic, and optical properties of ZrO2 from ab initio calculations, J. Appl. Phys. 100 (2006) 104103.
[49] E.V. Stefanovich, A. Shluger, C.R. Catlow, Theoretical study of the stabilization of cubic- phase ZrO2 by impurities, Phys. Rev. B 49 (1994) 11560.
[50] P. Giannouzzi et al. J. Phys.: Condens. Matter 21, (2009), 395502; URL, “http: //www.Quantum-espresso.org”.
[51] D. Vanderbilt, Soft self-consistent pseudo-potentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, (1990), 7892-7895.
[52] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.
[53] H.J. Monkhorst, J.D. Pack Phys. Rev. B, 13 (1976), p. 5188
[54] S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, Structural, electronic, magnetic properties and critical behavior of the equiatomic quaternary Heusler alloy CoFeTiSn, Physics Letters A, 2020, 126453,https://doi.org/10.1016/j.physleta.2020.126453.
[55] Idrissi, S., Labrim, H., Ziti, S. et al. Investigation of the physical properties of the equiatomic quaternary Heusler alloy CoYCrZ (Z = Si and Ge): a DFT study. Appl. Phys. A 126, 190 (2020).https://doi.org/10.1007/s00339-020-3354-6.
[56] Idrissi, S., Labrim, H., Ziti, S. et al. Characterization of the Equiatomic Quaternary Heusler Alloy ZnCdRhMn: Structural, Electronic, and Magnetic Properties. J Supercond Nov Magn 33, 3087–3095 (2020). https://doi.org/10.1007/s10948-020-05561-8
[57] S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge), Materials Science in Semiconductor Processing, Volume 122, 2021, 105484,https://doi.org/10.1016/j.mssp.2020.105484.
[58] Haoyuan Wang, Na Lin, Ran Xu, Yifei Yu, Xian Zhao,First principles studies of electronic, mechanical and optical properties of Cr-doped cubic ZrO2, Chemical Physics, Volume 539, 2020,110972, https://doi.org/10.1016/j.chemphys.2020.110972.
[59] K. Seema, R. Kumar, Effect of dopant concentration on electronic and magnetic properties of transition metal-doped ZrO2, J. Supercond. Nov. Magnetism 28 (9) (2015) 2735e2742.
[60] Oleksandr I. Malyi, Zhong Chen, Guo Gang Shuband Ping Wu; J. Mater. Chem., 2011, 21, 12363