References
1.Devereux G. The increase in the prevalence of asthma and allergy: food
for thought. Nat Rev Immunol. 2006;6(11):869–874.
2. Pawankar R. Allergic diseases and asthma: a global public health
concern and a call to action. World Allergy Organ J [Internet].
2014;7(1):12.
3. Upton MN, McConnachie A, McSharry C, Hart CL, Smith GD, Gillis CR, et
al. Intergenerational 20 year trends in the prevalence of asthma and hay
fever in adults: the Midspan family study surveys of parents and
offspring. BMJ [Internet]. 2000;321(7253):88–92.
4. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med
[Internet]. 2012;18(5):693–704.
5. Galli SJ, Kalesnikoff J, Grimbaldeston M a, Piliponsky AM, Williams
CMM, Tsai M. Mast Cells as “Tunable” Effector and Immunoregulatory
Cells : Recent Advances. Annu Rev Immunol. 2005;23:749–786.
6. Finkelman FD, Khodoun M V, Strait R. Human IgE-independent systemic
anaphylaxis. J Allergy Clin Immunol [Internet]. 2016 Jun
1;137(6):1674–80.
7. Galli SJ, Tsai M, Piliponsky AM. The development of allergic
inflammation. Nature [Internet]. 2008;454(7203):445–54.
8. Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol
[Internet]. 2008 Mar [cited 2014 Mar 19];8(3):205–127.
9. Conrad DH, Ford JW, Sturgill JL, Gibb DR. CD23: An overlooked
regulator of allergic disease. Curr Allergy Asthma Rep [Internet].
2007;7(5):331–3177.
10. Acharya M, Borland G, Edkins a L, Maclellan LM, Matheson J, Ozanne
BW, et al. CD23/FcεRII: molecular multi-tasking. Clin Exp Immunol
[Internet]. 2010 Oct [cited 2014 Mar 25];162(1):12–23.
11. Schwarzmeier JD, Hubmann R, Düchler M, Jäger U, Shehata M.
Regulation of CD23 expression by Notch2 in B-cell chronic lymphocytic
leukemia. Leuk Lymphoma [Internet]. 2005 Jan 1;46(2):157–165.
12. Fournier S, Rubio M, Delespesse G, Sarfati M. Role for low-affinity
receptor for IgE (CD23) in normal and leukemic B-cell proliferation.
Blood. 1994;84(6):1881–1886.
13. Guo Y, Chang Q, Cheng L, Xiong S, Jia X, Lin X, et al. C-Type Lectin
Receptor CD23 Is Required for Host Defense against Candida
albicans and Aspergillus fumigatus Infection. J Immunol
[Internet]. 2018;ji1800620.
14. Zhao X, Guo Y, Jiang C, Chang Q, Zhang S, Luo T, et al. JNK1
negatively controls antifungal innate immunity by suppressing CD23
expression. Nat Med [Internet]. 2017;23(3):337–346.
15. Jégouzo SAF, Feinberg H, Morrison AG, Holder A, May A, Huang Z, et
al. CD23 is a glycan-binding receptor in some mammalian species. J Biol
Chem. 2019;294(41):14845–14859.
16. Kijimoto-Ochiai S. CD23 (the low-affinity IgE receptor) as a C-type
lectin: a multidomain and multifunctional molecule. Cell Mol Life Sci C
[Internet]. 2002;59(4):648–64. Available from:
https://doi.org/10.1007/s00018-002-8455-8461
17. Mossalayi MD, Vouldoukis I, Mamani-Matsuda M, Kauss T, Guillon J,
Maugein J, et al. CD23 mediates antimycobacterial activity of human
macrophages. Infect Immun [Internet]. 2009 Dec [cited 2014 Jul
21];77(12):5537–5542.
18. Wang TT, Maamary J, Tan GS, Bournazos S, Davis CW, Krammer F, et al.
Anti-HA Glycoforms Drive B Cell Affinity Selection and Determine
Influenza Vaccine Efficacy. Cell [Internet]. 2015;162(1):160–169.
19. Maamary J, Wang TT, Tan GS, Palese P, Ravetch J V. Increasing the
breadth and potency of response to the seasonal influenza virus vaccine
by immune complex immunization. Proc Natl Acad Sci [Internet].
2017;201707950.
20. Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch J V. General
mechanism for modulating immunoglobulin effector function. Proc Natl
Acad Sci [Internet]. 2013 Jun 11;110(24):9868 LP – 9872.
21. Platzer B, Ruiter F, van der Mee J, Fiebiger E. Soluble IgE
receptors - elements of the IgE network. Immunol Lett.
2012;141(1):36–44.
22. Sarfati M, Chevret S, Chastang C, Biron G, Stryckmans P, Delespesse
G, et al. Prognostic importance of serum soluble CD23 level in chronic
lymphocytic leukemia. Blood [Internet]. 1996;88(11):4259–4264.
23. Boccafogli a, Vicentini L, Lambertini D, Scolozzi R. Soluble CD23 is
increased in allergy. Allergy [Internet]. 1997 Apr 29;52(3):357–8.
Available from: https://doi.org/10.1111/j.1398-9995.1997.tb01009.x
24. Moura RA, Quaresma C, Vieira AR, Gonçalves MJ, Polido-Pereira J,
Romão V, et al. A2.12 Increased CXCR5 B cell expression, CXCL13 and
SCD23 serum levels in untreated early rheumatoid arthritis patients
support B cell activation since the initial phase of the disease. Ann
Rheum Dis [Internet]. 2016 Feb 1;75(Suppl 1):A20 LP-A20.
25. Rezzonico R, Chicheportiche R, Imbert V, Dayer J-M. Engagement of
CD11b and CD11c β2 integrin by antibodies or soluble CD23 induces IL-1β
production on primary human monocytes through mitogen-activated protein
kinase–dependent pathways. Blood [Internet]. 2000 Jun
15;95(12):3868 LP – 3877.
26. Lecoanet-Henchoz S, Gauchat J-F, Aubry J-P, Graber P, Life P,
Paul-Eugene N, et al. CD23 Regulates monocyte activation through a novel
interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18.
Immunity [Internet]. 1995;3(1):119–125.
27. Lecoanet-Henchoz S, Plater-Zyberk C, Graber P, Gretener D, Aubry JP,
Conrad DH, et al. Mouse CD23 regulates monocyte activation through an
interaction with the adhesion molecule CD11b/CD18. Eur J Immunol.
1997;27(9):2290–2294.
28. Sun PD. Human CD23: Is It a Lectin in Disguise? Structure.
2006;14(6):950–951.
29. Delespesse G, Sarfati M, Wu CY, Fournier S, Letellier M. The
Low-Affinity Receptor for IgE. Immunol Rev [Internet]. 1992 Feb
1;125(1):77–97.
30. Borland G, Edkins AL, Acharya M, Matheson J, White LJ, Allen JM, et
al. alphavbeta5 integrin sustains growth of human Pre-B cells through an
RGD-independent interaction with a basic domain of the CD23 protein. J
Biol Chem. 2007;282(37):27315–2726.
31. Yokota A, Kikutani H, Tanaka T, Sato R, Barsumian EL, Suemura M, et
al. Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23):
tissue-specific and IL-4-specific regulation of gene expression. Cell
[Internet]. 1988 Nov 18;55(4):611–18.
32. Weskamp G, Ford JW, Sturgill J, Martin S, Docherty AJP, Swendeman S,
et al. ADAM10 is a principal “sheddase” of the low-affinity
immunoglobulin E receptor CD23. Nat Immunol. 2006;7(12):1293–1298.
33. Lemieux GA, Blumenkron F, Yeung N, Zhou P, Williams J, Grammer AC,
et al. The low affinity IgE receptor (CD23) is cleaved by the
metalloproteinase ADAM10. J Biol Chem [Internet]. 2007/03/27. 2007
May 18;282(20):14836–14844.
34. Sutton BJ, Davies AM. Structure and dynamics of IgE-receptor
interactions: FcεRI and CD23/FcεRII. Immunol Rev. 2015;268(1):222–235.
35. Holdom MD, Davies AM, Nettleship JE, Bagby SC, Dhaliwal B, Girardi
E, et al. Conformational changes in IgE contribute to its uniquely slow
dissociation rate from receptor FcεRI. Nat Struct Mol Biol
[Internet]. 2011;18(5):571–576.
36. Wurzburg BA, Garman SC, Jardetzky TS. Structure of the human IgE-Fc
C epsilon 3-C epsilon 4 reveals conformational flexibility in the
antibody effector domains. Immunity [Internet]. 2000;13(3):375–385.
37. Borthakur S, Hibbert RG, Pang MOY, Yahya N, Bax HJ, Kao MW, et al.
Mapping of the CD23 binding site on immunoglobulin E(IgE) and allosteric
control of the IgE-FceRI interaction. J Biol Chem.
2012;287(37):31457–31461.
38. Dhaliwal B, Pang MOY, Yuan D, Yahya N, Fabiane SM, McDonnell JM, et
al. Conformational plasticity at the IgE-binding site of the B-cell
receptor CD23. Mol Immunol [Internet]. 2013;56(4):693–697.
39. Dhaliwal B, Pang MOY, Keeble AH, James LK, Gould HJ, McDonnell JM,
et al. IgE binds asymmetrically to its B cell receptor CD23. Sci Rep
[Internet]. 2017;7(November 2016):45533.
40. Aubry J-P, Pochon S, Graber P, Jansen KU, Bonnefoy J-Y. CD21 is a
ligand for CD23 and regulates IgE production. Nature [Internet].
1992 Aug 6;358:505.
41. Hibbert RG, Teriete P, Grundy GJ, Beavil RL, Reljic R, Holers VM, et
al. The structure of human CD23 and its interactions with IgE and CD21.
J Exp Med. 2005;202(6):751–60.
42. Aubry JP, Pochon S, Gauchat JF, Nueda-Marin A, Holers VM, Graber P,
et al. CD23 interacts with a new functional extracytoplasmic domain
involving N-linked oligosaccharides on CD21. J Immunol [Internet].
1994 Jun 15;152(12):5806 LP – 5813.
43. Kilmon MA, Ghirlando R, Strub MP, Beavil RL, Gould HJ, Conrad DH.
Regulation of IgE production requires oligomerization of CD23. J
Immunol. 2001 Sep;167(6):3139–45.
44. Munoz O, Brignone C, Grenier-Brossette N, Bonnefoy J-Y, Cousin J-L.
Binding of Anti-CD23 Monoclonal Antibody to the Leucine Zipper Motif of
FcεRII/CD23 on B Cell Membrane Promotes Its Proteolytic Cleavage:
EVIDENCE FOR AN EFFECT ON THE OLIGOMER/MONOMER EQUILIBRIUM . J Biol Chem
[Internet]. 1998 Nov 27;273(48):31795–800.
45. Selb R, Eckl-Dorna J, Neunkirchner A, Schmetterer K, Marth K, Gamper
J, et al. CD23 surface density on B cells is associated with IgE levels
and determines IgE-facilitated allergen uptake, as well as activation of
allergen-specific T cells. J Allergy Clin Immunol. 2015;139(1):290–9.
46. Reginald K, Eckl-Dorna J, Zafred D, Focke-Tejkl M, Lupinek C,
Niederberger V, et al. Different modes of IgE binding to CD23 revealed
with major birch allergen, Bet v 1-specific monoclonal IgE. Immunol Cell
Biol [Internet]. 2013 Feb 1;91(2):167–72.
47. Engeroff P, Caviezel F, Mueller D, Thoms F, Bachmann MF, Vogel M.
CD23 provides a noninflammatory pathway for IgE-allergen complexes. J
Allergy Clin Immunol [Internet]. 2020 Jan 1;145(1):301-311.e4.
Available from: https://doi.org/10.1016/j.jaci.2019.07.045
48. Brostoff J, Carini C, Wraith DG, Johns P. PRODUCTION OF IgE
COMPLEXES BY ALLERGEN CHALLENGE IN ATOPIC PATIENTS AND THE EFFECT OF
SODIUM CROMOGLYCATE. Lancet [Internet]. 1979;313(8129):1268–70.
49. Brostoff J, Johns Dennis P, Stanworth R. COMPLEXED IgE IN ATOPY.
Lancet [Internet]. 1977;310(8041):741–2.:
50. Jensen-Jarolim E, Vogel M, de Weck AL, Stadler BM. Anti-IgE
autoantibodies mistaken for specific IgG. J Allergy Clin Immunol
[Internet]. 1992 Jan 1 [cited 2018 Jun 13];89(1):31–43.
https://www.sciencedirect.com/science/article/pii/S0091674905800387?via%3Dihub
51. Bracken SJ, Adami AJ, Rafti E, Schramm CM, Matson AP. Regulation of
IgE activity in inhalational tolerance via formation of IgG anti-IgE/IgE
immune complexes. Clin Mol Allergy [Internet]. 2018;16(1):13.
52. Chan Y-C, Ramadani F, Santos AF, Pillai P, Ohm-Laursen L, Harper CE,
et al. “Auto-anti-IgE”: Naturally occurring IgG anti-IgE antibodies
may inhibit allergen-induced basophil activation. J Allergy Clin Immunol
[Internet]. 2014 Dec 1 [cited 2018 Jun 13];134(6):1394-1401.e4.
53. Shakib F, Powell-Richards A. Elucidation of the Epitope Locations of
Human Autoanti-IgE: Recognition of Two Epitopes Located within the Cε2
and the Cε4 Domains. Int Arch Allergy Immunol [Internet].
1991;95(2–3):102–8.
54. Meulenbroek LAPM, de Jong RJ, den Hartog Jager CF, Monsuur HN,
Wouters D, Nauta AJ, et al. IgG Antibodies in Food Allergy Influence
Allergen − Antibody Complex Formation and Binding to B Cells: A Role for
Complement Receptors. J Immunol. 2013;191(7):3526–33.
55. Shamji MH, Kappen J, Abubakar-Waziri H, Zhang J, Steveling E,
Watchman S, et al. Nasal allergen-neutralizing IgG4 antibodies block
IgE-mediated responses: Novel biomarker of subcutaneous grass pollen
immunotherapy. J Allergy Clin Immunol [Internet].
2019;143(3):1067–76.
56. Wachholz PA, Kristensen Soni N, Till SJ, Durham SR. Inhibition of
allergen-IgE binding to B cells by IgG antibodies after grass pollen
immunotherapy. J Allergy Clin Immunol [Internet].
2003;112(5):915–22.
57. Shamji MH, Wilcock LK, Wachholz PA, Dearman RJ, Kimber I, Wurtzen
PA, et al. The IgE-facilitated allergen binding (FAB) assay: Validation
of a novel flow-cytometric based method for the detection of inhibitory
antibody responses. J Immunol Methods [Internet]. 2006;317(1):71–9.
58. Payet M, Conrad DH. IgE regulation in CD23 knockout and transgenic
mice. Allergy Eur J Allergy Clin Immunol. 1999;54(11):1125–9.
59. Payet-Jamroz M, Helm SLT, Wu J, Kilmon M, Fakher M, Basalp A, et al.
Suppression of IgE Responses in CD23-Transgenic Animals Is Due to
Expression of CD23 on Nonlymphoid Cells. J Immunol [Internet]. 2001
Apr 15;166(8):4863 LP – 4869.
60. Yu P, Kosco-Vilbois M, Richards M, Köhler G, Lamers MC. Negative
feedback regulation of IgE synthesis by murine CD23. Nature.
1994;369(6483):753–6.
61. Flores-Romo L, Shields J, Humbert Y, Graber P, Aubry JP, Gauchat JF,
et al. Inhibition of an in vivo antigen-specific IgE response by
antibodies to CD23. Science (80- ) [Internet]. 1993 Aug
20;261(5124):1038 LP – 1041.
62. Fellmann, M., Buschor, P., Röthlisberger, S., Zellweger, F. Vogel M,
Fellmann M, Buschor P, Röthlisberger S, Zellweger F, Vogel M. High
affinity targeting of CD23 inhibits IgE synthesis in human B cells.
Immunity, Inflamm Dis [Internet]. 2015;3(4):339–49.
63. Cooper AM, Hobson PS, Jutton MR, Kao MW, Drung B, Schmidt B, et al.
Soluble CD23 Controls IgE Synthesis and Homeostasis in Human B Cells.
2012;188(7):3199–207.
64. Schulz O, Sutton BJ, Beavil RL, Shi J, Sewell HF, Gould HJ, et al.
Cleavage of the low-affinity receptor for human IgE (CD23) by a mite
cysteine protease: Nature of the cleaved fragment in relation to the
structure and function of CD23. Eur J Immunol. 1997;27(3):584–8.
65. McCloskey N, Hunt J, Beavil RL, Jutton MR, Grundy GJ, Girardi E, et
al. Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis
in human B cells. J Biol Chem. 2007;282(33):24083–91.
66. Cheng LE, Wang Z-E, Locksley RM. Murine B Cells Regulate Serum IgE
Levels in a CD23-Dependent Manner. J Immunol [Internet].
2010;185(9):5040–7.
67. Jabs F, Plum M, Laursen NS, Jensen RK, Mølgaard B, Miehe M, et al.
Trapping IgE in a closed conformation by mimicking CD23 binding prevents
and disrupts FcϵRI interaction. Nat Commun [Internet]. 2018;9(1).
68. Yokota A, Yukawa K, Yamamoto A, Sugiyama K, Suemura M, Tashiro Y, et
al. Two forms of the low-affinity Fc receptor for IgE differentially
mediate endocytosis and phagocytosis: identification of the critical
cytoplasmic domains. Proc Natl Acad Sci U S A. 1992;89(11):5030–4.
69. Peng W, Grobe W, Walgenbach-Brünagel G, Flicker S, Yu C, Sylvester
M, et al. Distinct Expression and Function of FcεRII in Human B Cells
and Monocytes. J Immunol [Internet]. 2017;1601028.
70. Chan M a, Gigliotti NM, Matangkasombut P, Gauld SB, Cambier JC,
Rosenwasser LJ. CD23-mediated cell signaling in human B cells differs
from signaling in cells of the monocytic lineage. Clin Immunol
[Internet]. 2010 Dec [cited 2014 Oct 20];137(3):330–6.
71. Ten RM, McKinstry MJ, Trushin S a, Asin S, Paya C V. The signal
transduction pathway of CD23 (Fc epsilon RIIb) targets I kappa B kinase.
J Immunol [Internet]. 1999 Oct 1;163(7):3851–7.
72. Gosset P, Tillie-Leblond I, Oudin S, Parmentier O, Wallaert B,
Joseph M, et al. Production of chemokines and proinflammatory and
antiinflammatory cytokines by human alveolar macrophages activated by
IgE receptors. J Allergy Clin Immunol [Internet].
1999;103(2):289–97.
73. Liu C, Richard K, Wiggins M, Zhu X, Conrad DH, Song W. CD23 can
negatively regulate B-cell receptor signaling. Sci Rep [Internet].
2016;6(May):25629.
74. Engeroff P, Fellmann M, Yerly D, Bachmann MF, Vogel M. A novel
recycling mechanism of native IgE-antigen complexes in human B cells
facilitates transfer of antigen to dendritic cells for antigen
presentation. J Allergy Clin Immunol. 2018;142(2):557–68.
75. Karagiannis SN, Warrack JK, Jennings KH, Murdock PR, Christie G,
Moulder K, et al. Endocytosis and recycling of the complex between CD23
and HLA-DR in human B cells. Immunology [Internet]. 2001
Jul;103(3):319–31.
76. Hjelm F, Karlsson MCI, Heyman B. A novel B cell-mediated transport
of IgE-immune complexes to the follicle of the spleen. J Immunol.
2008;180(10):6604–10.
77. Ding Z, Dahlin JS, Xu H, Heyman B, Heyman B, Heyman B, et al.
IgE-mediated enhancement of CD4+ T cell responses requires antigen
presentation by CD8α− conventional dendritic cells. Sci Rep
[Internet]. 2016;6(February):28290.
78. Xu H, van Mechelen L, Henningsson F, Heyman B. Antigen conjugated to
anti-CD23 antibodies is rapidly transported to splenic follicles by
recirculating B cells. Scand J Immunol [Internet]. 2014 Oct 30
[cited 2014 Nov 5];
79. Tu Y, Salim S, Bourgeois J, Di Leo V, Irvine EJ, Marshall JK, et al.
CD23-Mediated IgE Transport Across Human Intestinal Epithelium:
Inhibition by Blocking Sites of Translation or Binding. Gastroenterology
[Internet]. 2005 Sep 1;129(3):928–40.
80. Palaniyandi S, Tomei E, Li Z, Conrad DH, Zhu X. CD23-dependent
transcytosis of IgE and immune complex across the polarized human
respiratory epithelial cells. J Immunol [Internet]. 2011 Mar 15
[cited 2014 May 8];186(6):3484–96.
81. Yang P-C, Berin MC, Yu LCH, Conrad DH, Perdue MH. Enhanced
intestinal transepithelial antigen transport in allergic rats is
mediated by IgE and CD23 (FcεRII). J Clin Invest [Internet]. 2000
Oct 1;106(7):879–86.
82. Bevilacqua C, Montagnac G, Benmerah A, Candalh C, Brousse N,
Cerf-Bensussan N, et al. Food Allergens Are Protected from Degradation
during CD23-Mediated Transepithelial Transport. Int Arch Allergy Immunol
[Internet]. 2004;135(2):108–16.
83. Li H, Chehade M, Liu W, Xiong H, Mayer L, Berin MC. Allergen-IgE
Complexes Trigger CD23-Dependent CCL20 Release From Human Intestinal
Epithelial Cells. Gastroenterology [Internet]. 2007;133(6):1905–15.
84. Getahun A, Hjelm F, Heyman B. IgE enhances antibody and T cell
responses in vivo via CD23+ B cells. J Immunol. 2005;175(3):1473–82.
85. van der Heijden FL, Joost van Neerven RJ, van Katwijk M, Bos JD,
Kapsenberg ML. Serum-IgE-facilitated allergen presentation in atopic
disease. J Immunol. 1993;150(8 Pt 1):3643–50.
86. Holm J, Willumsen N, Würtzen PA, Christensen LH, Lund K. Facilitated
antigen presentation and its inhibition by blocking IgG antibodies
depends on IgE repertoire complexity. J Allergy Clin Immunol
[Internet]. 2011;127(4):1029–37.
87. van Neerven RJ, Wikborg T, Lund G, Jacobsen B, Brinch-Nielsen A,
Arnved J, et al. Blocking antibodies induced by specific allergy
vaccination prevent the activation of CD4+ T cells by inhibiting
serum-IgE-facilitated allergen presentation. J Immunol [Internet].
1999;163(5):2944–52.
88. Villazala-Merino S, Rodriguez-Dominguez A, Stanek V, Campion NJ,
Gattinger P, Hofer G, et al. Allergen-specific IgE levels and ability of
IgE-allergen complexes to cross-link determine extent of CD23-mediated T
cell activation. J Allergy Clin Immunol [Internet]. 2019;
89. Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik
K-O, et al. IgE-Mediated Enhancement of CD4+ T Cell Responses in Mice
Requires Antigen Presentation by CD11c+ Cells and Not by B Cells. PLoS
One [Internet]. 2011 Jul 6;6(7):e21760.
90. Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius
A, et al. B cell-derived exosomes can present allergen peptides and
activate allergen-specific T cells to proliferate and produce TH2-like
cytokines. J Allergy Clin Immunol. 2007;120(6):1418–24.
91. Qazi KR, Gehrmann U, Domange Jordö E, Karlsson MCI, Gabrielsson S.
Antigen-loaded exosomes alone induce Th1-type memory through a B
cell–dependent mechanism. Blood [Internet]. 2009 Mar
19;113(12):2673–83.
92. Mathews JA, Gibb DR, Chen B-H, Scherle P, Conrad DH. CD23 Sheddase A
disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23
sorting into B cell-derived exosomes. J Biol Chem [Internet]. 2010
Nov 26 [cited 2014 Mar 25];285(48):37531–41.
93. Padro CJ, Shawler TM, Gormley MG, Sanders VM. Adrenergic regulation
of IgE involves modulation of CD23 and ADAM10 expression on exosomes. J
Immunol [Internet]. 2013 Dec 1 [cited 2014 Oct
6];191(11):5383–97.
94. Martin RK, Brooks KB, Henningsson F, Heyman B, Conrad DH. Antigen
Transfer from Exosomes to Dendritic Cells as an Explanation for the
Immune Enhancement Seen by IgE Immune Complexes. PLoS One
[Internet]. 2014;9(10):e110609.
95. Palaniyandi S, Liu X, Periasamy S, Ma A, Tang J, Jenkins M, et al.
Inhibition of CD23-mediated IgE transcytosis suppresses the initiation
and development of allergic airway inflammation. Mucosal Immunol
[Internet]. 2015;8(6):1262–74.
96. Cernadas M, De Sanctis GT, Krinzman SJ, Mark DA, Donovan CE, Listman
JA, et al. CD23 and Allergic Pulmonary Inflammation: Potential Role as
an Inhibitor. Am J Respir Cell Mol Biol [Internet]. 1999 Jan
1;20(1):1–8. Available from: https://doi.org/10.1165/ajrcmb.20.1.3299
97. HACZKU A, TAKEDA K, HAMELMANN E, OSHIBA A, LOADER J, JOETHAM A, et
al. CD23 Deficient Mice Develop Allergic Airway Hyperresponsiveness
Following Sensitization with Ovalbumin. Am J Respir Crit Care Med
[Internet]. 1997 Dec 1;156(6):1945–55.
98. Jutel M, Agache I, Bonini S, Burks AW, Calderon M, Canonica W, et
al. International consensus on allergy immunotherapy. J Allergy Clin
Immunol. 2015;136(3):556–68.
99. Jutel M, Agache I, Bonini S, Burks AW, Calderon M, Canonica W, et
al. International Consensus on Allergen Immunotherapy II: Mechanisms,
standardization, and pharmacoeconomics. J Allergy Clin Immunol.
2016;137(2):358–68.
100. Jutel M, Akdis CA. Immunological mechanisms of allergen-specific
immunotherapy. Nat Rev Immunol. 2011;66(6):725–32.
101. Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy. J
Allergy Clin Immunol. 2011;127(1):18–27.
102. Gasser P, Eggel A. Targeting IgE in allergic disease. Curr Opin
Immunol [Internet]. 2018;54:86–92.
103. Lanier B, Bridges T, Kulus M, Taylor F, Berhane I. Omalizumab for
the treatment of exacerbations in children with inadequately controlled
allergic ( IgE-mediated ) asthma. J Allergy Clin Immunol [Internet].
124(6):1210–6.
104. Strunk RC, Bloomberg GR. Omalizumab for Asthma. N Engl J Med
[Internet]. 2006 Jun 22;354(25):2689–95.
105. Pennington LF, Tarchevskaya S, Brigger D, Sathiyamoorthy K, Graham
MT, Nadeau KC, et al. Structural basis of omalizumab therapy and
omalizumab-mediated IgE exchange. Nat Commun [Internet].
2016;7(May):11610. A
106. Gauvreau GM, Arm JP, Boulet L-PP, Leigh R, Cockcroft DW, Davis BE,
et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab)
versus omalizumab and placebo in inhibiting allergen-induced early
asthmatic responses. J Allergy Clin Immunol [Internet].
2016;138(4):1051–9.
107. Gasser P, Tarchevskaya SS, Guntern P, Brigger D, Ruppli R, Zbären
N, et al. The mechanistic and functional profile of the therapeutic
anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun
[Internet]. 2020;11(1).
108. Chen J-B, Ramadani F, Pang MOY, Beavil RL, Holdom MD, Mitropoulou
AN, et al. Structural basis for selective inhibition of immunoglobulin
E-receptor interactions by an anti-IgE antibody. Sci Rep [Internet].
2018;8(1):11548.
109. Shiung Y-Y, Chiang C-Y, Chen J-B, Wu PC, Hung AF-H, Lu DC-S, et al.
An anti-IgE monoclonal antibody that binds to IgE on CD23 but not on
high-affinity IgE.Fc receptors. Immunobiology [Internet].
2012;217(7):676–83.
110. Poole J a, Meng J, Reff M, Spellman MC, Rosenwasser LJ. Anti-CD23
monoclonal antibody, lumiliximab, inhibited allergen-induced responses
in antigen-presenting cells and T cells from atopic subjects. J Allergy
Clin Immunol [Internet]. 2005 Oct [cited 2014 Mar
25];116(4):780–8.