References
1. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V et al. In-depth
analysis of the human tear proteome. J Proteomics 2012;75:3877-85.
2. de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the
tear fluid proteome reveals a large number of proteases and protease
inhibitors. Genome Biol 2006;7:R72.
3. Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H et al.
Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ
quantitative proteomics. J Proteome Res 2009;8:4889-905.
4. Tong L, Zhou L, Beuerman RW, Zhao SZ, Li XR. Association of tear
proteins with Meibomian gland disease and dry eye symptoms. Brit J
Ophthalmol 2011;95(6):848-52.
5. Lei Z, Beuerman RW, Chew AP, Koh SK, Cafaro TA, Urrets-Zavalia EA et
al. Quantitative analysis of N- linked glycoproteins in tear fluid
of climatic droplet keratopathy by glycopeptide capture and iTRAQ. J
Proteome Res 2009;8:1992-2003.
6. Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, et al. Proteomic
profiling of inflammatory signaling molecules in the tears of patients
on chronic glaucoma medication. Invest Ophth Vis Sci
2011;52(10):7385-91.
7. Leonardi A, Palmigiano A, Mazzola EA, Messina A, Milazzo EMS,
Bortolotti M et al. Identification of human tear fluid biomarkers in
vernal keratoconjunctivitis using iTRAQ quantitative proteomics. Allergy
2014;69(2):254-56.
8. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D et
al. Association of rheumatoid arthritis and primary osteoarthritis with
changes in the glycosylation pattern of total serum IgG. Nature
1985;316(6027):452-57.
9. Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related
galactosylation of the N- linked oligosaccharides of human serum
IgG. J Exp Med 1988;167(5):1731-36.
10. Nguyen-Khuong T, Everest-Dass AV, Kautto L, Zhao Z, Willcox MD,
Packer NH. Glycomic characterization of basal tears and changes with
diabetes and diabetic retinopathy. Glycobiology 2015;25(3):269-83.
11. Wang J, Yang D, Li C, Shang S, Xiang J. Expression of extracellular
matrix metalloproteinase inducer glycosylation and caveolin‐1 in healthy
and inflamed human gingiva. J Periodontal Res 2014;49(2):197-204.
12. Adamczyk B, Tharmalingam T, Rudd PM. Glycans as cancer biomarkers.
Biochim Biophys Acta(BBA)-Gen Subj 2012;1820(9):1347-53.
13. Palmigiano A, Barone R, Sturiale L, Sanfilippo C, Bua RO, Romeo DA
et al. CSF N- glycoproteomics for early diagnosis in Alzheimer’s
disease. J Proteomics 2016;131:29-37.
14. Palmigiano A, Messina A, Bua RO, Barone R, Sturiale L, Zappia M et
al.: CSF N- Glycomics using MALDI MS techniques in Alzheimer’s
Disease, in Perneczky R (ed): Biomarkers for Alzheimer’s Disease Drug
Development. New York, NY: Humana Press, 2018, pp. 75-91.
15. Messina A, Palmigiano A, Bua RO, Romeo DA, Barone R, Sturiale L et
al.: CSF N- Glycoproteomics Using MALDI MS Techniques in
Neurodegenerative Diseases, in Santamaria E, Fernandez-Irigoyen J (eds):
Cerebrospinal Fluid (CSF) Proteomics. New York, NY: Humana, 2019, pp.
255-72.
16. Kizuka Y, Kitazume S,Taniguchi N. N- glycan and Alzheimer’s
disease. Biochim Biophy Acta (BBA)-General Subjects
2017;1861(10):2447-54.
17. Cho BG, Veillon L, Mechref Y.N- Glycan Profile of
Cerebrospinal Fluids from Alzheimer’s Disease Patients Using Liquid
Chromatography with Mass Spectrometry. J Proteome Res
2019;18(10):3770-79.
18. Quaranta A, Karlsson I, Ndreu L, Marini F, Ingelsson M, Thorsén G.
Glycosylation profiling of selected proteins in cerebrospinal fluid from
Alzheimer’s disease and healthy subjects. Anal Methods-UK
2019;11(26):3331-40.
19. Schedin‐Weiss S, Gaunitz S, Sui P, Chen Q, Haslam SM, Blennow K, et
al. Glycan biomarkers for Alzheimer disease correlate with T‐tau and
P‐tau in cerebrospinal fluid in subjective cognitive impairment. FEBS J
2019.
20. Dwek RA. Glycobiology: toward understanding the function of sugars.
Chem Rev 1996;96(2):683-720.
21. Kobata A. A journey to the world of glycobiology. Glycoconjugate J
2000;17(7-9):443-64.
22. Rodriguez Benavente MC, Argüeso P. Glycosylation pathways at the
ocular surface. Biochem
Soc T 2018;46(2):343-50.
23. Woodward AM, Lehoux S, Mantelli F, Di Zazzo A, Brockhausen I, Bonini
S, Argüeso P. Inflammatory stress causes N-glycan processing deficiency
in ocular autoimmune disease. Am J Pathol 2019;189(2):283-94.
24. Vieira AC, An HJ, Ozcan S, Kim JH, Lebrilla CB, Mannis MJ. Glycomic
analysis of tear and saliva in ocular rosacea patients: the search for a
biomarker. Ocul Surf 2012;10(3):184-92.
25. Leonardi A, Doan S, Fauquert JL, Bozkurt B, Allegri P, Marmouz F et
al. Diagnostic tools in ocular allergy. Allergy 2017;72(10):1485-98.
26. Leonardi A. Vernal keratoconjunctivitis: pathogenesis and treatment.
Prog Retin Eye Res 2002;21:319-39.
27. Hu Y, Matsumoto Y, Dogru M, Okada N, Igarashi A, Fukagawa K et al.
The differences of tear function and ocular surface findings in patients
with atopic keratoconjunctivitis and vernal keratoconjunctivitis.
Allergy 2007;62(8):917-25.
28. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation
method for mass spectrometric characterization of N‐linked
glycans. Rapid Comm Mass Sp 2005;19(16):2331-36.
29. Sturiale L, Barone R, Garozzo D. The impact of mass spectrometry in
the diagnosis of congenital disorders of glycosylation. J Inherit Metab
Dis 2011;34:891-99.
30. Ciucanu I, Kerek F. A simple and rapid method for the permethylation
of carbohydrates. Carbohyd Res 1984;131:209-17.
31. Ceroni A, Maass K, Geyer H, Geyer R, Dell A. Haslam SM.
GlycoWorkbench: a tool for the computer-assisted annotation of mass
spectra of glycans. J Proteome Res 2008;7:1650-59.
32. Ma B, Simala-Grant JL, Taylor DE. Fucosylation in prokaryotes and
eukaryotes. Glycobiology 2006;16(12):158R-184R.
33. Stanley P, Cummings RD: Structures Common to Different Glycans, in:
Varki A, Cummings RD, Esko JD et al (eds): Essentials of Glycobiology
3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory
Press, 2017, pp 161-78.
34. Tiffany JM: Tears and conjunctiva, in Harding JJ (ed.): Biochemistry
of the eye. London, Chapman & Hall Medical, 1997, pp. 45-78.
35. Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M. Comparative
glycomics of immunoglobulin A and G from saliva and plasma reveals
biomarker potential. Front Immunol 2018;9:2436.
36. Karav S, German JB, Rouquié C, Le Parc A, Barile D. Studying
lactoferrin N- glycosylation. Int J Mol Sci 2017;18(4):870.
37. Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell
Adhesion to Immune System Regulation and Diseases. Cell Chem Biol
2018;25(5):499-512.
38. Bianco GA, Toscano MA, Ilarregui JM, Rabinovich GA. Impact of
protein-glycan interactions in the regulation of autoimmunity and
chronic inflammation. Autoimmun Rev 2006;5(5):349-56.
39. Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in
inflammation. Curr Opin Cell Biol 2003;15(5):531-38.
40. Li J, Hsu HC, Ding Y, Li H, Wu Q, Yang P et al. Inhibition of
fucosylation reshapes inflammatory macrophages and suppresses type II
collagen-induced arthritis. Arthritis Rheumatol 2014;66(9):2368-79.
41. Barboza M, Pinzon J, Wickramasinghe S, Froehlich JW, Moeller I,
Smilowitz JT et al. Glycosylation of human milk lactoferrin exhibits
dynamic changes during early lactation enhancing its role in pathogenic
bacteria-host interactions. Mol Cell Proteomics 2012;11(6):p.
mcp.M111.015248.
42. Le Parc A, Dallas D, Duaut S, Léonil J, Martin P, Barile D.
Characterization of goat milk lactoferrin N- glycans and
comparison with the N- glycomes of human and bovine milk.
Electrophoresis 2014;35(11):1560-70.
43. Sturiale L, Barone R, Palmigiano A, Ndosimao CN, Briones P,
Adamowicz M et al. Multiplexed glycoproteomic analysis of glycosylation
disorders by sequential yolk immunoglobulins immunoseparation and
MALDI‐TOF MS. Proteomics 2008;8(18):3822-32.
44. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing
hormone-releasing hormone agonist and transferrin functionalizations
enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol
Vis 2006;12:1185-98.
45. Bakkeheim E, Mowinckel P, Carlsen KH, Burney P, Carlsen KC. Altered
oxidative state in schoolchildren with asthma and allergic rhinitis.
Pediatr Allergy Immu 2011;22:178-85.
46. Wakamatsu TH, Dogru M, Ayako I, Takano Y, Matsumoto Y, Ibrahim OM et
al. Evaluation of lipid oxidative stress status and inflammation in
atopic ocular surface disease. Mol Vis 2010;16:2465-75.
47. Fullard RJ, Snyder C. Protein levels in nonstimulated and stimulated
tears of normal human subjects. Invest Ophth Vis Sci 1990;31(6):1119-26.
48. Zhou L, Wei R, Zhao P, Koh S K, Beuerman RW, Ding C. Proteomic
analysis revealed the altered tear protein profile in a rabbit model of
Sjögren’s syndrome‐associated dry eye. Proteomics 2013;13(16):2469-81.
49. Hegarty DM, David LL, Aicher SA. Lacrimal Gland Denervation Alters
Tear Protein Composition and Impairs Ipsilateral Eye Closures and
Corneal Nociception. Invest Ophth Vis Sci 2018;59(12):5217-24.
50. Leonardi A, Lazzarini D, Bortolotti M, Piliego F, Midena E, Fregona
I. Corneal confocal microscopy in patients with vernal
keratoconjunctivitis. Ophthalmology 2012;119(3):509-15.
51. Hu Y, Matsumoto Y, Adan ES, Dogru M, Fukagawa K, Tsubota K et al.
Corneal in vivo confocal scanning laser microscopy in patients with
atopic keratoconjunctivitis. Ophthalmology 2008;115(11):2004-12.
52. Leonardi A. Allergy and allergic mediators in tears. Exp Eye Res
2013;117:106-17.