References
1. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V et al. In-depth analysis of the human tear proteome. J Proteomics 2012;75:3877-85.
2. de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 2006;7:R72.
3. Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, Yang H et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res 2009;8:4889-905.
4. Tong L, Zhou L, Beuerman RW, Zhao SZ, Li XR. Association of tear proteins with Meibomian gland disease and dry eye symptoms. Brit J Ophthalmol 2011;95(6):848-52.
5. Lei Z, Beuerman RW, Chew AP, Koh SK, Cafaro TA, Urrets-Zavalia EA et al. Quantitative analysis of N- linked glycoproteins in tear fluid of climatic droplet keratopathy by glycopeptide capture and iTRAQ. J Proteome Res 2009;8:1992-2003.
6. Wong TT, Zhou L, Li J, Tong L, Zhao SZ, Li XR, et al. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Invest Ophth Vis Sci 2011;52(10):7385-91.
7. Leonardi A, Palmigiano A, Mazzola EA, Messina A, Milazzo EMS, Bortolotti M et al. Identification of human tear fluid biomarkers in vernal keratoconjunctivitis using iTRAQ quantitative proteomics. Allergy 2014;69(2):254-56.
8. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985;316(6027):452-57.
9. Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related galactosylation of the N- linked oligosaccharides of human serum IgG. J Exp Med 1988;167(5):1731-36.
10. Nguyen-Khuong T, Everest-Dass AV, Kautto L, Zhao Z, Willcox MD, Packer NH. Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy. Glycobiology 2015;25(3):269-83.
11. Wang J, Yang D, Li C, Shang S, Xiang J. Expression of extracellular matrix metalloproteinase inducer glycosylation and caveolin‐1 in healthy and inflamed human gingiva. J Periodontal Res 2014;49(2):197-204.
12. Adamczyk B, Tharmalingam T, Rudd PM. Glycans as cancer biomarkers. Biochim Biophys Acta(BBA)-Gen Subj 2012;1820(9):1347-53.
13. Palmigiano A, Barone R, Sturiale L, Sanfilippo C, Bua RO, Romeo DA et al. CSF N- glycoproteomics for early diagnosis in Alzheimer’s disease. J Proteomics 2016;131:29-37.
14. Palmigiano A, Messina A, Bua RO, Barone R, Sturiale L, Zappia M et al.: CSF N- Glycomics using MALDI MS techniques in Alzheimer’s Disease, in Perneczky R (ed): Biomarkers for Alzheimer’s Disease Drug Development. New York, NY: Humana Press, 2018, pp. 75-91.
15. Messina A, Palmigiano A, Bua RO, Romeo DA, Barone R, Sturiale L et al.: CSF N- Glycoproteomics Using MALDI MS Techniques in Neurodegenerative Diseases, in Santamaria E, Fernandez-Irigoyen J (eds): Cerebrospinal Fluid (CSF) Proteomics. New York, NY: Humana, 2019, pp. 255-72.
16. Kizuka Y, Kitazume S,Taniguchi N. N- glycan and Alzheimer’s disease. Biochim Biophy Acta (BBA)-General Subjects 2017;1861(10):2447-54.
17. Cho BG, Veillon L, Mechref Y.N- Glycan Profile of Cerebrospinal Fluids from Alzheimer’s Disease Patients Using Liquid Chromatography with Mass Spectrometry. J Proteome Res 2019;18(10):3770-79.
18. Quaranta A, Karlsson I, Ndreu L, Marini F, Ingelsson M, Thorsén G. Glycosylation profiling of selected proteins in cerebrospinal fluid from Alzheimer’s disease and healthy subjects. Anal Methods-UK 2019;11(26):3331-40.
19. Schedin‐Weiss S, Gaunitz S, Sui P, Chen Q, Haslam SM, Blennow K, et al. Glycan biomarkers for Alzheimer disease correlate with T‐tau and P‐tau in cerebrospinal fluid in subjective cognitive impairment. FEBS J 2019.
20. Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev 1996;96(2):683-720.
21. Kobata A. A journey to the world of glycobiology. Glycoconjugate J 2000;17(7-9):443-64.
22. Rodriguez Benavente MC, Argüeso P. Glycosylation pathways at the ocular surface. Biochem
Soc T 2018;46(2):343-50.
23. Woodward AM, Lehoux S, Mantelli F, Di Zazzo A, Brockhausen I, Bonini S, Argüeso P. Inflammatory stress causes N-glycan processing deficiency in ocular autoimmune disease. Am J Pathol 2019;189(2):283-94.
24. Vieira AC, An HJ, Ozcan S, Kim JH, Lebrilla CB, Mannis MJ. Glycomic analysis of tear and saliva in ocular rosacea patients: the search for a biomarker. Ocul Surf 2012;10(3):184-92.
25. Leonardi A, Doan S, Fauquert JL, Bozkurt B, Allegri P, Marmouz F et al. Diagnostic tools in ocular allergy. Allergy 2017;72(10):1485-98.
26. Leonardi A. Vernal keratoconjunctivitis: pathogenesis and treatment. Prog Retin Eye Res 2002;21:319-39.
27. Hu Y, Matsumoto Y, Dogru M, Okada N, Igarashi A, Fukagawa K et al. The differences of tear function and ocular surface findings in patients with atopic keratoconjunctivitis and vernal keratoconjunctivitis. Allergy 2007;62(8):917-25.
28. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometric characterization of N‐linked glycans. Rapid Comm Mass Sp 2005;19(16):2331-36.
29. Sturiale L, Barone R, Garozzo D. The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 2011;34:891-99.
30. Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohyd Res 1984;131:209-17.
31. Ceroni A, Maass K, Geyer H, Geyer R, Dell A. Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008;7:1650-59.
32. Ma B, Simala-Grant JL, Taylor DE. Fucosylation in prokaryotes and eukaryotes. Glycobiology 2006;16(12):158R-184R.
33. Stanley P, Cummings RD: Structures Common to Different Glycans, in: Varki A, Cummings RD, Esko JD et al (eds): Essentials of Glycobiology 3rd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2017, pp 161-78.
34. Tiffany JM: Tears and conjunctiva, in Harding JJ (ed.): Biochemistry of the eye. London, Chapman & Hall Medical, 1997, pp. 45-78.
35. Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M. Comparative glycomics of immunoglobulin A and G from saliva and plasma reveals biomarker potential. Front Immunol 2018;9:2436.
36. Karav S, German JB, Rouquié C, Le Parc A, Barile D. Studying lactoferrin N- glycosylation. Int J Mol Sci 2017;18(4):870.
37. Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol 2018;25(5):499-512.
38. Bianco GA, Toscano MA, Ilarregui JM, Rabinovich GA. Impact of protein-glycan interactions in the regulation of autoimmunity and chronic inflammation. Autoimmun Rev 2006;5(5):349-56.
39. Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 2003;15(5):531-38.
40. Li J, Hsu HC, Ding Y, Li H, Wu Q, Yang P et al. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol 2014;66(9):2368-79.
41. Barboza M, Pinzon J, Wickramasinghe S, Froehlich JW, Moeller I, Smilowitz JT et al. Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol Cell Proteomics 2012;11(6):p. mcp.M111.015248.
42. Le Parc A, Dallas D, Duaut S, Léonil J, Martin P, Barile D. Characterization of goat milk lactoferrin N- glycans and comparison with the N- glycomes of human and bovine milk. Electrophoresis 2014;35(11):1560-70.
43. Sturiale L, Barone R, Palmigiano A, Ndosimao CN, Briones P, Adamowicz M et al. Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI‐TOF MS. Proteomics 2008;8(18):3822-32.
44. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 2006;12:1185-98.
45. Bakkeheim E, Mowinckel P, Carlsen KH, Burney P, Carlsen KC. Altered oxidative state in schoolchildren with asthma and allergic rhinitis. Pediatr Allergy Immu 2011;22:178-85.
46. Wakamatsu TH, Dogru M, Ayako I, Takano Y, Matsumoto Y, Ibrahim OM et al. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol Vis 2010;16:2465-75.
47. Fullard RJ, Snyder C. Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophth Vis Sci 1990;31(6):1119-26.
48. Zhou L, Wei R, Zhao P, Koh S K, Beuerman RW, Ding C. Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren’s syndrome‐associated dry eye. Proteomics 2013;13(16):2469-81.
49. Hegarty DM, David LL, Aicher SA. Lacrimal Gland Denervation Alters Tear Protein Composition and Impairs Ipsilateral Eye Closures and Corneal Nociception. Invest Ophth Vis Sci 2018;59(12):5217-24.
50. Leonardi A, Lazzarini D, Bortolotti M, Piliego F, Midena E, Fregona I. Corneal confocal microscopy in patients with vernal keratoconjunctivitis. Ophthalmology 2012;119(3):509-15.
51. Hu Y, Matsumoto Y, Adan ES, Dogru M, Fukagawa K, Tsubota K et al. Corneal in vivo confocal scanning laser microscopy in patients with atopic keratoconjunctivitis. Ophthalmology 2008;115(11):2004-12.
52. Leonardi A. Allergy and allergic mediators in tears. Exp Eye Res 2013;117:106-17.