References
[1] McMurray JJ, Petrie MC, Murdoch DR, Davie AP. Clinical
epidemiology of heart failure: public and private health burden. Eur
Heart J. 1998 Dec;19 Suppl P:P9-16.
[2] Meta-analysis Global Group in Chronic Heart Failure (MAGGIC).
The survival of patients with heart failure with preserved or reduced
left ventricular ejection fraction: an individual patient data
meta-analysis. Eur Heart J. 2012;33:1750-7. doi:
10.1093/eurheartj/ehr254.
[3] Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Køber L, Squire
IB, et al. Predicting survival in heart failure: a risk score based on
39 372 patients from 30 studies. Eur Heart J. 2013;34:1404-13. doi:
10.1093/eurheartj/ehs337.
[4] Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF,
Peterson ED, et al. A validated risk score for in-hospital mortality in
patients with heart failure from the American Heart Association get with
the guidelines program. Circ Cardiovasc Qual Outcomes. 2010;3:25-32.
doi: 10.1161/CIRCOUTCOMES.109.854877.
[5] Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV.
Predicting mortality among patients hospitalized for heart failure:
derivation and validation of a clinical model. JAMA. 2003 Nov
19;290:2581-7. doi: 10.1001/jama.290.19.2581.
[6] Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM.
Development and prospective validation of a clinical index to predict
survival in ambulatory patients referred for cardiac transplant
evaluation. Circulation. 1997 Jun 17;95:2660-7. doi:
10.1161/01.cir.95.12.2660.
[7] Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp
AB, et al. The Seattle Heart Failure Model: prediction of survival in
heart failure. Circulation. 2006 Mar 21;113:1424-33. doi:
10.1161/CIRCULATIONAHA.105.584102.
[8] Ranucci M, Castelvecchio S, Menicanti L, Frigiola A, Pelissero
G. Risk of assessing mortality risk in elective cardiac operations: age,
creatinine, ejection fraction, and the law of parsimony. Circulation.
2009;119:3053-61. doi: 10.1161/CIRCULATIONAHA.108.842393.
[9] Wykrzykowska JJ, Garg S, Onuma Y, de Vries T, Goedhart D, Morel
MA, et al. Value of age, creatinine, and ejection fraction (ACEF score)
in assessing risk in patients undergoing percutaneous coronary
interventions in the ’All-Comers’ LEADERS trial. Circ Cardiovasc Interv.
2011;4:47-56. doi: 10.1161/CIRCINTERVENTIONS.110.958389.
[10] Di Serafino L, Borgia F, Maeremans J, Pyxaras SA, De Bruyne B,
Wijns W, et al. The age, creatinine, and ejection fraction score to risk
stratify patients who underwent percutaneous coronary intervention of
coronary chronic total occlusion. Am J Cardiol. 2014;114:1158-64. doi:
10.1016/j.amjcard.2014.07.034.
[11] Arai T, Lefèvre T, Hayashida K, Watanabe Y, O’Connor SA,
Hovasse T, et al. Usefulness of a Simple Clinical Risk Prediction
Method, Modified ACEF Score, for Transcatheter Aortic Valve
Implantation. Circ J. 2015;79:1496-503. doi: 10.1253/circj.CJ-14-1242.
[12] Stähli BE, Wischnewsky MB, Jakob P, Klingenberg R, Obeid S, Heg
D, et al. Predictive value of the age, creatinine, and ejection fraction
(ACEF) score in patients with acute coronary syndromes. Int J Cardiol.
2018;270:7-13. doi: 10.1016/j.ijcard.2018.05.134.
[13] Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D. Survival
after the onset of congestive heart failure in Framingham Heart Study
subjects. Circulation. 1993;88:107-15. doi: 10.1161/01.cir.88.1.107.
[14] Wong M, Staszewsky L, Latini R, Barlera S, Glazer R, Aknay N,
et al. Severity of left ventricular remodeling defines outcomes and
response to therapy in heart failure: Valsartan heart failure trial
(Val-HeFT) echocardiographic data. J Am Coll Cardiol. 2004;43:2022-7.
doi: 10.1016/j.jacc.2003.12.053.
[15] Quiñones MA, Greenberg BH, Kopelen HA, Koilpillai C, Limacher
MC, Shindler DM, et al. Echocardiographic predictors of clinical outcome
in patients with left ventricular dysfunction enrolled in the SOLVD
registry and trials: significance of left ventricular hypertrophy.
Studies of Left Ventricular Dysfunction. J Am Coll Cardiol.
2000;35:1237-44. doi: 10.1016/s0735-1097(00)00511-8.
[16] Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO,
DiCapua P, et al. Renal impairment and outcomes in heart failure:
systematic review and meta-analysis. J Am Coll Cardiol. 2006 May
16;47:1987-96. doi: 10.1016/j.jacc.2005.11.084.
[17] Yılmaz MB, Çelik A, Çavuşoğlu Y, Bekar L, Onrat E, Eren M, et
al. Türkiye’de kalp yetersizliğinin anlık görüntüsü: SELFIE-TR bazal
karakteristik özellikleri [Snapshot evaluation of heart failure in
Turkey: Baseline characteristics of SELFIE-TR]. Turk Kardiyol Dern
Ars. 2019;47:198-206. doi: 10.5543/tkda.2019.66877.
[18] Yılmaz MB, Aksakal E, Aksu U, Altay H, Nesligül Y, Çelik A, et
al. Snapshot evaluation of acute and chronic heart failure in real-life
in Turkey: A follow-up data for mortality. Anatol J Cardiol.
2020;23:160-8. doi: 10.14744/AnatolJCardiol.2019.87894.
[19] Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS. Evaluating
the added predictive ability of a new marker: from area under the ROC
curve to reclassification and beyond. Stat Med. 2008;27:157-72.
[20] Wells CK, Feinstein AR, Walter SD. A comparison of
multivariable mathematical methods for predicting survival, III:
accuracy of predictions in generating and challenge sets. J Clin
Epidemiol. 1990;43:361–372.
[21] Goldberg LR, Jessup M. A time to be born and a time to die.
Circulation. 2007;116:360-2. doi: 10.1161/CIRCULATIONAHA.107.713735.
[22] Aaronson KD, Cowger J. Heart failure prognostic models: why
bother? Circ Heart Fail. 2012;5:6-9. doi:
10.1161/CIRCHEARTFAILURE.111.965848.
[23] Vries JJGGD, Geleijnse G, Tesanovic A, Ven ARTRVD. Heart
Failure Risk Models and Their Readiness for Clinical Practice. 2013 IEEE
International Conference on Healthcare Informatics, Philadelphia, PA,
2013, pp. 239-4., doi: 10.1109/ICHI.2013.26.
[24] Sartipy U, Dahlström U, Edner M, Lund LH. Predicting survival
in heart failure: validation of the MAGGIC heart failure risk score in
51,043 patients from the Swedish heart failure registry. Eur J Heart
Fail. 2014;16:173-9. doi: 10.1111/ejhf.32.
[25] Suzuki S, Yoshihisa A, Sato Y, Kanno Y, Watanabe S, Abe S, et
al. Clinical Significance of Get With the Guidelines-Heart Failure Risk
Score in Patients With Chronic Heart Failure After Hospitalization. J Am
Heart Assoc. 2018;7:e008316. doi: 10.1161/JAHA.117.008316.
[26] Wong M, Staszewsky L, Latini R, Barlera S, Glazer R, Aknay N,
et al. Severity of left ventricular remodeling defines outcomes and
response to therapy in heart failure: Valsartan heart failure trial
(Val-HeFT) echocardiographic data. J Am Coll Cardiol. 2004;43:2022-7.
doi: 10.1016/j.jacc.2003.12.053.
[27] Chen WZ, Ran P, Cai AP. Age, creatinine, and ejection fraction
(ACEF) score continues to predictive prognosis in patients with ischemic
cardiomyopathy, Eur Heart J, 2019:40 (Suppl. 1), p1633.
doi.org/10.1093/eurheartj/ehz748.0392.
[28] Alba AC, Agoritsas T, Jankowski M, Courvoisier D, Walter SD,
Guyatt GH, et al. Risk prediction models for mortality in ambulatory
patients with heart failure: a systematic review. Circ Heart Fail.
2013;6:881-9. doi: 10.1161/CIRCHEARTFAILURE.112.000043.
[29] Ketchum ES, Moorman AJ, Fishbein DP, Mokadam NA, Verrier ED,
Aldea GS, et al. Predictive value of the Seattle Heart Failure Model in
patients undergoing left ventricular assist device placement. J Heart
Lung Transplant. 2010;29:1021-5. doi: 10.1016/j.healun.2010.05.002.