REFERENCES

  1. Deng B, Liu ZF, Peng HL. Toward mass production of CVD graphene films.Adv Mater. 2019;31:1800996.
  2. Kong W, Kum H, Bae SH, Shim J, Kim H, Kong LP, Meng Y, Wang KJ, Kim C, Kim J. Path towards graphene commercialization from lab to market.Nat Nanotechnol. 2019;14: 927-938.
  3. Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A . 2015;3:11700-11715.
  4. Stafford J, Patapas A, Uzo N, Matar OK, Petit C. Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods.AIChE J. 2018;64:3246-3276.
  5. Ciesielskia A, Samorì P. Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev . 2014;43:381-398.
  6. Zocharia R, Ulbricht H, Hertel T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons.Phys Rev B . 2004;69:155406.
  7. Paton KR, Varrla E, Backes C, Smith R, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater. 2014;13:624-630.
  8. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland J, Niraj P, Duesberg G, Krishnamurti S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3:563-568.
  9. Khan U, O’Neill A, Lotya M, De S, Coleman JN. High-concentration solvent exfoliation of graphene. Small . 2010;6:864-871.
  10. Bracamonte MV, Lacconi GI, Urreta SE, Foa Torres LEF. On the nature of defects in liquid-phase exfoliated graphene. J Phys Chem C . 2014;118:15455-15459.
  11. Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Functional multi-layer graphene- algae hybrid material formed using vortex fluidics. Green Chem . 2013;15:650-655.
  12. Arao Y, Mori F, Kubouchi M. Efficient solvent systems for improving production of few- layer graphene in liquid phase exfoliation.Carbon . 2017;118:18-24.
  13. Pattammattel A, Kumar CV. Kitchen chemistry 101: multigram production of high quality biographene in a blender with edible proteins.Adv Funct Mater. 2015;25:7088-7098.
  14. Gai Y, Wang W, Xiao D, Tan HJ, Lin MY, Zhao YP. Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2: experiment and simulation. Ind Eng Chem Res. 2018;57:8220-8229
  15. Phiri J, Gane P, Maloney TC. High-concentration shear-exfoliated colloidal dispersion of surfactant-polymer-stabilized few-layer graphene sheets. J Mater Sci. 2017;52:8321-8337.
  16. Liu L, Shen Z, Yi M, Zhang X, Ma S. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces.RSC Adv. 2014;4:36464-36470.
  17. Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures.Adv Mater. 2011;23:1482-1513.
  18. Shi G, Araby S, Gibson CT, Meng Q, Zhu S, Ma J. Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv Funct Mater. 2018;28: 1706705.
  19. Samoilov VM, Danilov EA, Nikolaeva AV, Yerpuleva GA, Trofimova NN, Abramchuk SS, Ponkratov KV. Formation of graphene aqueous suspensions using fluorinated surfactant- assisted ultrasonication of pristine graphite. Carbon. 2015;84:38-46.
  20. Large MJ, Ogilvie SP, Graf AA, Lynch PJ, O’Mara MA, Waters T, Jurewicz I, Salvage JP, Dalton AB. Large-scale surfactant exfoliation of graphene and conductivity-optimized graphite enabling wireless connectivity. Adv Mater Technol. 2020;5:2000284.
  21. Lotya M, King PJ, Khan U, De S, Coleman JN. High-concentration, surfactant- stabilized graphene dispersions. ACS Nano.2010;4:3155-3162.
  22. Viinikanoja A, Kauppila J, Damlin P, Mäkiläd E, Leiro J, Ääritalo T, Lukkari J. Interactions between graphene sheets and ionic molecules used for the shear-assisted exfoliation of natural graphite.Carbon. 2014;68:195-209.
  23. Parviz D, Das S, Tanvir Ahmed HS, Irin F, Bhattacharia S, Green MJ. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano. 2012;6:8857- 8867.
  24. Lee DW, Kim T, Lee M. An amphiphilic pyrene sheet for selective functionalization of graphene. Chem Commun. 2011;47:8259-8261.
  25. Cui J, Song Z, Xin L, Zhao S, Yan Y, Liu G. Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer. Carbon . 2016;99:249-260.
  26. Shang JQ, Ding EY, Xue F, Zeng XR, Chen JW, Xu N, Zhang NC, Wei QS. High concentration of few-layer graphene and MoS2 nanosheets using carboxyl methyl cellulose as a high-performance stabilizer.Micro & Nano Lett. 2019;14:835-839.
  27. Gravagnuolo AM, Morales-Narváez E, Longobardi S, da Silva ET, Giardina P, Merkoçi A. In situ production of biofunctionalized few-layer defect-free microsheets of graphene. Adv Funct Mater.2015;25:2771-2779.
  28. Parab AD, Budi A, Slocik JM, Rao R, Naik RR, Walsh TR, Knecht MR. Molecular-level insights into biologically driven graphite exfoliation for the generation of graphene in aqueous media. J Phys Chem C.2020;124:2219-2228.
  29. Carrasco PM, Montes S, García I, Borghei M, Jiang H, Odriozola I, Cabañero G, Ruiz V. High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals.Carbon. 2014;70:157-163.
  30. Sun Z, Vivekananthan J, Guschin DA, Huang X, Kuznetsov V, Ebbinghaus P, Sarfraz A, Muhler M, Schuhmann W. High-concentration graphene dispersions with minimal stabilizer: a scaffold for enzyme immobilization for glucose oxidation. Chem Eur J. 2014; 20:5752-5761.
  31. Joseph D, Seo S, Williams DR, Geckeler KE. Double-stranded DNA-graphene hybrid: Preparation and anti-proliferative activity.ACS Appl Mater Interfaces. 2014;6:3347-3356.
  32. Liu Z, Liu J, Cui L, Wang R, Luo X, Barrow CJ, Yang W. Preparation of graphene/ polymer composites by direct exfoliation of graphite in functionalised block copolymer matrix. Carbon . 2013;51:148-155.
  33. Fan J, Shi Z, Ge Y, Wang J, Wang Y, Yin J. Gum arabic assisted exfoliation and fabrication of Ag-graphene-based hybrids. J Mater Chem. 2012;22:13764-13772.
  34. May P, Khan U, O’Neill A, Coleman JN. Approaching the theoretical limit for reinforcing polymers with graphene. J Mater Chem.2012;22:1278-1282.
  35. Liu F, Choi JY, Seo TS. DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem Commun.2010;46:2844-2846.
  36. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK, Trapalis C. Aqueous phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Commun. 2009;149:2172-2176.
  37. Xu M, Zhang W, Yang Z, Yu F, Ma Y, Hu N, He D, Liang Q, Su Y, Zhang Y. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale . 2015;7:10527-10534.
  38. Alhassan SM, Qutubuddin S, Schiraldi DA. Graphene arrested in laponite-water colloidal glass. Langmuir . 2012;28:4009-4015.
  39. Tung TT, Yoo J, Alotaibi FK, Nine MJ, Karunagaran R, Krebsz M, Nguyen GT, Tran DN, Feller JF, Losic D. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Appl Mater Interfaces.  2016;8:16521-16532.
  40. Song Z, Dai J, Zhao S, Zhou Y, Su F, Cui J, Yan Y. Aqueous dispersion of pristine single- walled carbon nanotubes prepared by using a vinylimidazole-based polymer dispersant. RSC Adv.2014;4:2327-2338.
  41. Pozharskii AF, Soldatenkov AT, Katritzky AR. Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry, and applications . John Wiley & Sons: Chichester; 2011.
  42. Ferris CJ, in het Panhuis M. Conducting bio-materials based on gellan gum hydrogels. Soft Matter . 2009;5:3430-3437.
  43. Wang H, Chen Z, Xin L, Cui J, Zhao S, Yan Y. Synthesis of pyrene-capped polystyrene by free radical polymerization and its application in direct exfoliation of graphite into graphene nanosheets. J Polym Sci Part A: Polym Chem. 2015;53:2175-2185.
  44. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 2000;290:1331- 1334
  45. Ayán-Varela M, Paredes JI, Guardia L, Villar-Rodil S, Munuera JM, Díaz-González M, Fernández-Sánchez C, Martínez-Alonso A, Tascón JMD. Achieving extremely concentrate aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Appl Mater Interfaces . 2015;7:10293-10307.
  46. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc . 2009; 131:3611-3620.
  47. Sun Z, Masa J, Liu Z, Schuhmann W, Muhler M. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem Eur J . 2012;18: 6972-6978.
  48. Shahil KM, Balandin AA. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett . 2012;12:861-867.
  49. Texter J. A kinetic model for exfoliation kinetics of layered materials. Angew Chem Int Ed . 2015;54:10258-10262.
  50. Holland FA, Chapman FS. Liquid mixing and processing in stirred tanks . Reinhold Publishing: New York; 1966.
  51. Zeta potential – An introduction in 30 minuteshttps://wwwmalverncom/en/support/ resource-center/technical-notes/TN101104ZetaPotentialIntroductionhtml.
  52. Park S, Ruoff RS. Chemical methods for the production of graphene.Nat Nanotechnol . 2009;4:217-224.
  53. Nemes-Incze P, Osvath Z, Kamaras K, Biro LP. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon . 2008;46:1435-1442.
  54. Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene.Nat Mater. 2007;6:858- 861.
  55. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure of suspended graphene sheets. Nature . 2007;446:60-63.
  56. Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large- scale graphene. Nat Nanotechnol . 2009;4:25-29.
  57. Mohanty N, Nagaraja A, Armesto J, Berry V. High-throughput, ultrafast synthesis of solution-dispersed graphene via a facile hydride chemistry. Small . 2010;6:226-231.
  58. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett . 2006;97:187401.
  59. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater . 2019;31:1801072.
  60. Ahadian S, Ramón-Azcón J, Ostrovidov S, Camci-Unal G, Kaji H, Ino K, Shiku H, Khademhosseini A, Matsue T. A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomed Microdev. 2013;15:109-115.