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In order to provide a significantly richer representation of non-stationary signals
appearing in various disciplines of science and engineering, we introduce here a
novel fractional nonuniform multiresolution analysis (FrNUMRA) on the spectrum
Λ given by Λ =

{

0, rN
}

+ 2ℤ, where N ≧ 1 is an integer and r is an odd integer
with 1 ≦ r ≦ 2N − 1, such that r and N are relatively prime. The necessary and
sufficient condition for the existence of nonuniform wavelets of fractional order is
derived and an algorithm is also presented for the construction of fractional NUMRA
starting from a fractional low-pass filter ℎ�0 with appropriate conditions. Moreover,
we provide a complete characterization for the biorthogonality of the translates of
the scaling functions of two fractional nonuniform multiresolution analyses and the
associated fractional biorthogonal wavelet families.
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1 INTRODUCTION

A generalization of Mallat’s celebrated theory of multiresolution analysis (MRA)13 was presented by Gabardo and Nashed9 for
the dilation 2N and the translation set Λ given by

Λ =
{

0, r
N

}

+ 2ℤ,

where N ≧ 1 is an integer and r is an odd integer with 1 ≦ r ≦ 2N − 1, such that r and N are relatively prime, acting on the
scaling function �, is no longer a group, but a union of two lattices, which is associated with a famous Fuglede conjecture on
spectral pairs. Such constructions are called nonuniform MRA (NUMRA). An NUMRA is a non-decreasing family of closed
subspaces

{

Vj ∶ j ∈ ℤ
}

of L2(ℝ) satisfying the following axioms:
(i) Vj ⊂ Vj+1 (j ∈ ℤ;
(ii)

⋃

j∈ℤ Vj is dense in L2(ℝ) and
⋂

j∈ℤ Vj = {0};
(iii) f (⋅) ∈ Vj if and only if f (2N ⋅) ∈ Vj+1;
(iv) There exists a function �(⋅) ∈ V0 such that {�(⋅ − �) ∶ � ∈ Λ} is an orthonormal basis for V0.

The function � whose existence is asserted in (iv) above is called a scaling function or father wavelet of the given NUMRA.
It is worth mentioning that, when N = 1 and Λ = ℤ, the nested family

{

Vj ∶ j ∈ ℤ
}

reduces to the classical MRA. These
studies were continued by Gabardo and his colleagues in10,11 and22, wherein they derived an extension of Cohen’s theorem
which gives the necessary and sufficient condition for the orthonormality of the collection {�(⋅ − �) ∶ � ∈ Λ} and provided a
complete characterization of associated wavelets by means of its dimension function. The theory of nonuniform wavelets was
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further studied and investigated by several researchers in such different directions as, for instance, nonuniform wavelet packets3,
nonuniform wavelet frames (see16 and17), nonuniform wavelets and wavelet packets on local fields of positive characteristic
(see18,19 and20) and vector-valued nonuniform wavelets and wavelet packets (see1 and14).

On the other hand, fractional calculus is the outcome of multi-disciplinary endeavor that brought together mathematicians,
physicists and engineers. During the past several decades, fractional calculus has been recognized as one of the valuable tools in
order to describe many phenomena in engineering, mathematical biology, physical sciences, electrochemistry, acoustics, con-
trol theory, psychology and other areas of science that can be elegantly modelled by means of fractional-order derivatives (see,
for example,7,12,15 and23). Since an MRA is considered as the heart of the wavelet theory because it provides a natural frame-
work for understanding and constructing discrete orthonormal wavelet bases. Keeping in view the exciting developments of the
nonuniform MRA along with the profound applicability of the fractional calculus, we are deeply motivated to introduce a novel
fractional nonuniform multiresolution analysis (FrNUMRA) in L2(ℝ) and construct a new class of orthonormal nonuniform
wavelets of fractional order. In this setup, the associated core subspace V0 of L2(ℝ) has an orthonormal basis, a collection of
translates of a function � of the form:

{

�(x − �) e−�i(x2−�2) cot � ∶ � ∈ Λ
}

,

where the translation set Λ is not necessarily a group, but it is the union of ℤ and a translate of ℤ. In order to facilitate the
motive, we establish a necessary and sufficient condition for the existence of the associated wavelets of fractional order and
develop an algorithm for the construction of fractional NUMRA in L2(ℝ) starting from a fractional low-pass filter ℎ�0(u) with
appropriate conditions. Moreover, we show that, if the translates of the scaling functions of two fractional nonuniform multires-
olution analyses are biorthogonal, then the associated fractional wavelet families are also biorthogonal. Finally, it is hoped that
the nonuniform wavelets of fractional order might provide significantly richer representations of the signals appearing in var-
ious disciplines of science and engineering, particularly in signal processing, multiplicative filtering, sampling theory, optics,
biomedical imaging, oceanology, bioinformatics and operator theory.

The layout of the article is as follows. We start Section 2 with a brief overview of the fractional Fourier transform and then
introduce the notion of fractional NUMRA on the spectrumΛ. A necessary and sufficient condition for the existence of fractional
wavelets is also presented in the same section. Section 3 is devoted to the construction of a fractional NUMRA starting from a
fractional low-pass filter ℎ�0 with appropriate conditions. In Section 4, we study some biorthogonal properties of the fractional
nonuniform wavelets. Finally, in Section 5, we present the concluding remarks and observation.

2 FRACTIONAL NONUNIFORMMULTIRESOLUTION ANALYSIS IN L2(ℝ)

We shall start this section with a brief overview of the fractional Fourier transform and then introduce the notion of the fractional
NUMRA in L2(ℝ).

Definition 2.1. (see1 and24) For any function f ∈ L2(ℝ), the �-order fractional Fourier transform (FrFT) is denoted by ℱ �

and defined by

ℱ �[f
]

(u) = f̂ (u) ∶= ∫
ℝ

f (x)�(x, u) dx, (2.1)

where �(x, u) given by

�(x, u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� e�i(u
2+x2) cot �−2�iux csc � (� ≠ k�)

�(x − u) (� = 2k�)

�(x + u)
(

� = (2k − 1)�
)

(2.2)

is the transform kernel with
� =

ei�∕2

(i sin �)1∕2
(k ∈ ℤ).

In case � is an integral multiple of �, the FrFT corresponds to a chirp multiplication. This case will be tacitly omitted throughout
this paper. Moreover, for � = �∕2, the FrFT reduces to the classical Fourier transform. The inverse FrFT corresponding to (2.1)
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is given by

f (x) = ℱ −� {ℱ �[f
]

(u)
}

(x) = ∫
ℝ

ℱ �[f
]

(u)�(x, u) du. (2.3)

It is worth noticing that the new argument u in Definition 2.1 represents a new physical quantity extended from the fre-
quency concept and is termed as the fractional Fourier domain-frequency. For any f, g ∈ L2(ℝ), the Parseval formula for the
FrFT states that

⟨

ℱ �[f
]

,ℱ �[g
]

⟩

=
⟨

f, g
⟩

. (2.4)

In particular, for f = g, we have the following energy preserving relation:
‖

‖

‖

ℱ �[f
]

‖

‖

‖

2
= ‖

‖

‖

f‖‖
‖

2

2
. (2.5)

After the inception of the fractional Fourier transform2, the fractional convolution and the associated convolution and
product theorems have received considerable attention mainly due to the fact that the fractional Fourier transform has outlasted
the classical Fourier transform in terms of applications to various fields of signal and image processing (see15 and8). Among
several available definitions of the fractional convolution, we shall follow the one mentioned in21 mainly because of the elegant
structure of the corresponding convolution theorem.

Definition 2.2. (see21) Given any two functions f, g ∈ L2(ℝ), the �-order fractional convolution is denoted by ⊛� and is
defined as follows:

(

f ⊛� g
)

(y) ∶= ∫
ℝ

f (x) g(y − x) e�i(x2−y2) cot � dx. (2.6)

The convolution theorem corresponding to (2.6) states that, for any f, g ∈ L2(ℝ),

ℱ �[f ⊛� g
]

(u) = ℱ �[f
]

(u)ℱ �∕2[g
]

(u csc �). (2.7)

Next, for an integerN ≧ 1 and an odd integer r with 1 ≦ r ≦ 2N − 1 such that r andN are relatively prime, we define

Λ =
{

0, r
N

}

+ 2ℤ =
{rk
N
+ 2n ∶ n ∈ ℤ and k = 0, 1

}

. (2.8)

It is easy to verify that Λ is neither a group nor a uniform discrete set, but it is the union of ℤ and a translate of ℤ. Indeed,
Λ is the spectrum for the spectral set given by

Γ =
[

0, 1
2

)

∪
[

N
2
, N + 1

2

)

and the pair (Λ,Γ) is called a spectral pair9.
We are now in a position to introduce a novel fractional nonuniform multiresolution analysis (FrNUMRA) as Definition

2.3 below.

Definition 2.3. For an integer N ≧ 1 and an odd integer r with 1 ≦ r ≦ 2N − 1 such that r and N are relatively prime, a
fractional NUMRA is a sequence of closed subspaces

{

V �
j ∶ j ∈ ℤ

}

of L2(ℝ) such that the following properties hold true:

(a) V �
j ⊂ V �

j+1 for all j ∈ ℤ;
(b)

⋃

j∈ℤ V
�
j is dense in L2(ℝ);

(c)
⋂

j∈ℤ V
�
j = {0};

(d) f (x) ∈ V �
j if and only if f (2Nx) e�i

(

(2Nx)2−�2
)

cot � ∈ V �
j+1 for all j ∈ ℤ;

(e) There exists a function � in V �
0 such that

{

�(x − �) e−�i(x2−�2) cot � ∶ � ∈ Λ
}

is a complete orthonormal basis for V �
0 .

We find it to be worthwhile to note that the Definition 2.3 reduces to the ordinary NUMRA for � = �∕2. On the other
hand, for N = 1, � = �∕2 and Λ = ℤ, one recovers the standard definition of a one-dimensional MRA with dyadic dilation.
Moreover, whenN > 1, the dilation induced by 2N ensures that 2NΛ ⊂ 2ℤ ⊂ Λ.
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For every j ∈ ℤ, we defineW �
j to be the orthogonal compliment of V �

j in V �
j+1. Then we have

V �
j+1 = V

�
j ⊕W �

j and W �
l ⟂ W �

k if l ≠ k. (2.9)

It follows for j > J that

V �
j = V

�
J ⊕

j−J−1
⨁

l=0
W �
j−l , (2.10)

where all these subspaces are orthogonal. Condition (b) of Definition 2.3 implies that

L2(ℝ) =
⨁

j∈ℤ
W �
j , (2.11)

is a decomposition of L2(ℝ) into mutually orthogonal subspaces.
Conditions (d) and (e) of the Definition 2.3 implies that

��1,�(x) = (2N)
1∕2((2N)x − �

)

e−�i
(

x2−(�∕2N)2
)

cot � , (2.12)

constitute an orthonormal basis in V �
1 . Since � ∈ V �

0 ⊂ V �
1 and the collection

{

��1,� ∶ � ∈ Λ
}

is an orthonormal basis in V �
1 ,

so we have

�(x) = (2N)1∕2
∑

�∈Λ
a� �

(

2Nx − �
)

e−�i
(

x2−(�∕2N)2
)

cot � , (2.13)

where

a� = ∫
ℝ

�(x) e−�ix2 cot � ��1,�(x) dx with
∑

�∈Λ
|a�|

2 <∞. (2.14)

By taking the fractional Fourier transform on both sides of (2.13), we obtain

�̂(2Nu csc �) = ℎ�0(u csc �) �̂(u csc �), (2.15)

where

ℎ�0(u csc �) =
1

√

2N

∑

�∈Λ
a�� e

−2�i�u csc � . (2.16)

Since
Λ = {0, r∕N} + 2ℤ,

so the fractional low-filter ℎ�0 can be written as follows:

ℎ�0(u csc �) = ℎ
�,1
0 (u csc �) + e

−2�i(u csc �) r∕N ℎ�,20 (u csc �), (2.17)

where ℎ�,10 and ℎ�,20 are locally L2, sin �
2

periodic functions of fractional order �.
We note that the dilation factor in the fractional NUMRA is 2N , so one expects the existence of 2N − 1 functions so that

their translations by elements of Λ and dilations by the integral powers of 2N form an orthonormal basis for L2(ℝ).

Definition 2.4. A set of functions
{

 �
1 ,  

�
2 ,⋯ ,  �

2N−1

}

inL2(ℝ)will be called a set of basic fractional wavelets associated with
a given fractional NUMRA if the following family of functions:

{

 l(x − �) e−�i(x
2−�2) cot � ∶ 1 ≦ l ≦ 2N − 1, � ∈ Λ

}

constitutes an orthonormal basis forW �
0 .

We thus need to look for a set of fractional wavelets
{

 �
1 ,  

�
2 ,⋯ ,  �

2N−1

}

inW �
0 such that

 �
l,j,�(x) = (2N)

j∕2 l
(

(2N)jx − �
)

e−�i
(

x2−(�∕(2N)j)2
)

cot � (1 ≦ l ≦ 2N − 1; � ∈ Λ) (2.18)

forms an orthonormal basis forW �
j . By the nested structure of the fractional NUMRA, this task can be reduced to find �

l ∈ W
�
0

such that

 �
l,0,�(x) =  l

(

x − �
)

e−�i(x2−�2) cot � (1 ≦ l ≦ 2N − 1; � ∈ Λ) (2.19)

constitute an orthonormal basis forW �
0 .
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We set  �
0 = �

�
0,0, the scaling function and consider 2N −1 functions  �

l (1 ≦ l ≦ 2N −1) inW �
0 as possible candidates

for fractional wavelets. Since
(2N)−1∕2 l

(

x∕2N
)

e−�ix2 cot � ∈ V �
−1 ⊂ V

�
0 ,

it follows from the property (d) of Definition 2.3 that, for each l (0 ≦ l ≦ 2N − 1), there exists a sequence
{

b�l,�
}

�∈Λ
with

∑

�∈Λ
|

|

|

b�l,�
|

|

|

2
<∞ such that

 l
( x
2N

)

e−�ix2 cot � = (2N)1∕2
∑

�∈Λ
b�l,� �

�
0,�(x). (2.20)

By taking the fractional Fourier transform on both sides of (2.20), we obtain

 ̂l(2Nu csc �) = ℎ�l(u csc �) �̂(u csc �), (2.21)

where

ℎ�l(u csc �) =
1

√

2N

∑

�∈Λ
b�l,� e

−2�i�u csc � . (2.22)

In view of the specific form of
Λ = {0, r∕N} + 2ℤ,

we observe that

ℎ�l(u csc �) = ℎ
�,1
l (u csc �) + e

−2�i(u csc �) r∕N ℎ�,2l (u csc �), (2.23)

where ℎ�,1l and ℎ�,2l are locally L2, sin �
2

periodic functions of fractional order �.
We are now in a position to establish Theorem 2.5 below on the completeness of the system given by

{

 l(x − �) e−�i(x
2−�2) cot � ∶ 1 ≦ l ≦ 2N − 1 and � ∈ Λ

}

in V �
1 . In fact, we will find two orthonormality conditions of the system by means of periodic functions ℎ�l as defined in the

equation (2.23).

Theorem 2.5. Consider a fractional NUMRA with the associated parameters N and r as in Definition 2.3. Suppose that there
exist 2N − 1 functions  �

l (1 ≦ l ≦ 2N − 1) in V �
1 . Then the following collection∶

 �
l,0,�(x) =  l(x − �) e

−�i(x2−�2) cot � ∶ 1 ≦ l ≦ 2N − 1 (� ∈ Λ) (2.24)

forms an orthonormal system in V �
1 if and only if

2N−1
∑

p=0

[

ℎ�,1k
(

u csc � +
p
4N

)

ℎ�,1l
(

u csc � +
p
4N

)

+ ℎ�,2k
(

u csc � +
p
4N

)

ℎ�,2l
(

u csc � +
p
4N

)

]

= �k,l (2.25)

and
2N−1
∑

p=0
�p
[

ℎ�,1k
(

u csc � +
p
4N

)

ℎ�,1l
(

u csc � +
p
4N

)

+ ℎ�,2k
(

u csc � +
p
4N

)

ℎ�,2l
(

u csc � +
p
4N

)

]

= 0, (2.26)

where � = e−�ir∕N .

Proof. First of all, we will prove the assertion is necessary. Indeed, by the orthonormality of the system (2.24), we have
⟨

 �
k,0,�,  

�
l,0,�

⟩

=
⟨

 k(x − �) e−�i(x
2−�2) cot � ,  l(x − �) e−�i(x

2−�2) cot �
⟩

= ∫
ℝ

 k(x − �) e−�i(x
2−�2) cot �  l(x − �) e�i(x

2−�2) cot � dx

= e�i(�2−�2) cot � ∫
ℝ

 k(x − �) l(x − �) dx

= e�i(�2−�2) cot � �k,l ��,� ,
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where � denotes the Kronecker delta function, �, � ∈ Λ and 0 ≦ k,l ≦ 2N − 1. Equivalently, in the fractional frequency
domain, we have

�k,l ��,� =
1

sin � ∫
ℝ

 ̂k(u csc �)  ̂l(u csc �) e−2�i(�−�)u csc � du.

Upon setting � = 2m and � = 2n, where m, n ∈ ℤ, we have

�k,l �m,n =
1

sin � ∫
ℝ

 ̂k(u csc �)  ̂l(u csc �) e−4�i(m−n)u csc � du

= 1
sin � ∫

[0,N sin �)

e−4�i(m−n)u csc �
∑

j∈ℤ
 ̂k(u csc � +Nj)  ̂l(u csc � +Nj) du.

Let us now consider

Γk,l(u csc �) =
∑

j∈ℤ
 ̂k(u csc � +Nj)  ̂l(u csc � +Nj). (2.27)

Then we have

�k,l ��,� =
1

sin � ∫
[0,N sin �)

e−4�i(m−n)u csc � Γk,l(u csc �) du

= 1
sin � ∫

[0, sin �
2
)

e−4�i(m−n)u csc �
[2N−1
∑

p=0
Γk,l

(

u csc � +
p
2

)

]

du

and
2N−1
∑

p=0
Γk,l

(

u csc � +
p
2

)

= 2 �k,l . (2.28)

Thus, by taking � = r∕N + 2m and � = 2n, where m, n ∈ ℤ, we find that

0 = 1
sin � ∫

ℝ

e−2�i(r∕N+2m−2n)u csc �  ̂k(u csc �)  ̂l(u csc �) du

= 1
sin � ∫

ℝ

e−4�i(m−n)u csc � e−2�i(u csc �) r∕N  ̂k(u csc �)  ̂l(u csc �) du

= 1
sin � ∫

[0,N sin �)

e−4�i(m−n)u csc � e−2�i(u csc �) r∕N
∑

j∈ℤ
 ̂k (u csc � +Nj)  ̂l (u csc � +Nj) du

= 1
sin � ∫

[0,N sin �)

e−4�i(m−n)u csc � e−2�i(u csc �) r∕N Γk,l (u csc �) du

= 1
sin � ∫

[0, sin �
2
)

e−4�i(m−n)u csc � e−2�i(u csc �) r∕N
[2N−1
∑

p=0
e−�ip r∕N Γk,l

(

u csc � +
p
2

)

]

du.

Therefore, we conclude that
2N−1
∑

p=0
�p Γk,l

(

u csc � +
p
2

)

= 0, (2.29)

where � = e−�i r∕N . Thus, clearly, the equations (2.28) and (2.29) are equivalent to the orthonormality of the system given by
(2.24).
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Next, we will represent the conditions (2.28) and (2.29) in terms of ℎ�l as follows:

Γk,l(2Nu csc �)

=
∑

j∈ℤ
 ̂k

(

2N
(

u csc � +
j
2

)

)

 ̂l

(

2N
(

u csc � +
j
2

)

)

=
∑

j∈ℤ
ℎ�k
(

u csc � +
j
2

)

�̂
(

u csc � +
j
2

)

ℎ�l
(

u csc � +
j
2

)

�̂
(

u csc � +
j
2

)

=
∑

j∈ℤ
ℎ�k
(

u csc � +
j
2

)

ℎ�l
(

u csc � +
j
2

)

|

|

|

|

�̂
(

u csc � +
j
2

)

|

|

|

|

2
,

that is,

Γk,l(2Nu csc �)

=
[

ℎ�,1k (u csc �)ℎ
�,1
l (u csc �) + ℎ

�,2
k (u csc �)ℎ

�,2
l (u csc �)

]

∑

j∈ℤ

|

|

|

|

�̂
(

u csc � +
j
2

)

|

|

|

|

2

+

[

e2�i(u csc �) r∕N ℎ�,1k (u csc �)ℎ
�,2
l (u csc �)

∑

j∈ℤ
�−j

|

|

|

|

�̂
(

u csc � +
j
2

)

|

|

|

|

2
]

+

[

e−2�i(u csc �) r∕N ℎ�,2k (u csc �)ℎ
�,1
l (u csc �)

∑

j∈ℤ
�j

|

|

|

|

�̂
(

u csc � +
j
2

)

|

|

|

|

2
]

.

Therefore, we get

Γk,l(2Nu csc �)

=
[

ℎ�,1k (u csc �)ℎ
�,1
l (u csc �) + ℎ

�,2
k (u csc �)ℎ

�,2
l (u csc �)

] 2N−1
∑

j=0
Γ0,0

(

u csc � +
j
2

)

+

[

ℎ�,1k (u csc �)ℎ
�,2
l (u csc �) e

2�i(u csc �)r∕N
2N−1
∑

j=0
�−j Γ0,0

(

u csc � +
j
2

)

]

+

[

ℎ�,2k (u csc �)ℎ
�,1
l (u csc �) e

−2�i(u csc �) r∕N
2N−1
∑

j=0
�j Γ0,0

(

u csc � +
j
2

)

]

= 2
[

ℎ�,1k (u csc �)ℎ
�,1
l (u csc �) + ℎ

�,2
k (u csc �)ℎ

�,2
l (u csc �)

]

. (2.30)

By combining the identities (2.28) to (2.30), we obtain the desired conditions (2.25) and (2.26).
Next, we shall prove the sufficiency part of the assertion. From (2.21) and (2.30), we observe that

∑

j∈ℤ
 ̂k

(

2N
(

u csc � +
j
2

)

)

 ̂l

(

2N
(

u csc � +
j
2

)

)

=
∑

j∈ℤ
ℎ�k
(

u csc � +
j
2

)

ℎ�l
(

u csc � +
j
2

)

|

|

|

|

�̂
(

u csc � +
j
2

)

|

|

|

|

2

= 2
[

ℎ�,1k
(u csc �
2N

)

ℎ�,1l
(u csc �
2N

)

+ ℎ�,2k
(u csc �
2N

)

ℎ�,2l
(u csc �
2N

)

]

= 2
2N−1
∑

p=0

[

ℎ�,1k
( 1
2N

(

u csc � +
p
2

))

ℎ�,1l
( 1
2N

(

u csc � +
p
2

))

]

+
[

ℎ�,2k
( 1
2N

(

u csc � +
p
2

))

ℎ�,2l
( 1
2N

(

u csc � +
p
2

))

]

= 2 �k,l ,

which proves the orthonormality of the system (2.24). This completes the proof of Theorem 2.5.

The following result asserts the existence of a fractional nonuniform wavelet function.
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Theorem 2.6. Let
{

 �
l,0,� ∶ 1 ≦ l ≦ 2N − 1 and � ∈ Λ

}

be the system as defined in Theorem 2.5 and orthonormal in V �
1 . Then this system is complete inW �

0 ≡ V �
1 ⊖ V �

0 .

Proof. The completeness of the system (2.24) is equivalent to the completeness of the system
{

(2N)−1 l
(

(2N)−1x − �
)

∶
0 ≦ l ≦ 2N − 1, � ∈ Λ

}

in V �
0 . Therefore, under given hypothesis, for every function f ∈ V �

0 , there exist a unique function
ℎ�0(u csc �) of the form

1
√

2N

∑

�∈Λ a� e−i2��u csc � with
∑

�∈Λ |a�|2 <∞ such that

f̂ (u csc �) = ℎ�(u csc �) �̂(u csc �). (2.31)

Therefore, it is enough to show that the family

 =
{

e−i2�(2N)�u csc � ℎ�l(u csc �)�A(u csc �) ∶ 0 ≦ l ≦ 2N − 1 and � ∈ Λ
}

(2.32)

is complete in L2(A), where A ⊂ ℝ with 0 < |A| <∞.
The family

{

e−i2��u csc � �A(u csc �) ∶ � ∈ Λ
}

constitutes an orthonormal basis forL2(A). Hence, clearly, every g ∈ L2(A)
can be represented as

g(u csc �) =
[

g1(u csc �) + e−i2�(u csc �) r∕Ng2(u csc �)
]

�A(u csc �),

where g1 and g2 are locally square integrable functions. Suppose that g is orthogonal to all of the functions belonging to the
collection (2.32). We thus observe that

0 = ∫
A

e−i2�(2N)�u csc � ℎ�l(u csc �) g(u csc �) du

= ∫
[0, sin �

2
)

e−i2�(2N)�u csc �
[

ℎ�l(u csc �) g(u csc �) + ℎ
�
l

(

u csc � + N
2

)

g
(

u csc � + N
2

)

]

du

= ∫
[0, sin �

2
)

e−i2�(2N)�u csc �
[

ℎ�,1l (u csc �) g1(u csc �) + ℎ
�,2
l (u csc �) g2(u csc �)

]

du.

For the choice � = 2m, m ∈ ℤ and l = 0, 1, 2,⋯ , 2N − 1, we define

Υl(u csc �) = ℎ
�,1
l (u csc �) g1(u csc �) + ℎ

�,2
l (u csc �) g2(u csc �), (2.33)

so that

0 = ∫
[0, sin �

2
)

e−i2�(2N)u csc �(4N)mΥl(u csc �) du

= ∫
[0, sin �

4N
)

e−i2�u csc �(4N)m
2N−1
∑

j=0
Υl

(

u csc � +
j
4N

)

du.

Since this equality holds true for all m ∈ ℤ, we have
2N−1
∑

j=0
Υl

(

u csc � +
j
4N

)

= 0 a.e. (2.34)

Similarly, by taking � = 2m + r∕N (m ∈ ℤ), we obtain

0 = ∫
[0, sin �

2
)

e−i2�u csc � (4N)me−i2�(2r)u csc � Υl(u csc �) du

= ∫
[0, sin �

4N
)

e−i2�u csc � (4N)me−i4�ru csc �
2N−1
∑

j=0
�j Υl

(

u csc � +
j
4N

)

du,
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from which we deduce that
2N−1
∑

j=0
�j Υl

(

u csc � +
j
4N

)

= 0 a.e,

which proves our claim. This completes the proof of Theorem 2.6.

If  �
0 ,  

�
1 ,… ,  �

2N−1 ∈ V
�
1 are as in Theorem 2.5, one can get from them an orthonormal basis for L2(ℝ) by following the

standard methodology for construction of wavelets from a given NUMRA9,14. It is easy to verify that for every j ∈ ℤ, the system
{

 �
l,j,� ∶ 0 ≦ l ≦ 2N − 1 and � ∈ Λ

}

given by (2.18) constitutes a complete orthonormal system for Vj+1. Therefore, it follows immediately from (2.11) that the
system (2.18) forms a complete orthonormal system for L2(ℝ).

In the following theorem, we present a necessary and sufficient condition for the existence of fractional wavelets associated
with fractional NUMRA.

Theorem 2.7. Let us consider a fractional NUMRA with associated parameters N and r as in Definition 2.3 such that the
corresponding space V �

0 has an orthonormal system of the form
{

�(x−�) e−�i(x2−�2) cot � ∶ � ∈ Λ
}

and �̂ satisfies the two scale
relation (2.15). Define

H�
0 (u csc �) =

|

|

|

ℎ�,10 (u csc �)
|

|

|

2
+ |

|

|

ℎ�,20 (u csc �)
|

|

|

2
, (2.35)

where ℎ�,10 and ℎ�,20 are locally L2-functions of fractional order �. Then a necessary and sufficient condition for the existence of
associated fractional wavelets  �

1 ,  
�
2 ,⋯ ,  �

2N−1 is thatH
�
0 satisfies the following identity∶

H�
0

(

u csc � + 1
4

)

= H�
0 (u csc �). (2.36)

Proof. The orthonormality of the system
{

�(x − �) e−�i(x2−�2) cot � ∶ � ∈ Λ
}

, which satisfies the condition (2.15), implies the
following identities as shown in the proof of Theorem 2.5:

2N−1
∑

p=0

[

|

|

|

ℎ�,10
(

u csc � +
p
4N

)

|

|

|

2
+ |

|

|

ℎ�,20
(

u csc � +
p
4N

)

|

|

|

2
]

= 1 (2.37)

and
2N−1
∑

p=0
�p

[

|

|

|

|

ℎ�,10
(

u csc � +
p
4N

)

|

|

|

|

2
+
|

|

|

|

ℎ�,20
(

u csc � +
p
4N

)

|

|

|

|

2]

= 0. (2.38)

Similarly, if  �
l ,l = 0, 1,⋯ , 2N − 1 are the basic fractional wavelets associated with the given fractional NUMRA, then

it satisfies the identity (2.21) and the orthonormality of the system
{

 �
l ∶ 0 ≦ l ≦ 2N −1

}

in V �
1 is equivalent to the following

identities:
2N−1
∑

p=0

[

ℎ�,1k
(

u csc � +
p
4N

)

ℎ�,1l
(

u csc � +
p
4N

)

+ ℎ�,2k
(

u csc � +
p
4N

)

ℎ�,2l
(

u csc � +
p
4N

)

]

= �k,l (2.39)

and
2N−1
∑

p=0
�p
[

ℎ�,1k
(

u csc � +
p
4N

)

ℎ�,1l
(

u csc � +
p
4N

)

+ ℎ�,2k
(

u csc � +
p
4N

)

ℎ�,2l
(

u csc � +
p
4N

)

]

= 0, (2.40)

where 0 ≦ k,l ≦ 2N − 1. Moreover, if

al(p) = ℎ
�,1
l

(

u csc � +
p
4N

)

and bl(p) = ℎ
�,2
l

(

u csc � +
p
4N

)
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are vectors in ℂ2N for p = 0, 1,⋯ , 2N − 1 and 0 ≦ l ≦ 2N − 1, where u ∈ [0, 1∕4] is fixed, then the solvability of the system
of equations (2.39) and (2.40) is equivalent to

H�
0

(

u csc � +
(p +N)
4N

)

= H�
0

(

u csc � +
p
4N

) (

u ∈
[

0, 1
4N

])

,

for p = 0, 1,⋯ , 2N − 1, which (in turn) is equivalent to (2.36). The proof of this fact can be proved in similar lines as Lemma
3.5 in9. This completes the proof of Theorem 2.7.

3 CONSTRUCTION OF FRACTIONAL NUMRA

The basic idea behind this section is to construct a fraction NUMRA starting from a fractional polynomial of degree 2N − 1
and is of the form

ℎ�0(u csc �) = ℎ
�,1
0 (u csc �) + e

−i2�(u csc �) r∕N ℎ�,20 (u csc �), (3.1)

whereN ≧ 1 is an integer and r is an odd integer with 1 ≦ r ≦ 2N − 1 such that r andN are relatively prime and ℎ�,10 and ℎ�,20
are locally square integrable functions of fractional order �. In other words, we build up conditions under which the solutions
of scaling equating (2.13) generates a fractional NUMRA in L2(ℝ). The father wavelet � associated with the given fractional
NUMRA should satisfy the following scaling identity:

�̂(u csc �) = ℎ�0
(u csc �
2N

)

�̂
(u csc �
2N

)

. (3.2)

Thus, by replacing u csc � by u csc �∕2N in relation (3.2), we obtain

�̂
(u csc �
2N

)

= ℎ�0

(

u csc �
(2N)2

)

�̂
(

u csc �
(2N)2

)

and then

�̂(u csc �) = ℎ�0
(u csc �
2N

)

ℎ�0

(

u csc �
(2N)2

)

�̂
(

u csc �
(2N)2

)

.

Continuing like this, we obtain

�̂(u csc �) = �̂
(

u csc �
(2N)n

) n
∏

k=1
ℎ�0

(

u csc �
(2N)k

)

.

Taking n→∞ and noting that 1∕(2N)k → 0 as k→∞, the above relation reduces to

�̂(u csc �) = �̂(0)
∞
∏

k=1
ℎ�0

(

u csc �
(2N)k

)

. (3.3)

As in the standard case, we assume that �̂(u) is continuous at zero and that �̂(0) = 1. Then the equation (3.3) becomes

�̂(u csc �) =
∞
∏

k=1
ℎ�0

(

u csc �
(2N)k

)

. (3.4)

It follows immediately from (3.2) that ℎ�0(0) = 1, which is essential for convergence of the infinite product:
∞
∏

k=1
ℎ�0

(

u csc �
(2N)k

)

.

Define

H�
0 (u csc �) =

|

|

|

ℎ�,10 (u csc �)
|

|

|

2
+ |

|

|

ℎ�,20 (u csc �)
|

|

|

2
. (3.5)

We also assume that the following condition holds true:
2N−1
∑

p=0
H�
0

(

u csc � +
p
4N

)

= 1 (3.6)

and
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2N−1
∑

p=0
�pH�

0

(

u csc � +
p
4N

)

= 0
(

� = e−�i r∕N
)

. (3.7)

Then, for any ℎ�0 of the form (3.1), the conditions (3.6) and (3.7) imply that ||
|

ℎ�0
|

|

|

≦ 1 a.e. On the other hand, the case when
|

|

|

ℎ�0
|

|

|

> 1 will imply that
|

|

|

ℎ�,10 (u csc �)
|

|

|

2
+ |

|

|

ℎ�,20 (u csc �)
|

|

|

2
> 1,

which is equivalent to |H�
0 (u csc �)| > 1, and hence contradicts the identity (3.6).

Theorem 3.1. Let ℎ�0 be a fractional polynomial of the form (3.1) and H�
0 satisfying (3.6) and (3.7). Let �(x) be defined by

(3.4) and assume that the infinite product defining �̂ converges a.e on ℝ. Then the function � belongs to L2(ℝ).

Proof. Let

I1 = ∫
|u|≦N∕2

H�
0

(u csc �
2N

)

du, and

IM = ∫
|u|≦N(2N)M−1

H�
0

(

u csc �
(2N)M

)M−1
∏

k=1

|

|

|

|

|

ℎ�0

(

u csc �
(2N)k

)

|

|

|

|

|

2

du, M ≧ 2.

Then we have

I1 = ∫
[0,N)

H�
0

(u csc �
2N

)

du = ∫
[0, sin �

2
)

2N−1
∑

p=0
H�
0

(u csc �
2N

+
p
4N

)

du = 1
2

IM = ∫
[0,N(2N)M ]

H�
0

(

u csc �
(2N)M+1

) M
∏

k=1

|

|

|

|

|

ℎ�0

(

u csc �
(2N)k

)

|

|

|

|

|

2

du

= ∫
[0,N(2N)M−1]

2N−1
∑

p=0

|

|

|

|

ℎ�0
(

u csc � +
p
2

)

|

|

|

|

2
H�
0

(u csc �
2N

+
p
4N

)

M−1
∏

k=1

|

|

|

|

|

ℎ�0

(

u csc �
(2N)k

)

|

|

|

|

|

2

du.

Moreover, we observe that
2N−1
∑

p=0

|

|

|

|

ℎ�0
(

u csc � +
p
2

)

|

|

|

|

2
H�
0

(u csc �
2N

)

=
[

|

|

|

ℎ�,10 (u csc �)
|

|

|

2
+ |

|

|

ℎ�,20 (u csc �)
|

|

|

2
] 2N−1
∑

p=0
H�
0

(u csc �
2N

+
p
4N

)

+

[

ℎ�,10 (u csc �)ℎ
�,2
0 (u csc �) e

−i2�(u csc �) r∕N
2N−1
∑

p=0
�pH�

0

(u csc �
2N

+
p
4N

)

]

+

[

ℎ�,10 (u csc �)ℎ
�,2
0 (u csc �) e

i2�(u csc �) r∕N
2N−1
∑

p=0
�−pH�

0

(u csc �
2N

+
p
4N

)

]

= |

|

|

ℎ�,10 (u csc �)
|

|

|

2
+ |

|

|

ℎ�,20 (u csc �)
|

|

|

2

= H�
0 (u csc �).

This shows that

IM = ∫
[0,N(2N)M−1]

H�
0

(

u csc �
(2N)M

)M−1
∏

k=1

|

|

|

|

|

ℎ�0

(

u csc �
(2N)k

)

|

|

|

|

|

2

du = IM−1 (∀M ≧ 1).

We thus conclude that

IM = IM−1 = IM−2 =⋯ = I2 = I1 =
1
2
.
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Hence we have

∫
|u|≦(N(2N)M−1)∕2

|

|

|

�̂(u csc �)||
|

2
du

≦ ∫
|u|≦(N(2N)M−1)∕2

|

|

|

|

|

ℎ�0

(

u csc �
(2N)M

)

|

|

|

|

|

2 M−1
∏

k=1

|

|

|

|

|

ℎ�0

(

u csc �
(2N)k

)

|

|

|

|

|

2

du

≦ ∫
|u|≦(N(2N)M−1)∕2

2H�
0

(

u csc �
(2N)M

)M−1
∏

k=1

|

|

|

|

|

ℎ�0

(

u csc �
(2N)k

)

|

|

|

|

|

2

du

= 2IM
= 1.

SinceM is arbitrary, it follows that � ∈ L2(ℝ). The proof of Theorem 3.1 is completed.

Next, we shall construct the fractional NUMRA in L2(ℝ) from a fractional polynomial ℎ�0 of the form (3.1) which satisfies
(3.6) and (3.7) together with the condition ℎ�0(0) = 1. In order to facilitate this, it is necessary to determine the orthonormality
of the system given by

{

�(x − �) e−�i(x2−�2) cot � ∶ � ∈ Λ
}

in L2(ℝ). Therefore, if the orthonormality condition is satisfied, then we can define V �
0 and V �

j as follows:

V �
0 = Span

{

�(x − �) e−�i(x2−�2) cot � ∶ � ∈ Λ
}

(3.8)

and

f (x) ∈ V �
j if and only if f

(

(2N)−jx
)

e−�ix2 cot � ∈ V �
0 , j ∈ ℤ, (3.9)

respectively, so that the axioms (d) and (e) of Definition 2.3 hold true. The identity (2.15) implies that (a) also holds true. The
rest of the conditions (b) and (c) of the Definition 2.3 shall follow from the following results (Theorems 3.2 and 3.3)which are
analogies of the results in standard wavelet theory (see9 and8).

For j ∈ ℤ, � ∈ Λ and � ∈ ℝ, we define

��j,�(x) = (2N)
j�
(

(2N)jx − �
)

e−�i
(

x2−(�∕(2N)j)2
)

cot � . (3.10)

Also, for each j ∈ ℤ, we define the orthogonal projection P �
j of L2(ℝ) onto Vj as follows:

P �
j f =

∑

�∈Λ

⟨

f, ��j,�
⟩

��j,� (3.11)

Theorem 3.2. Let
{

V �
j ∶ j ∈ ℤ

}

be a collection of subspaces defined by (3.9) with given � ∈ L2(ℝ). If
{

�(x − �)e−�i(x2−�2) cot � ∶ � ∈ Λ
}

is an orthonormal basis in V �
0 ,, then

⋂

j∈ℤ
V �
j = {0} .

Proof. Let g be a compactly supported continuous function in some interval I" and satisfies
‖

‖

‖

f −g‖‖
‖2
< " for all f ∈

⋂

j∈ℤ V
�
j .

Then
‖

‖

‖

f − P �
j g

‖

‖

‖2
= ‖

‖

‖

P �
j (f − g)

‖

‖

‖2
≦ ‖

‖

‖

f − g‖‖
‖2
< ",

so that
‖

‖

‖

f‖‖
‖2
< " + ‖

‖

‖

P �
j g

‖

‖

‖2
.

Since
{

��j,� ∶ j ∈ ℤ, � ∈ Λ
}
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is an orthonormal basis for V �
j , therefore, for each j ∈ ℤ, we have

‖

‖

‖

P �
j g

‖

‖

‖

2

2
=
∑

�∈Λ

|

|

|

⟨

P �
j g, �

�
j,�

⟩

|

|

|

2
=
∑

�∈Λ

|

|

|

|

⟨

g, ��j,�
⟩

|

|

|

|

2
. (3.12)

We now choose I" = [−1∕4, 1∕4]. Then, for small enough values of j, we find that

∑

�∈Λ

|

|

|

|

⟨

g, ��j,�
⟩

|

|

|

|

2
= (2N)j

∑

�∈Λ

|

|

|

|

1∕4

∫
−1∕4

g(x)�
(

(

2N
)jx − �

)

e�i
(

x2−(�∕(2N)j)2
)

cot � dx
|

|

|

|

2

≦ (2N)jK2

2
∑

�∈Λ

1∕4

∫
−1∕4

|

|

|

|

�
(

(2N)jx − �
)

|

|

|

|

2
dx

= K2

2 ∫
⋃

�∈Λ[−�−(2N)j∕4,−�+(2N)j∕4]

�∪�∈Λ[−�−(2N)j∕4,−�+(2N)j∕4]
|

|

|

�(y)||
|

2
dy,

where K = ‖g‖∞ is the supremum norm of g. Thus, by applying Lebesgue’s dominated convergence theorem, it follows that

lim
j→−∞

‖

‖

‖

P �
j g

‖

‖

‖

= 0.

Therefore, we conclude that ‖‖
‖

f‖‖
‖2
< " and, since " > 0 is arbitrary, f = 0, hence

⋂

j∈ℤ
V �
j = {0} .

This completes the proof of Theorem 3.2.

Theorem 3.3. Suppose � ∈ L2(ℝ) is such that
{

��0,� ∶ � ∈ Λ
}

is an orthonormal basis in V �
0 and let

{

V �
j ∶ j ∈ ℤ

}

be the family of subspaces as defined in (3.9). Let us assume that �̂(u csc �)
is bounded and continuous near u = 0, with ||

|

�̂(0)||
|

≠ 0. Then
⋃

j∈ℤ
V �
j = L

2(ℝ).

Proof. For f ∈
(
⋃

j∈ℤ V
�
j
)⟂ and " > 0, we choose a compactly supported continuous function f" such that ‖‖

‖

f − f"
‖

‖

‖

< ".
Then, for each j ∈ ℤ, we observe from (3.11) that

‖

‖

‖

P �
j f

‖

‖

‖

2

2
=
⟨

P �
j f, P

�
j f

⟩

2
=
⟨

f, P �
j f

⟩

2
= 0, and (3.13)

‖

‖

‖

P �
j f"

‖

‖

‖

2

2
= ‖

‖

‖

P �
j (f − f")

‖

‖

‖2
≦ ‖

‖

‖

f − f"
‖

‖

‖2
< ". (3.14)

Since the family
{

��j,� ∶ j ∈ ℤ and � ∈ Λ
}

constitutes an orthonormal basis for V �
j and f" is of compact support, we have

‖

‖

‖

P �
j f"

‖

‖

‖

2

2
=
∑

�∈Λ

|

|

|

⟨

f", �
�
j,�

⟩

|

|

|

2
=
∑

�∈Λ

|

|

|

|

|

|

|

∫
ℝ

ℱ �[f"
]

(u)�

(

u, �
(2N)j

)

�̂
(

u csc �
(2N)j

)

du

|

|

|

|

|

|

|

2

. (3.15)

We now choose j to be sufficiently large so that supp f" ⊆ [−1∕4, 1∕4] and, for this choice of j, we assume that

Φ(u csc �) = ℱ �[f"
]

(u) �̂
(

u csc �
(2N)j

)

, (3.16)

for some function Φ of the form:

Φ(u csc �) = ℎ�1(u csc �) + e
2�i(u csc �) r∕Nℎ�2(u csc �), (3.17)
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where ℎ�1 and ℎ
�
2 are locally square integrable periodic functions. If Φ(u csc �) has the expansion of the form:

∑

�∈Λ
b��e

−2�i�u csc �

on the set A = [0, 1∕2) ∪ [N∕2, (N + 1)∕2), then

b�� = ∫
A

Φ(u csc �) e−2�i�u csc � du

= ∫
ℝ

ℱ �[f"
] (

(2N)ju
)

�̂(u csc �) e2�i�u csc � du (� ∈ Λ).

Taking � = 2m, where m ∈ ℤ, we have

2 ∫
[0, sin �

2
)

ℎ�1(u csc �) e
2�i(2k)u csc � du

= ∫
[0, sin �

2
)

∑

k∈ℤ
ℱ �[f"

]

(

(2N)ju +
k(2N)j sin �

2

)

�̂
(

u csc � + k
2

)

e2�i(2k)u csc � du.

Therefore, we find that

ℎ�1(u csc �) =
1
2
∑

j∈ℤ
ℱ �[f"

]

(

(2N)ju +
k(2N)j sin �

2

)

�̂
(

u csc � + k
2

)

.

Similarly, on taking � = 2m + r∕n, where m ∈ ℤ, we obtain

ℎ�2(u csc �) =
1
2
∑

k∈ℤ
ℱ �[f"

]

(

(2N)ju +
k(2N)j sin �

2

)

�̂
(

u csc � + k
2

)

e2�i(u csc �+k∕2) r∕N .

Consequently, we have

Φ(u csc �) = 1
2
∑

k∈ℤ
ℱ �[f"

]

(

(2N)ju +
k(2N)j sin �

2

)

�̂
(

u csc � + k
2

)

(

1 + �k
)

.

Since suppf" ⊆ [−1∕4, 1∕4], therefore, for large values of j, (3.15) becomes

‖

‖

‖

P �
j f"

‖

‖

‖

2

2
≦ ∫
∪j∈ℤ[−1∕4+Nj,1∕4+Nj]

|

|

|

|

ℱ �[f"
]

(� sin �) �̂ (�∕(2N)j)
|

|

|

|

2
d�.

By invoking Lebesgue’s dominated convergence theorem once again, we observe that the right-hand side of above inequality
converges to |�̂(0)|2‖f �" ‖

2
2, as j →∞. Therefore, we have

" > ‖

‖

‖

P �
j f"

‖

‖

‖

2

2
= ‖

‖

‖

ℱ �[f"]
‖

‖

‖

2

2
= ‖

‖

‖

f"
‖

‖

‖

2

2
.

Consequently, we get
‖

‖

‖

f‖‖
‖2
< " + ‖

‖

‖

f"
‖

‖

‖2
< 2".

Since " is arbitrary, therefore, f = 0. This completes the proof of Theorem 3.3.

4 BIORTHOGONAL PROPERTIES OF FRACTIONAL NONUNIFORMWAVELETS

Orthogonality has long been assumed as a key property in virtually all standard approaches when analyzing or synthesizing
signals. A higher-level signal processing technique involves the concept of biorthogonality in which two (cross-orthogonal)
sets are used: one for the analysis and the other one synthesis. During the early 1990s, biorthogonal wavelets brought a major
breakthrough into image compression, thanks to their natural feature of concentrating energy in a few transform coefficients
(see6 5 and4).
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Let
{

V �
j ∶ j ∈ ℤ

}

and
{

Ṽ �
j ∶ j ∈ ℤ

}

be biorthogonal fractional NUMRA’s with scaling functions � and �̃, respectively.
Then there exists the integral periodic functions ℎ0� and ℎ̃0� of fractional order � such that

�̂(2Nu csc �) = ℎ�0(u csc �) �̂(u csc �) and ̂̃�(2Nu csc �) = ℎ̃�0(u csc �)
̂̃�(u csc �).

Suppose that there exists the integral periodic functions ℎ�l and ℎ̃
�
l (1 ≦ l ≦ 2N − 1) such that

H�(u csc �) H̃�(u csc �) = I, (4.1)

where

H�(u csc �) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ�0
( u csc �

2N

)

ℎ�0
( u csc �

2N
+ 1

4N

)

⋯ ℎ�0
( u csc �

2N
+ 2N−1

4N

)

ℎ�1
( u csc �

2N

)

ℎ�1
( u csc �

2N
+ 1

4N

)

⋯ ℎ�1
( u csc �

2N
+ 2N−1

4N

)

⋮
ℎ�2N−1

( u csc �
2N

)

ℎ�2N−1
( u csc �

2N
+ 1

4N

)

⋯ ℎ�2N−1
( u csc �

2N
+ 2N−1

4N

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

H̃�(u csc �) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ̃�0
( u csc �

2N

)

ℎ̃�0
( u csc �

2N
+ 1

4N

)

⋯ ℎ̃�0
( u csc �

2N
+ 2N−1

4N

)

ℎ̃�1
( u csc �

2N

)

ℎ̃�1
( u csc �

2N
+ 1

4N

)

⋯ ℎ̃�1
( u csc �

2N
+ 2N−1

4N

)

⋮
ℎ̃�2N−1

( u csc �
2N

)

ℎ̃�2N−1
( u csc �

2N
+ 1

4N

)

⋯ ℎ̃�2N−1
( u csc �

2N
+ 2N−1

4N

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

For 1 ≦ l ≦ 2N − 1, we define the associated fractional biorthgonal nonuniform wavelets as  �
l and  ̃�

l by

 ̂l(2Nu csc �) = ℎ�l(u csc �) �̂(u csc �)

and

̂̃ l(2Nu csc �) = ℎ̃�l(u csc �)
̂̃�(u csc �).

Definition 4.1. A pair of fractional nonuniform multiresolution analyses {V �
j ∶ j ∈ ℤ} and {Ṽ �

j ∶ j ∈ ℤ} with scaling
functions � and �̃, respectively, are said to be biorthogonal to each other if

{��0,�(x) = �(x − �) e
−�i(x2−�2) cot � ∶ � ∈ Λ}

and
{

�̃�0,�(x) = �̃(x − �) e
−�i(x2−�2) cot � ∶ � ∈ Λ

}

are biorthogonal.

Lemma 4.2. Let �, �̃ ∈ L2(ℝ) be given. Then the system

{��0,� ∶ � ∈ Λ}

is biorthogonal to {�̃�0,� ∶ � ∈ Λ} if and only if

∑

�∈Λ
�̂(u csc � + �) ̂̃�(u csc � + �) = 1

sin �
. (4.2)

Proof. For all �, � ∈ Λ, we observe that
⟨

��0,�, �̃
�
0,�

⟩

= e�i(�2−�2) cot � ��,� ⇐⇒
⟨

��0,0, �̃
�
0,�

⟩

= e−�i�2 cot � �0,� .
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By Parseval’s identity, we have
⟨

��0,0, �̃
�
0,�

⟩

=
⟨

ℱ �[��0,0
]

(u),ℱ �[�̃�0,�
]

(u)
⟩

= e−�i�2 cot �

sin � ∫
ℝ

�̂(u csc �) ̂̃�(u csc �) e2�i(u csc �)� du

= e−�i�2 cot �

sin � ∫
[0, sin �

2
)

[

∑

p∈ℤ
�̂
(

u csc � +
p
2

)

̂̃�
(

u csc � +
p
2

)

e�i�p
]

e−2�i(u csc �)� du. (4.3)

Using the fact that {e−i2�(u csc �)� ∶ � ∈ Λ} is an orthonormal basis of L2[0, sin �
2
), we get the desired result. This completes the

proof of Lemma 4.2.

Let � and �̃ be scaling functions for the fractional biorthogonal nonuniform multiresolution analyses
{

V �
j ∶ j ∈ ℤ

}

and
{

Ṽ �
j ∶ j ∈ ℤ

}

, respectively. For each j ∈ ℤ, we define the fractional-order operators P �
j and P̃ �

j on L2(ℝ) by

P �
j f =

∑

�∈Λ

⟨

f, �̃�j,�
⟩

��j,� and P̃ �
j f =

∑

�∈Λ

⟨

f, ��j,�
⟩

�̃�j,�,

respectively. It is easy to verify that both these fractional operators are uniformly bounded on L2(ℝ) and both the series are
convergent in L2(ℝ).

Remark 4.3. The fractional-order operators P �
j and P̃ �

j satisfy the following properties:

(a) P �
j f = f if and only if f ∈ V �

j and P̃ �
j f = f if and only if f ∈ Ṽ �

j .

(b) lim
j→∞

‖

‖

‖

P �
j f − f

‖

‖

‖2
= 0 and lim

j→−∞
‖

‖

‖

P �
j f

‖

‖

‖2
= 0 for every f ∈ L2(ℝ).

Theorem 4.4. Let � and �̃ be the scaling functions for the fractional biorthogonal nonuniform multiresolution analyses
{

V �
j ∶

j ∈ ℤ
}

and
{

Ṽ �
j ∶ j ∈ ℤ

}

, respectively. If  �
l and  ̃�

l , 1 ≦ l ≦ 2N − 1 are the associated wavelets satisfying (4.1). Then
(i)

{

 �
l,0,� ∶ 1 ≦ l ≦ 2N − 1 and � ∈ Λ

}

is biorthogonal to
{

 ̃�
l,0,� ∶ 1 ≦ l ≦ 2N − 1, � ∈ Λ

}

.

(ii)
⟨

 �
l,0,�, �

�
0,�

⟩

=
⟨

 ̃�
l,0,�, �̃

�
0,�

⟩

(∀ �, � ∈ Λ).

Proof. To prove Part (i), we observe that

∑

j∈ℤ

[

 ̂l
(

u csc � +
j
2

)

̂̃ l
(

u csc � +
j
2

)

]

=
∑

j∈ℤ

[

ℎ�l
(u csc �
2N

+
j
4N

)

�̂
(u csc �
2N

+
j
4N

)

ℎ̃�l
(u csc �
2N

+
j
4N

)

̂̃�
(u csc �
2N

+
j
4N

)

]

=
2N−1
∑

p=0

∑

j∈ℤ

[

ℎ�l
(u csc �
2N

+
j
2
+

p
4N

)

�̂
(u csc �
2N

+
j
2
+

p
4N

)

× ℎ̃�l
(u csc �
2N

+
j
2
+

p
4N

)

̂̃�
(u csc �
2N

+
j
2
+

p
4N

)

]

= 1
sin �

2N−1
∑

p=0

[

ℎ�l
(u csc �
2N

+
p
4N

)

ℎ̃�l
(u csc �
2N

+
p
4N

)

]

= 1
sin �

.

By virtue of Lemma 4.2, we obtain the desired result in Part (i).
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We now prove Part (ii). For fixed �, � ∈ Λ, an application of the Plancherel formula yields
⟨

 �
l,0,�, �

�
0,�

⟩

=
⟨

ℱ �[ �
l,0,�

]

(u),ℱ �[��0,�
]

(u)
⟩

= e�i(�2−�2) cot �

sin � ∫
ℝ

 ̂l(u csc �) ̂̃�(u csc �) e−i2�(�−�)u csc � du

= e−�i�2 cot �

sin � ∫
ℝ

ℎ�l
(u csc �
2N

)

�̂
(u csc �
2N

)

ℎ̃�0
(u csc �
2N

)

̂̃�
(u csc �
2N

)

e−i2�(�−�)u csc � du

= e−�i�2 cot �

sin � ∫
[0, sin �

2
)

∑

j∈ℤ

[

ℎ�l
(u csc �
2N

+
j
4N

)

�̂
(u csc �
2N

+
j
4N

)

× ℎ̃�0
(u csc �
2N

+
j
4N

)

̂̃�
(u csc �
2N

+
j
4N

)

]

e−i2�(�−�)u csc � du

= e−�i�2 cot �

sin � ∫
[0, sin �

2
)

2N−1
∑

p=o

∑

j∈ℤ

[

ℎ�l
(u csc �
2N

+
j
2
+

p
4N

)

�̂
(u csc �
2N

+
j
2
+

p
4N

)

× ℎ̃�0
(u csc �
2N

+
j
2
+

p
4N

)

̂̃�
(u csc �
2N

+
j
2
+

p
4N

)

]

e−i2�(�−�)u csc � du

= e−�i�2 cot �

sin � ∫
[0, sin �

2
)

2N−1
∑

p=o

[

ℎ�l
(u csc �
2N

+
p
4N

)

ℎ̃�0
(u csc �
2N

+
p
4N

)

]

e−i2�(�−�)u csc � du

= 0.

Similarly, we can show that
⟨

 ̃�
l,0,�, �̃

�
0,�

⟩

= 0 (∀ �, � ∈ Λ).

This completes the proof of the Theorem 4.4.

Theorem 4.5. Let �, �̃,  �
l , and  ̃

�
l (1 ≦ l ≦ 2N − 1) be as in Theorem 4.4. Let us put  �

0 = ��0,0 and  ̃
�
0 = �̃�0,0. Then, for

every f ∈ L2(ℝ),
(i)

Q�f = P �
0 f +

2N−1
∑

l=1

∑

�∈Λ

⟨

f,  ̃�
l,0,�

⟩

 �
l,0,�, and (4.4)

Q̃�f = P̃ �
0 f +

2N−1
∑

l=1

∑

�∈Λ

⟨

f,  �
l,0,�

⟩

 ̃�
l,0,�, (4.5)

where the series (4.4) and (4.5) converges in L2(ℝ).

(ii) The collection
{

 �
l,j,� ∶ 1 ≦ l ≦ 2N − 1, j ∈ ℤ and � ∈ Λ

}

is biorthogonal to
{

 ̃�
l,j,� ∶ 1 ≦ l ≦ 2N − 1 and j ∈

ℤ, � ∈ Λ
}

.

Proof. In order to prove Part (i), we shall only prove the identity (4.4), because the proof of (4.5) will follows along similar
lines. Moreover, it is sufficient to prove (4.4) in the weak sense, that is, for all f, g ∈ L2(ℝ),

⟨

Q�f, g
⟩

=
⟨

P �
0 f, g

⟩

+
2N−1
∑

l=1

∑

�∈Λ

⟨

f,  ̃�
l,0,�

⟩⟨

g,  �
l,0,�

⟩

=
2N−1
∑

l=1

∑

�∈Λ

⟨

f,  ̃�
l,0,�

⟩⟨

g,  �
l,0,�

⟩

.
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Therefore, we have
2N−1
∑

l=1

∑

�∈Λ

⟨

f,  ̃�
l,0,�

⟩⟨

g,  �
l,0,�

⟩

=
2N−1
∑

l=1

∑

�∈Λ

⎡

⎢

⎢

⎣

∫
ℝ

ℱ �[f ](u)�(u, �) ̂̃ l(u csc �) du
⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∫
ℝ

ℱ �[g](u)�(u, �)  ̂l(u csc �) du
⎤

⎥

⎥

⎦

= 1
sin �

2N−1
∑

l=1

∑

�∈Λ

⎡

⎢

⎢

⎢

⎣

∫
[0, sin �

2
)

∑

j∈ℤ
ℱ �[f ]

(

u +
j sin �
2

)

̂̃ l

(

u csc � +
j
2

)

ei2��u csc � du

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

∫
[0, sin �

2
)

∑

k∈ℤ
ℱ �[g]

(

u + k sin �
2

)

 ̂l

(

u csc � +
j
2

)

e−i2��u csc � du

⎤

⎥

⎥

⎥

⎦

= 1
sin �

2N−1
∑

l=0
∫

[0, sin �
2
)

[

∑

j∈ℤ
ℱ �[f ]

(

u +
j sin �
2

)

̂̃ l

(

u csc � +
j
2

)

]

×

[

∑

k∈ℤ
ℱ �[g]

(

u + k sin �
2

)

 ̂l
(

u csc � + k
2

)

]

du

= 1
sin � ∫

[0, sin �
2
)

2N−1
∑

l=0

{[

∑

j∈ℤ
ℱ �[f ]

(

u +
j sin �
2

)

ℎ̃�l

(

u csc �
2N

+
j
4N

)

̂̃�
(

u csc �
2N

+
j
4N

)

]

×

[

∑

k∈ℤ
ℱ �[g]

(

u + k sin �
2

)

ℎ�l
(u csc �
2N

+ k
4N

)

�̂
(u csc �
2N

+ k
4N

)

]}

du

= 1
sin � ∫

[0, sin �
2
)

2N−1
∑

l=0

{[2N−1
∑

p=0

∑

j∈ℤ
ℱ �[f ]

(

u +
Nj sin �

2
+
p sin �
4N

)

ℎ̃�l

(

u csc �
2N

+
j
2
+

p
4N

)

× ̂̃�l

(

u csc �
2N

+
j
2
+

p
4N

)

] [2N−1
∑

q=0

∑

k∈ℤ
ℱ �[g]

(

u + kN sin �
2

+
q sin �
4N

)

⋅ℎ�l
(u csc �
2N

+ k
2
+

q
4N

)

�̂
(u csc �
2N

+ k
2
+

q
4N

)]

}

du

= 1
sin � ∫

[0, sin �
2
)

2N−1
∑

p=0

2N−1
∑

q=0

∑

j∈ℤ

∑

k∈ℤ

[2N−1
∑

l=0
ℎ̃�l

(u csc �
2N

+
p
4N

)

ℎ�l
(u csc �
2N

+
q
4N

)

]

⋅ ℱ �[f ]
(

u +
Nj sin �

2
+
p sin �
2

)

̂̃�
(

u csc �
2N

+
j
2
+

p
4N

)

ℱ �[g]
(

u + kN sin �
2

+
q sin �
2

)

⋅ �̂
(u csc �
2N

+ k
2
+

q
4N

)

du

= 1
sin � ∫

[0, sin �
2
)

2N−1
∑

p=0

∑

j∈ℤ

∑

k∈ℤ

[

ℱ �[f ]
(

u +
Nj sin �

2
+
p sin �
2

)

̂̃�
(

u csc �
2N

+
j
2
+

p
4N

)

×ℱ �[g]
(

u + kN sin �
2

+
p sin �
2

)

�̂
(u csc �
2N

+ k
2
+

p
4N

)

]

du

= 1
sin �

2N−1
∑

p=0
∫

[0,(p+1∕2) sin �)

∑

j∈ℤ

∑

k∈ℤ

[

ℱ �[f ]
(

u +
Nj sin �

2

)

̂̃�
(

u csc �
2N

+
j
2

)

×ℱ �[g]
(

u + kN sin �
2

)

�̂
(u csc �
2N

+ k
2

)

]

du. (4.6)
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By using similar lines, we can show that
∑

�∈Λ

⟨

f, �̃�1,�
⟩⟨

g, ��1,�
⟩

= 1
sin � ∫

[0, sin �
2
)

∑

j∈ℤ

∑

k∈ℤ

[

ℱ �[f ]
(

u +
Nj sin �

2

)

̂̃�
(

u csc �
2N

+
j
2

)

⋅ ℱ �[g]
(

u + kN sin �
2

)

�̂
(u csc �
2N

+ k
2

)

]

du. (4.7)

From equations (4.6) and (4.7), we obtain the desired result (4.4).
For proving Part (ii), we show for each j ∈ ℤ and 1 ≦ l ≦ 2N − 1 that

⟨

 �
l,j,�,  ̃

�
l,j,�

⟩

= e�i(�2−�2) cot � ��,� .

For j = 0, this claim follows immediately by applying Theorem 4.4. For j ≠ 0, we have
⟨

 �
l,j,�,  ̃

�
l,j,�

⟩

=
⟨

�−j  
�
l,0,�, �−j  ̃

�
l,0,�

⟩

=
⟨

 �
l,0,�,  ̃

�
l,0,�

⟩

= e�i(�2−�2) cot � ��,� .

This completes the proof of the Theorem 4.5.

Theorem 4.6. Let �, �̃,  �
l , and  ̃

�
l (1 ≦ l ≦ 2N − 1) be given as in Theorem 4.5. Then, for every f ∈ L2(ℝ),

f =
2N−1
∑

l=1

∑

j∈ℤ

∑

�∈Λ

⟨

f,  ̃�
l,j,�

⟩

 �
l,j,� =

2N−1
∑

l=1

∑

j∈ℤ

∑

�∈Λ

⟨

f,  �
l,j,�

⟩

 ̃�
l,j,�, (4.7)

where the series converges in L2(ℝ).

Proof. The result asserted by Theorem 4.4 follows immediately by using Remark 4.3 and Theorem 4.5.

5 CONCLUDING REMARKS AND OBSERVATIONS

Here, in our present investigation, we have provided significantly richer representation of non-stationary signals appearing
in various disciplines of science and engineering. Our methodology is based essentially upon a novel fractional nonuniform
multiresolution analysis (FrNUMRA) on the spectrum Λ given by Λ =

{

0, r
N

}

+ 2ℤ, where N ≧ 1 is an integer and r is
an odd integer with 1 ≦ r ≦ 2N − 1 such that r and N are relatively prime. We have successfully derived the necessary and
sufficient condition for the existence of nonuniform wavelets of fractional order. We have also presented an algorithm for the
construction of fractional NUMRA starting from a fractional low-pass filter ℎ�0 under appropriate conditions. Furthermore, we
have obtained a complete characterization for the biorthogonality of the translates of the scaling functions of two fractional
nonuniform multiresolution analyses and the associated fractional biorthogonal wavelet families.
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