SS-DISCRETE MODULES
BURCU NISANCI TURKMEN AND FIGEN ERYILMAZ

ABSTRACT. In this paper, we define semi-ss—discrete and quasi-ss—discrete modules as a
strongly notion of semi-discrete and quasi-discrete modules with the help of ss—supplement
in [3]. We examined the basic properties of these modules and included characterization
of strongly ss—discrete modules over semi-perfect rings.

1. INTRODUCTION

In this study, R is used to show a ring which is associative and has an identity. All
mentioned modules will be unital left R—module. Let M be an R—module. The notation
A < M means that A is a submodule of M. Any submodule A of an R—module M is called
small in M and showed by A<M whenever A+ C' # M for all proper submodule C' of M.
The Jacobson radical of M denoted by Rad(M). Dually, a submodule A of a R—module
M is called to be essential in M which is showed by A<M if AN K # 0 for each non-zero
submodule K of M. The socle of M which is the sum of all simple submodules of M is
denoted by Soc(M). A non-zero module M is called hollow if every proper submodule of
M is small in M and is called local providing that the sum of all proper submodules of M
is also a proper submodule of M. A submodule N of M is called coclosed in M if whenever
% < % for a submodule K of M with K C N, N = K.

Let A and B be submodules of M. Then A is called a supplement of B in M when A
is minimal with the property M = A + B; in other words, M = A+ B and AN B<KA.
Definition of supplemented module M is every submodule of M has a supplement in M.
Two submodules A and B of M are called mutual supplements if, M = A+ B, AN BKA.
and A N BB, [1].There are a lot of papers related with supplemented modules such
as [7,8]. If M is supplemented and self-projective, then M is called strongly discrete.
The module M is called amply supplemented if for any submodules A and B of M with
M = A+ B, there exists a supplement X of A such that X C B.

In [7], a module M is called lifting if for every submodule A of M lies over a direct
summand, that is, there is a decomposition M = M;® M, such that M; < A, ANM; < M.
By [8], M is lifting iff M is amply supplemented and every supplement submodule of M
is a direct summand of it.

Following [9], the sum of all simple submodules of M which are small in M is named with
Socs (M), that is, Socs (M) = > {A <« M| A is simple}. Note that Socs (M) C Rad (M)
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and Socs (M) C Soc (M). In [3], a module M is called strongly local providing that M is
local and Rad (M) C Soc (M). In the same paper, a ring R is called left strongly local ring
if RR is a strongly local module.

According to [3], ss—supplemented modules was examined and founded as a proper
generalization of supplemented modules. Let M be a module and A B < M. If M = A+ B
and AN B C Socg (B), then B is a ss—supplement of A in M. Any module M is named
ss—supplemented if each submodule A of M has a ss—supplement B in M. As a result
of this definition, any finitely generated module is ss—supplemented iff it is supplemented
and Rad (M) C Soc(M). In the same paper, amply ss—supplemented modules were
defined. A submodule A of a module M has ample ss—supplements in M if A contains a
ss—supplement of B in M with M = A+ B. M is called amply ss—supplemented if every
submodule of M has ample ss—supplements in M.

According to [2], a module M is called semisimple lifting or briefly ss—lifting if for
every submodule A of M, there is a decomposition M = M; & M, such that M; < A,
AN My < M and AN M, is semisimple. Some new fundamental properties of ss—lifting
modules will be examined in this paper.

Let ¢ be a cardinal number. The module M is said to have the c-internal exchange
property if every decomposition M = @ M; with card(I) < c is exchangeable. A module

T

M has the (finite) internal exchange property if it has the c-internal exchange property
for every (finite) cardinal ¢ [1, 11.34]. A lifting module with the finite internal exchange
property is called a semi-discrete module. The module M is called discrete if M is lifting
and satisfies the following condition:

(Ds) : If N C M such that 4 is isomorphic to a direct summand of M, then N is a
direct summand of M.

The module M is called quasi-discrete if M is lifting and satisfies the following condition;

(D3) : If N and K are direct summands of M such that M = N + K, then N N K is
a direct summand of M (See [7]). In [1, 4.29], the notion of N-direct projective modules is
defined as a equivalent condition to the property (Ds).

By [7, Lemma 4.6], (D) implies (D3). The module M is called direct projective if, for
every direct summand X of M, every epimorphism M — X splits. By [1, 4.21], a module
M is direct projective if and only if M has the property (D). For every direct summand
N of M, if every epimorphism f : M — N splits, then M is called direct projective. It is
clear that M is direct projective if and only if M has the property (Ds) by [1, 4.21].

In the first part of this study, we define semi-ss—discrete and quasi-ss—discrete modules
based on the definition of ss—lifting module. We give examples of these modules.We
show that every quasi-ss— discrete module is ss—lifting and amply ss—supplemented.
The factor module of a quasi-ss—discrete module is showed to be quasi-ss—discrete again
under special conditions. In addition, theorems related with the decomposition of quasi-
ss—discrete modules are obtained. In the second part, we define (strongly) ss—discrete
modules and determine their relationship with ss—supplemented modules.
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2. SEMI-SS-DISCRETE AND QUASI-SS-DISCRETE MODULES

In this section, semi-ss-discrete modules and quasi-ss-discrete modules are defined and
some of the basic features of these modules are obtained.

Definition 2.1. If M is a ss-lifting module with finite internal exchange property, then
M is called a semi-ss-discrete module. 1f M is both m-projective and ss-supplemented
module, then M is called a quasi-ss-discrete module. Let N be any submodule of M. Any
submodule K of M is called N-ss-lifting if every homomorphism M — WMK where NN K
is semisimple lifts to an endomorphism of M. If K is a ss-supplement of N of M, then K
is called a N-lifting ss-supplement in M.

Recall from [1] that a module K is said to be generalized M -projective if, for any epi-
morphism g : M — X and homomorphism f : K — X, there exist decompositions
K =K, & Ky, M = My & My, a homomorphism h; : K1 — M; and an epimorphism
hy : My — Ks, such that go hy = f|K1 and f o hy = Glas, -

Proposition 2.2. The following statements are equivalent for M :

(1) M is semi-ss-discrete;

(2) M is ss-supplemented, every ss-supplement in M is a direct summand and K N L
are relatively generalized projective, for every decomposition M = K @ L,

(8) M is ss-lifting and K, L are relatively generalized projective, for every decomposi-
tion M = K & L.

Proof. (1) = (2) Since M is ss-lifting, it is ss-supplemented and every ss-supplement is a
direct summand by [2, Theorem 1]. Let M = N + K. Then N contains a ss-supplement
N’ of K which is a direct summand of M. So, we have M = N' & L' ® K’ with L' C L
and K' C K since M has the finite internal exchange property. Thus L is generalized
K-projective by [1, 4.42]. Similarly, it is easy to see that K is generalized L-projective.

(2) = (3) It is enough to prove that M is ss-lifting. Let N C M. By hypothesis, N
has a ss-supplement K which is a direct summand of M, that is M = L & K. Then L is
generalized K-projective andso M = N ®L' @K = N + K, where N' C N, K’ C K and
L' C Lby [1,4.42] since M = N + K. From here N = N' 4+ (NN K). Since NN K < K
and N N K is semisimple, we have M is a ss-lifting module.

(3) = (1) Suppose M = K & L. Since [2, Theorem 3] K and L are ss-lifting modules,
K and L are relatively generalized projective by the hypothesis. It follows from [1, 23.10]
that M has the 2-internal exchange property. U

Recall from [5] that a module M is called duo if for every submodule U of M is fully
invariant, i.e. f(U) C U for every f € End(M) and U C M.

Proposition 2.3. Let M = M; & ... D M, be a duo module where each M; is semi-ss-
discrete. Then the following statements are equivalent:

(1) M is semi-ss-discrete;
(2) M is ss-lifting and M = My @ ... & M, is an exchange decomposition;
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(3) For any direct summand K of @ M, and any direct summand L of @ M,;, K
ji J

and L are relatively generalized projective where I,.J non-empty disjoint subsets of

{1,2,...,n};
(4) If M; is any direct summand of M; and T is any direct summand of @ M, then
J#i
M; and T are relatively generalized projective for any 1 <i < n;
Proof. is clear by [1, 23.14] and [2, Theorem 9]. O

As an immediate consequence of Proposition 2.3, we have the following corollary.

Corollary 2.4. Let M = M, & ... ® M, be a duo module where each M; is a semi-ss-
discrete module. If M; and M; are relatively generalized projective for each © # j, then M
18 semi-ss-discrete.

Recall from [1, 12.1] that an R-module M is said to be an LE-module if its endomorphism
ring End(M) is local.

Theorem 2.5. Let M be a ss-lifting module with an indecomposable decomposition M =
@ M; is a duo module. Then M is a semi-ss-discrete module if one of the following
T

statements is satisfied:
(1) M; is an LE-module for alli € I;
(2) every non-zero direct summand of M contains a non-zero indecomposable direct
summand and the decomposition M = @ M; complements maximal direct sum-
iel
mands.
Proof. A module M with an indecomposable exchange decomposition has the internal
exchange property. Hence we can apply [1, 24.13, 24.10] to [3, Theorem 30]. O

We can compare quasi-ss-discrete modules, ss-supplemented modules and ss-lifting mod-
ules in following lemmas.

Lemma 2.6. If M is quasi-ss-discrete module, then M 1is ss-lifting.

Proof. Since M is m-projective, it is clear by [1, 20.9] and [2, Theorem 1] that ss-supplements
are direct summands in M. So it is enough to prove that M is amply ss-supplemented. Sup-
pose that M = U4V and X is a ss-supplement of U in M. Then for any f € End(M) with
Im(f) CVand Im(1—f) CU,wehave M = U+ f(X) and UNf(X) = f(UNX) <« f(X).
Since UNX is semisimple, UNf(X) is semisimple by [8, 20.3]. Thus f(X) is a ss-supplement
of U contained in V. U

By the help of [8, 41.15], it can be seen that if the intersection of any pair of mutual
ss-supplements is zero in a ss-supplemented module, then ss-supplement submodules of M
are direct summands.

Lemma 2.7. If M is ss-lifting and w-projective, then M is amply ss-supplemented and the
intersection of any pair of mutual ss-supplements in M s zero.
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Proof. Follows from [2, Theorem 1] and [1, 20.9]. O

Corollary 2.8. If M is a quasi-ss-discrete module, then M is amply ss-supplemented and
the intersection of any pair of mutual ss-supplements in M is zero.

Proof. Clear by Lemmas 2.6 and 2.7. O

It is clear that every quasi-ss-discrete module is quasi-discrete by Definition 2.1. The
following example shows that the converse is not need to be true. So the notion of quasi-
ss-discrete module is a stronger than that of quasi-discrete module.

Example 2.9. For any prime integer p, consider the left Z-module M = Z,~. M is
supplemented but not ss-supplemented by [3, Example 17]. Since M has the property
(D3), M is quasi-discrete but not quasi-ss-discrete.

The following corollary is obtained by automatically by Lemma 2.7.

Corollary 2.10. If M is ss-lifting module and has the property (Ds), then M is a quasi-
ss-discrete module.

Lemma 2.11. Let M be a quasi-ss-discrete module, K be a submodule of M and L be
a ss—supplement of K. If N is a ss—supplement submodule of M contained in K, then
NNL=0and N & L is a direct summand of M.

Proof. Since M is a quasi-ss-discrete module, M is ss—lifting by Lemma 2.6. If we use
[2, Theorem 1], it can be concluded that L and N are direct summand of M. Therefore
there exists a submodule Ny of M such that M = N@®N;. It is clear that K = (K N N;)®&N
and so M = N + L+ (K N Ny). By [2, Theorem 1], K N N; contains a ss—supplement X
of N+ L, where X is a direct summand of M. Thus X & N is a direct summand of M due
to X < N. However, we have that (X & N)N L is a direct summand of M by [4.14 (4)].
From here (X ® N)NL < KN L C Socs(L). Finally we can get (X & N)N L =0 and so
M=X®&NaoL. O

Proposition 2.12. If K, L are direct summand of a quasi-ss-discrete module M and L is
hollow, then

(1) KNL=0 and K & L is a direct summand of M or

(i) K+ L=K&S with S C Socs(M) and L is isomorphic to a summand of K.

Proof. Suppose that T' is a ss—supplement of K + L. Then we have M = T + (K + L)
and TN (K + L) C Soc, (T). By Lemma 2.11, K NT = 0. Let’s complete the proof by
evaluating the following two situations.

() LLK@T, then LN (K +T) =0 and so L is a ss—supplement of K + T. It
follows that K N L =0 and K & L is a direct summand of M by Lemma 2.11.

(2) Assume that L < K @& T. Since M = K+T+ L =K+T and KNT = 0, we
have M = K & T. If we intersect the equality M = K + T with K + L, then we can
write K + L = K ® S where S = (K + L) NT. Moreover S C Socs(M) by [2, Theorem
1]. Since L is a direct summand of M, there exists a submodule L; of M such that
M = L& L. It follows that M = K+ L+ L = K+ [(K+L)NT|+ L = K+ L,
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because (K + L) NT <« M. Let Ny be a ss—supplement of L; contained in K. Then, we
getM:[Nl@(KﬂLl)]+L1:N1@L1andL%’Nl |

Theorem 2.13. If M is a quasi-ss-discrete module, then M is ss-lifting and for every
decomposition M = K & L, K and L are relatively projective.

Proof. We obtain by Lemmas 2.6 and 2.7 that M is amply ss-supplemented and the inter-
section of any pair of mutual ss-supplements in M is zero. Since M is ss-supplemented,
ss-supplements are direct summands and so M is ss-lifting by [2, Theorem 1]. Suppose
that M = U +V where U and V are direct summands of M. Let X be a ss-supplement of
V such that X CU. Then M = X V. AsU=X@ (UNV), weget UNV is a direct
summand of M. Therefore M is N-direct projective. The rest follows from [1, 4.14(2)]. O

By the definition, every quasi ss-discrete module is semi-ss-discrete. But the converse is
not always true as in the following example.

Example 2.14. Consider the Z-module U = % and V = ])%Z where p is prime. Then U
and V are relatively generalised projective but U is not V-projective. So M is not a quasi
ss-discrete module although M is a ss-lifting module. Since M = U ® V is a ss-lifting

module with the finite internal exchange property, M is semi-ss-discrete.
Now we can obtain properties of quasi ss-discrete modules.

Proposition 2.15. Let M be a quasi-ss-discrete module. Then every direct summand of
M is quasi-ss-discrete and every ss-supplement submodule of it is a direct summand.

Proof. Let N be a direct summand of M. Since M is ss-lifting and 7-projective, every
ss-supplement submodule of M is a direct summand by [2, Theorem 1]. Since every
direct summand of a m-projective module is again m-projective, N is ss-supplemented by
[3, Corollary 38]. Therefore N is quasi-ss-discrete module. O

Lemma 2.16. Let M be a quasi ss-discrete module and S = End(M). Let e € S be an
idempotent and N be a semisimple direct summand of M. If (1 —e)(N) < (1 —e)(M),
then NN (1 —e)(M) =0 and N & (1 —e)(M) is a direct summand in M.

Proof. The proof can be obtained similarly as in [8, 41.16(2)]. O

Proposition 2.17. Let M be a quasi-ss-discrete module. If {N;}ier is a directed family of

semisimple direct summands of M with respect to inclusion, then | JN; is also a semisimple
el
direct summand in M.

Proof. Assume {N;};cr is given as indicated. Then N = [JN; is a submodule, and there
il

exists an idempotent e € S with e(M) C N and (1 —e)(N) < (1 — e)(M). Therefore for

every ¢ € I, we have (1 —¢€)(V;) C (1 —e)(N) < (1 —e)(M) and N;N (1 —e)(M) =0

by Lemma 2.16. This implies that NN (1 —e)(M) =0 and M = N & (1 — e)(M). Since

N; is semisimple for every ¢ € I, N is semisimple due to every N; directed with respect to

inclusion. U
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Lemma 2.18. Let M be a quasi-ss-discrete module. Then for every 0 £ m € M, there is
a decomposition M = My ® My such that My is semisimple, m ¢ M; and My is hollow.

Proof. For every 0 # m € M. Let’s define the set S = {T' C M| T is semisimple direct
summand and m ¢ T'}. This set is non-empty and inductive with respect to inclusion by
Proposition 2.17 and has a maximal element M; by Zorn’s Lemma. Since M; is a direct
summand, there exists a submodule My of M such that M = M; & M,. Therefore M,
must be hollow. If M, is not hollow, then there is a proper non-superfluous submodule
in Ms. By Proposition 2.15 and Lemma 2.6, M, is a quasi-ss-discrete module and M; is
ss—lifting. It follows that there exists a decomposition My = V @& V; with V' C U and
UNVy C Socs(V7) for some submodule V| V; of M,. Since U is non-superfluous submodule
in My, V # {0} and V; # {0} and so M = My @& My = M; &V & V;. By the maximality
of My, we get m € M; @&V and m € M; ® V;. But this means m € M; contradicting the
choice of M;. Therefore all proper submodules in M, are superfluous, i.e. M, is hollow. [

Theorem 2.19. Any quasi-ss-discrete module M has a decomposition M = € H; where
el
H; is hollow and semisimple for every i € I. In particular, for every semisimple direct

summand N of M, there exists a subset J C I such that M = (@ Hi> @ N.
J

Proof. We indicate by €2 the set of all hollow and semisimple submodules in M and take

into account ® = {p C | >  H is a direct sum and a direct summand in M }.This set
Hep
is non-empty and inductive with respect to inclusion by Proposition 2.17 has a maximal

element p by Zorn’s Lemma. By indexing the elements in p with ¢, let L = @ H;. Since L

el
is a direct summand, there exists a submodule K of M such that M = L& K. If we prove
that K = {0}, then the proof will be completed. Suppose that K # {0}. Then, there is
an element a of K with a # 0. Moreover, K is a quasi-ss-discrete module by Proposition
2.15. We get that a decomposition K = K; @ Ks,a ¢ K; and K» is hollow and semisimple
by Lemma 2.18. Then we have M = LG K = L& K; ® Ky = (L® K,) ® K; and so
Ky # {0} because of a ¢ K;. Therefore, the direct summand L & K, of M is properly
larger than L. This contradicts the maximality of L. Consequently K = 0 and we deduce
that M = P H;.

i€l
Suppose that N is a semisimple direct summand of M. Let’s define S = {A C I| NN

(@ H,\) = {0} and N N (@ H,\> is a direct summand in M}. By using Proposition

A A

2.17 and Zorn’s Lemma, we can say that S has a maximal element J. Assume that

L=Nn (@ HZ-). We must prove that M = L. Assume that L # M. Then by Lemma
7

2.18, we have a decomposition M = K & H with L C K, K is semisimple and H is hollow.
If we show that H = {0}, then the proof is completed. Suppose that H # {0}. We
consider the canonicial projection p : M — H. It is clear that if p (H;) = H holds for some
j€l, then M =K+ H;. If KNH; = Hj, then M = K and so H = {0}. Because of
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KNH; # H;, we get that KN H; < H;. Since M is m—projective, we have K N H; = {0},
ie. M = K® H;. L® H;jis a direct summand of M because L is a direct summand of M.
Since j ¢ J, this is a contradiction to the maximality of J. It follows from p (H;) # H for
every ¢ € [. From here, if wesay T'= H;, ®H;,®..... & H;, for every finite i1, 79, ...... Jin €1,
thenp (T') = p (H;,)®p (Hiy) B.....8Bp (H;, ) < H. Moreover, for the canonicial projection
e: M — K,wegetthat p=1Iyy—eand p(T) = Iy —e)(T) < H=(Iyy —e) (M). Since
T is semisimple, we have TN H = 0 by Lemma 2.16. This situation is valid for every finite

01,72, cveeey iy, we Obtain | @ H; |NH = {0} and so H = M NH = {0}. It is a contradiction
I
to the H # {0}. Hence H = {0}, this means M = L. O

Recall that a module M is called coatomic if every proper submodule of M is contained
in a maximal submodule of M. A ring R is called left max if every non-zero left R-module
has a maximal submodule. Note that if R is a left max ring, then every left R-module is
coatomic.

Lemma 2.20. Let M be a quasi-ss-discrete and coatomic module. Then M = @ M; can
iel
be written where each M; is a strongly local module.

Proof. Proof is a corollary of [3, Theorem 30]. g

Lemma 2.21. Let M be a quasi-ss-discrete and coatomic module. There is a decomposition

M = (@ Li) ® K with strongly local modules L;, Rad (@ LZ) < P L; and Rad (K) =
T T T

Proof. Since M is amply ss—supplemented, Rad (M) has a ss—supplement L which has
a ss—supplement K such that K C Rad(M). Then L N K = {0} by Lemma 2.7 and so

M = L& K. From here, if we use Proposition 2.15, we obtain that M is a quasi-ss-discrete

module. Moreover, since Rad (L) = L N Rad (M) < L, there are strongly local modules

L; such that L = @ L;. It follows that Rad (K) = K N Rad (M) = K because K is a
i

ss—supplement of L. O

Proposition 2.22. Let R be a left maz ring and M = @ M, be a quasi-ss-discrete R-
iel
module. Then every direct summand M; is a strongly local module.

Proof. Clear by [3, Corollary 32]. O

Proposition 2.23. The following statements are equivalent for an amply ss-supplemented
module M.

(1) M is quasi-ss-discrete;
(2) M is w-projective.

Proof. Clear by [8, 41.15] and [3, Proposition 26]. O
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Recall from [1, 4.13] that any factor module & of a m-projective module M by a fully
invariant submodule N is m-projective.
The following proposition can be proven by [3, Proposition 26].

Proposition 2.24. Let M be a quasi-ss-discrete module and N be a fully invariant sub-

module of M. Then % 1S quasi-ss-discrete.

Proposition 2.25. The following statements are equivalent for any module M.
(1) M is quasi-ss-discrete;
(2) M is amply ss-supplemented and all ss-supplements of any coclosed submodule N
of M are K-ss-lifting.

Proof. (1) = (2) It is clear that M is amply ss-supplemented by [3, Proposition 37]. Let
N be a coclosed submodule of M and K be a ss-supplement of N in M. Then N and K
are ss-supplements of each other and so K N N = 0 by [7, Proposition 4.11].

(2) = (1) It is enough to prove that M is m-projective. Let N and K be submodules
of M with M = N + K. Since M is amply ss-supplemented, there exists a submodule
K' of M such that M = N+ K', NN K <« K', NN K’ is semisimple, K’ C K and a
submodule N of M such that M = K' + N, K "N < N', K' NN’ is semisimple and
N' C N. Therefore K' and N’ are ss-supplements of each other. Define ¢ : M —» %
by (k' +7n) =k +(K'nN') (K € K',n" € N'). By the hypothesis, there exists a
homomorphism 6 : M — M where (M) C K and (1 — 0)(M) C N'. Hence M is
m-projective. O

Lemma 2.26. Let N be a submodule of M such that % = % with N’ is a coclosed
submodule of M. If K is a N-lifting ss-supplement, then M = N & K.

Proof. Suppose that K is a ss-supplement of N in M. Then we have M = N + K,
NNK < K and NN K is semisimple, and every homomorphism ¢ : M — 2 lifts

NNK
to a homomorphism of M. Since % = %, then an isomorphism ¢ : % — % We can
similarly obtain rest of the proof follows from [4, Lemma 2.2]. O

Corollary 2.27. Let N be a coclosed submodule of M. If K is a L-lifting ss-supplement
i M, then M = N @& K.

Proof. Clear by Lemma 2.26. U

In the following theorem, we give a characterization of ss-lifting modules via coclosed
submodule from renaissance of [4, Theorem 2.4].

Theorem 2.28. Let M be an amply ss-supplemented module. M is ss-lifting if and only
if every coclosed submodule N of M has a N-lifting ss-supplement.

Proof. Follows from Corollary 2.27 and [2, Theorem 1]. O
3. SS-DISCRETE MODULES AND STRONGLY SS-DISCRETE MODULES

In this section, we define notions of ss-discrete modules and strongly ss-discrete modules,
and we obtain some elementary characterizations of these notions.
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Definition 3.1. Let M be a ss-supplemented module which is m-projective and direct
projective, then we call M as a ss-discrete module. If M is a ss-supplemented module
which is self-projective, then we call M as a strongly ss-discrete module.

By this definition we can obtain that if a module M is ss-lifting and has the property
(Ds), then M is a ss-discrete module.

Lemma 3.2. Let N be a ss-supplement in M. N is a direct summand of M if and only
if there exists a ss-supplement K of N in M such that K is a direct summand of M and
every homomorphism f: M — 2 can be lifted to a homomorphism ¢ : M —s M.

NNK
Proof. (=) Clear.

(<) Let L be a ss-supplement of N in M with the stated property and f: M — NmiK
be the homomorphism defined by f(a+b) = a+ (NN K) for every a € N and b € K. By
the hypothesis, there exists a homomorphism ¢ : M — M such that f can be lifted to the
homomorphism . We have M = K @ K for some submodule K' of M and KN N < N
and K NN is semisimple. By [6, Lemma 2.1], we have M = (K )@ K. Since p(K') < N,
then N = p(K') @ (N N K). This implies that N N K = 0. Thus N is a direct summand
of M. O

Now we can characterize ss-lifting modules via the above lemma.

Corollary 3.3. Let M be an amply ss-supplemented module. M 1is ss-lifting if and only
if for every ss-supplement N in M there is a direct summand ss-supplement K of N in
M such that every homomorphism f : M — N]KK can be lifted to a homomorphism
p: M — M.

Proposition 3.4. Let M be a module with Rad(M) C Soc(M). If M is a (quasi-)discrete
module, then M is a (quasi-)ss-discrete module.

Proof. Clear by [3, Theorem 20]. O

Proposition 3.5. Let M be a ss-discrete module. Then every direct summand of M is a
ss-discrete module.

Proof. Let N be a direct summand of M. Since M is direct projective by [1, 4.22], we
have N is direct projective, i.e. N has the property (D). Since M is ss-supplemented and
m-projective, M is ss-lifting by [2, Theorem 2|. Thus N is ss-lifting by [2, Theorem 3| and
so N is a ss-discrete module. U

Example 3.6. Consider the self-projective Z-module M = %. Since M is ss-supplemented,
M is strongly ss-discrete.

Proposition 3.7. Let M be a projective module. M is a strongly ss-discrete module if and
only if M is a strongly discrete module and Rad(M) C Soc(M).

Proof. Since M be a projective module, M is self-projective. The proof is obvious by
[3, Theorem 20] O
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Proposition 3.8. Let M be a strongly ss-discrete module. Then every direct summand of
M is a strongly ss-discrete module.

Proof. As self-projective modules are closed under direct summands, the proof clear by
2, Theorem 3]. O

Theorem 3.9. Let {M;}ier be any finite family of R-modules and let M = @ M;. Suppose
il
that for every i € I, Rad(M;) C Soc(M;). Then the following statements are equivalent.
(1) M is strongly ss-discrete;
(2) (a) each M; is strongly discrete;
(b) for each i€ I, M; is M;-projective for j # i.

Proof. The proof similar to these of [1, 27.16] and [3, Theorem 20]. O

In the following corollary, we prove that strongly ss-discrete rings thanks to semiperfect
ring.

Corollary 3.10. The following statements are equivalent for a ring R:

(1) rR is ss-supplemented;
(2) rR is semiperfect and Rad(rR) C Soc(rR);
(8) for any finite set I and for each i € I, every left R-module M = @ M; where M,;
il
15 a strongly local M -projective module;
(4) rR is strongly ss-discrete.

Proof. Follows from [3, Theorem 41]. O

Finally we give the following hierarchy for any module M:
M strongly ss-discrete = M ss-discrete = M quasi-ss-discrete = M semi-ss-discrete =
M ss-lifting
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