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Abstract. In this paper, we define semi-ss−discrete and quasi-ss−discrete modules as a
strongly notion of semi-discrete and quasi-discrete modules with the help of ss−supplement
in [3]. We examined the basic properties of these modules and included characterization
of strongly ss−discrete modules over semi-perfect rings.

1. Introduction

In this study, R is used to show a ring which is associative and has an identity. All
mentioned modules will be unital left R−module. Let M be an R−module. The notation
A ≤M means that A is a submodule of M . Any submodule A of an R−module M is called
small in M and showed by A�M whenever A+C 6= M for all proper submodule C of M .
The Jacobson radical of M denoted by Rad(M). Dually, a submodule A of a R−module
M is called to be essential in M which is showed by A/M if A ∩K 6= 0 for each non-zero
submodule K of M . The socle of M which is the sum of all simple submodules of M is
denoted by Soc(M). A non-zero module M is called hollow if every proper submodule of
M is small in M and is called local providing that the sum of all proper submodules of M
is also a proper submodule of M . A submodule N of M is called coclosed in M if whenever
N
K
� M

K
for a submodule K of M with K ⊆ N , N = K.

Let A and B be submodules of M . Then A is called a supplement of B in M when A
is minimal with the property M = A + B; in other words, M = A + B and A ∩ B�A.
Definition of supplemented module M is every submodule of M has a supplement in M .
Two submodules A and B of M are called mutual supplements if, M = A+B, A∩B�A.
and A ∩ B�B, [1].There are a lot of papers related with supplemented modules such
as [7, 8]. If M is supplemented and self-projective, then M is called strongly discrete.
The module M is called amply supplemented if for any submodules A and B of M with
M = A+B, there exists a supplement X of A such that X ⊆ B.

In [7], a module M is called lifting if for every submodule A of M lies over a direct
summand, that is, there is a decomposition M = M1⊕M2 such that M1 ≤ A, A∩M2 �M2.
By [8], M is lifting iff M is amply supplemented and every supplement submodule of M
is a direct summand of it.

Following [9], the sum of all simple submodules of M which are small in M is named with
Socs (M), that is, Socs (M) =

∑
{A�M | A is simple}. Note that Socs (M) ⊆ Rad (M)
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and Socs (M) ⊆ Soc (M). In [3], a module M is called strongly local providing that M is
local and Rad (M) ⊆ Soc (M). In the same paper, a ring R is called left strongly local ring
if RR is a strongly local module.

According to [3], ss−supplemented modules was examined and founded as a proper
generalization of supplemented modules. Let M be a module and A,B ≤M . If M = A+B
and A ∩ B ⊆ Socs (B), then B is a ss−supplement of A in M . Any module M is named
ss−supplemented if each submodule A of M has a ss−supplement B in M . As a result
of this definition, any finitely generated module is ss−supplemented iff it is supplemented
and Rad (M) ⊆ Soc (M). In the same paper, amply ss−supplemented modules were
defined. A submodule A of a module M has ample ss−supplements in M if A contains a
ss−supplement of B in M with M = A+B. M is called amply ss−supplemented if every
submodule of M has ample ss−supplements in M .

According to [2], a module M is called semisimple lifting or briefly ss−lifting if for
every submodule A of M , there is a decomposition M = M1 ⊕M2 such that M1 ≤ A,
A ∩M2 � M and A ∩M2 is semisimple. Some new fundamental properties of ss−lifting
modules will be examined in this paper.

Let c be a cardinal number. The module M is said to have the c-internal exchange
property if every decomposition M =

⊕
I

Mi with card(I) ≤ c is exchangeable. A module

M has the (finite) internal exchange property if it has the c-internal exchange property
for every (finite) cardinal c [1, 11.34]. A lifting module with the finite internal exchange
property is called a semi-discrete module. The module M is called discrete if M is lifting
and satisfies the following condition:

(D2) : If N ⊆ M such that M
N

is isomorphic to a direct summand of M , then N is a
direct summand of M .

The module M is called quasi-discrete if M is lifting and satisfies the following condition;
(D3) : If N and K are direct summands of M such that M = N + K, then N ∩K is

a direct summand of M (See [7]). In [1, 4.29], the notion of ∩-direct projective modules is
defined as a equivalent condition to the property (D3).

By [7, Lemma 4.6], (D2) implies (D3). The module M is called direct projective if, for
every direct summand X of M , every epimorphism M −→ X splits. By [1, 4.21], a module
M is direct projective if and only if M has the property (D2). For every direct summand
N of M , if every epimorphism f : M → N splits, then M is called direct projective. It is
clear that M is direct projective if and only if M has the property (D2) by [1, 4.21].

In the first part of this study, we define semi-ss−discrete and quasi-ss−discrete modules
based on the definition of ss−lifting module. We give examples of these modules.We
show that every quasi-ss− discrete module is ss−lifting and amply ss−supplemented.
The factor module of a quasi-ss−discrete module is showed to be quasi-ss−discrete again
under special conditions. In addition, theorems related with the decomposition of quasi-
ss−discrete modules are obtained. In the second part, we define (strongly) ss−discrete
modules and determine their relationship with ss−supplemented modules.
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2. Semi-SS-Discrete and Quasi-SS-Discrete Modules

In this section, semi-ss-discrete modules and quasi-ss-discrete modules are defined and
some of the basic features of these modules are obtained.

Definition 2.1. If M is a ss-lifting module with finite internal exchange property, then
M is called a semi-ss-discrete module. If M is both π-projective and ss-supplemented
module, then M is called a quasi-ss-discrete module. Let N be any submodule of M . Any
submodule K of M is called N-ss-lifting if every homomorphism M −→ M

N∩K where N ∩K
is semisimple lifts to an endomorphism of M . If K is a ss-supplement of N of M , then K
is called a N-lifting ss-supplement in M .

Recall from [1] that a module K is said to be generalized M-projective if, for any epi-
morphism g : M −→ X and homomorphism f : K −→ X, there exist decompositions
K = K1 ⊕ K2, M = M1 ⊕M2, a homomorphism h1 : K1 −→ M1 and an epimorphism
h2 : M2 −→ K2, such that g ◦ h1 = f|K1

and f ◦ h2 = g|M2
.

Proposition 2.2. The following statements are equivalent for M :

(1) M is semi-ss-discrete;
(2) M is ss-supplemented, every ss-supplement in M is a direct summand and K ∩ L

are relatively generalized projective, for every decomposition M = K ⊕ L,
(3) M is ss-lifting and K, L are relatively generalized projective, for every decomposi-

tion M = K ⊕ L.

Proof. (1) ⇒ (2) Since M is ss-lifting, it is ss-supplemented and every ss-supplement is a
direct summand by [2, Theorem 1]. Let M = N + K. Then N contains a ss-supplement
N

′
of K which is a direct summand of M . So, we have M = N

′ ⊕ L′ ⊕K ′
with L

′ ⊆ L
and K

′ ⊆ K since M has the finite internal exchange property. Thus L is generalized
K-projective by [1, 4.42]. Similarly, it is easy to see that K is generalized L-projective.

(2) ⇒ (3) It is enough to prove that M is ss-lifting. Let N ⊆ M . By hypothesis, N
has a ss-supplement K which is a direct summand of M , that is M = L ⊕K. Then L is
generalized K-projective and so M = N

′⊕L′⊕K ′
= N

′
+K, where N

′ ⊆ N , K
′ ⊆ K and

L
′ ⊆ L by [1, 4.42] since M = N +K. From here N = N

′
+ (N ∩K). Since N ∩K � K

and N ∩K is semisimple, we have M is a ss-lifting module.
(3) ⇒ (1) Suppose M = K ⊕ L. Since [2, Theorem 3] K and L are ss-lifting modules,

K and L are relatively generalized projective by the hypothesis. It follows from [1, 23.10]
that M has the 2-internal exchange property. �

Recall from [5] that a module M is called duo if for every submodule U of M is fully
invariant, i.e. f(U) ⊆ U for every f ∈ End(M) and U ⊆M .

Proposition 2.3. Let M = M1 ⊕ . . . ⊕Mn be a duo module where each Mi is semi-ss-
discrete.Then the following statements are equivalent:

(1) M is semi-ss-discrete;
(2) M is ss-lifting and M = M1 ⊕ . . .⊕Mn is an exchange decomposition;
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(3) For any direct summand K of
⊕
I

Mi and any direct summand L of
⊕
J

Mj, K

and L are relatively generalized projective where I, J non-empty disjoint subsets of
{1, 2, . . . , n};

(4) If M
′
i is any direct summand of Mi and T is any direct summand of

⊕
j 6=i

Mj, then

M
′
i and T are relatively generalized projective for any 1 ≤ i ≤ n;

Proof. is clear by [1, 23.14] and [2, Theorem 9]. �

As an immediate consequence of Proposition 2.3, we have the following corollary.

Corollary 2.4. Let M = M1 ⊕ . . . ⊕Mn be a duo module where each Mi is a semi-ss-
discrete module. If Mi and Mj are relatively generalized projective for each i 6= j, then M
is semi-ss-discrete.

Recall from [1, 12.1] that an R-module M is said to be an LE-module if its endomorphism
ring End(M) is local.

Theorem 2.5. Let M be a ss-lifting module with an indecomposable decomposition M =⊕
I

Mi is a duo module. Then M is a semi-ss-discrete module if one of the following

statements is satisfied:

(1) Mi is an LE-module for all i ∈ I;
(2) every non-zero direct summand of M contains a non-zero indecomposable direct

summand and the decomposition M =
⊕
i∈I
Mi complements maximal direct sum-

mands.

Proof. A module M with an indecomposable exchange decomposition has the internal
exchange property. Hence we can apply [1, 24.13, 24.10] to [3, Theorem 30]. �

We can compare quasi-ss-discrete modules, ss-supplemented modules and ss-lifting mod-
ules in following lemmas.

Lemma 2.6. If M is quasi-ss-discrete module, then M is ss-lifting.

Proof. SinceM is π-projective, it is clear by [1, 20.9] and [2, Theorem 1] that ss-supplements
are direct summands in M . So it is enough to prove that M is amply ss-supplemented. Sup-
pose that M = U+V and X is a ss-supplement of U in M . Then for any f ∈ End(M) with
Im(f) ⊆ V and Im(1−f) ⊆ U , we have M = U+f(X) and U∩f(X) = f(U∩X)� f(X).
Since U∩X is semisimple, U∩f(X) is semisimple by [8, 20.3]. Thus f(X) is a ss-supplement
of U contained in V . �

By the help of [8, 41.15], it can be seen that if the intersection of any pair of mutual
ss-supplements is zero in a ss-supplemented module, then ss-supplement submodules of M
are direct summands.

Lemma 2.7. If M is ss-lifting and π-projective, then M is amply ss-supplemented and the
intersection of any pair of mutual ss-supplements in M is zero.
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Proof. Follows from [2, Theorem 1] and [1, 20.9]. �

Corollary 2.8. If M is a quasi-ss-discrete module, then M is amply ss-supplemented and
the intersection of any pair of mutual ss-supplements in M is zero.

Proof. Clear by Lemmas 2.6 and 2.7. �

It is clear that every quasi-ss-discrete module is quasi-discrete by Definition 2.1. The
following example shows that the converse is not need to be true. So the notion of quasi-
ss-discrete module is a stronger than that of quasi-discrete module.

Example 2.9. For any prime integer p, consider the left Z-module M = Zp∞ . M is
supplemented but not ss-supplemented by [3, Example 17]. Since M has the property
(D3), M is quasi-discrete but not quasi-ss-discrete.

The following corollary is obtained by automatically by Lemma 2.7.

Corollary 2.10. If M is ss-lifting module and has the property (D3), then M is a quasi-
ss-discrete module.

Lemma 2.11. Let M be a quasi-ss-discrete module, K be a submodule of M and L be
a ss−supplement of K. If N is a ss−supplement submodule of M contained in K, then
N ∩ L = 0 and N ⊕ L is a direct summand of M .

Proof. Since M is a quasi-ss-discrete module, M is ss−lifting by Lemma 2.6. If we use
[2, Theorem 1], it can be concluded that L and N are direct summand of M . Therefore
there exists a submodule N1 of M such that M = N⊕N1. It is clear that K = (K ∩N1)⊕N
and so M = N + L+ (K ∩N1). By [2, Theorem 1], K ∩N1 contains a ss−supplement X
of N +L, where X is a direct summand of M . Thus X⊕N is a direct summand of M due
to X ≤ N . However, we have that (X ⊕N) ∩ L is a direct summand of M by [4.14 (4)].
From here (X ⊕N) ∩ L ≤ K ∩ L ⊆ Socs(L). Finally we can get (X ⊕N) ∩ L = 0 and so
M = X ⊕N ⊕ L. �

Proposition 2.12. If K, L are direct summand of a quasi-ss-discrete module M and L is
hollow, then

(i) K ∩ L = 0 and K ⊕ L is a direct summand of M or
(ii) K + L = K ⊕ S with S ⊆ Socs(M) and L is isomorphic to a summand of K.

Proof. Suppose that T is a ss−supplement of K + L. Then we have M = T + (K + L)
and T ∩ (K + L) ⊆ Socs (T ). By Lemma 2.11, K ∩ T = 0. Let’s complete the proof by
evaluating the following two situations.

(1) If L � K ⊕ T , then L ∩ (K + T ) = 0 and so L is a ss−supplement of K + T . It
follows that K ∩ L = 0 and K ⊕ L is a direct summand of M by Lemma 2.11.

(2) Assume that L ≤ K ⊕ T . Since M = K + T + L = K + T and K ∩ T = 0, we
have M = K ⊕ T . If we intersect the equality M = K + T with K + L, then we can
write K + L = K ⊕ S where S = (K + L) ∩ T . Moreover S ⊆ Socs(M) by [2, Theorem
1]. Since L is a direct summand of M , there exists a submodule L1 of M such that
M = L ⊕ L1. It follows that M = K + L + L1 = K + [(K + L) ∩ T ] + L1 = K + L1



6 BURCU NİŞANCI TÜRKMEN AND FİGEN ERYILMAZ

because (K + L) ∩ T � M . Let N1 be a ss−supplement of L1 contained in K. Then, we
get M = [N1 ⊕ (K ∩ L1)] + L1 = N1 ⊕ L1 and L ∼= N1. �

Theorem 2.13. If M is a quasi-ss-discrete module, then M is ss-lifting and for every
decomposition M = K ⊕ L, K and L are relatively projective.

Proof. We obtain by Lemmas 2.6 and 2.7 that M is amply ss-supplemented and the inter-
section of any pair of mutual ss-supplements in M is zero. Since M is ss-supplemented,
ss-supplements are direct summands and so M is ss-lifting by [2, Theorem 1]. Suppose
that M = U + V where U and V are direct summands of M . Let X be a ss-supplement of
V such that X ⊆ U . Then M = X ⊕ V . As U = X ⊕ (U ∩ V ), we get U ∩ V is a direct
summand of M . Therefore M is ∩-direct projective. The rest follows from [1, 4.14(2)]. �

By the definition, every quasi ss-discrete module is semi-ss-discrete. But the converse is
not always true as in the following example.

Example 2.14. Consider the Z-module U = Z
pZ and V = Z

p2Z where p is prime. Then U

and V are relatively generalised projective but U is not V -projective. So M is not a quasi
ss-discrete module although M is a ss-lifting module. Since M = U ⊕ V is a ss-lifting
module with the finite internal exchange property, M is semi-ss-discrete.

Now we can obtain properties of quasi ss-discrete modules.

Proposition 2.15. Let M be a quasi-ss-discrete module. Then every direct summand of
M is quasi-ss-discrete and every ss-supplement submodule of it is a direct summand.

Proof. Let N be a direct summand of M . Since M is ss-lifting and π-projective, every
ss-supplement submodule of M is a direct summand by [2, Theorem 1]. Since every
direct summand of a π-projective module is again π-projective, N is ss-supplemented by
[3, Corollary 38]. Therefore N is quasi-ss-discrete module. �

Lemma 2.16. Let M be a quasi ss-discrete module and S = End(M). Let e ∈ S be an
idempotent and N be a semisimple direct summand of M . If (1 − e)(N) � (1 − e)(M),
then N ∩ (1− e)(M) = 0 and N ⊕ (1− e)(M) is a direct summand in M .

Proof. The proof can be obtained similarly as in [8, 41.16(2)]. �

Proposition 2.17. Let M be a quasi-ss-discrete module. If {Ni}i∈I is a directed family of
semisimple direct summands of M with respect to inclusion, then

⋃
i∈I
Ni is also a semisimple

direct summand in M .

Proof. Assume {Ni}i∈I is given as indicated. Then N =
⋃
i∈I
Ni is a submodule, and there

exists an idempotent e ∈ S with e(M) ⊂ N and (1− e)(N) � (1− e)(M). Therefore for
every i ∈ I, we have (1 − e)(Ni) ⊂ (1 − e)(N) � (1 − e)(M) and Ni ∩ (1 − e)(M) = 0
by Lemma 2.16. This implies that N ∩ (1 − e)(M) = 0 and M = N ⊕ (1 − e)(M). Since
Ni is semisimple for every i ∈ I, N is semisimple due to every Ni directed with respect to
inclusion. �



SS-DISCRETE MODULES 7

Lemma 2.18. Let M be a quasi-ss-discrete module. Then for every 0 6= m ∈M , there is
a decomposition M = M1 ⊕M2 such that M1 is semisimple, m /∈M1 and M2 is hollow.

Proof. For every 0 6= m ∈ M . Let’s define the set S = {T ⊂M | T is semisimple direct
summand and m /∈ T}. This set is non-empty and inductive with respect to inclusion by
Proposition 2.17 and has a maximal element M1 by Zorn’s Lemma. Since M1 is a direct
summand, there exists a submodule M2 of M such that M = M1 ⊕M2. Therefore M2

must be hollow. If M2 is not hollow, then there is a proper non-superfluous submodule
in M2. By Proposition 2.15 and Lemma 2.6, M2 is a quasi-ss-discrete module and M2 is
ss−lifting. It follows that there exists a decomposition M2 = V ⊕ V1 with V ⊂ U and
U ∩V1 ⊆ Socs(V1) for some submodule V , V1 of M2. Since U is non-superfluous submodule
in M2, V 6= {0} and V1 6= {0} and so M = M1 ⊕M2 = M1 ⊕ V ⊕ V1. By the maximality
of M1, we get m ∈ M1 ⊕ V and m ∈ M1 ⊕ V1. But this means m ∈ M1 contradicting the
choice of M1. Therefore all proper submodules in M2 are superfluous, i.e. M2 is hollow. �

Theorem 2.19. Any quasi-ss-discrete module M has a decomposition M =
⊕
i∈I
Hi where

Hi is hollow and semisimple for every i ∈ I. In particular, for every semisimple direct

summand N of M , there exists a subset J ⊂ I such that M =

(⊕
J

Hi

)
⊕N .

Proof. We indicate by Ω the set of all hollow and semisimple submodules in M and take
into account Φ = {℘ ⊂ Ω|

∑
H∈℘

H is a direct sum and a direct summand in M}.This set

is non-empty and inductive with respect to inclusion by Proposition 2.17 has a maximal
element ℘ by Zorn’s Lemma. By indexing the elements in ℘ with i, let L =

⊕
i∈I
Hi. Since L

is a direct summand, there exists a submodule K of M such that M = L⊕K. If we prove
that K = {0}, then the proof will be completed. Suppose that K 6= {0}. Then, there is
an element a of K with a 6= 0. Moreover, K is a quasi-ss-discrete module by Proposition
2.15. We get that a decomposition K = K1⊕K2,a /∈ K1 and K2 is hollow and semisimple
by Lemma 2.18. Then we have M = L ⊕ K = L ⊕ K1 ⊕ K2 = (L⊕K2) ⊕ K1 and so
K2 6= {0} because of a /∈ K1. Therefore, the direct summand L ⊕ K2 of M is properly
larger than L. This contradicts the maximality of L. Consequently K = 0 and we deduce
that M =

⊕
i∈I
Hi.

Suppose that N is a semisimple direct summand of M . Let’s define S = {Λ ⊂ I| N ∩(⊕
Λ

Hλ

)
= {0} and N ∩

(⊕
Λ

Hλ

)
is a direct summand in M}. By using Proposition

2.17 and Zorn’s Lemma, we can say that S has a maximal element J . Assume that

L = N ∩
(⊕

J

Hi

)
. We must prove that M = L. Assume that L 6= M . Then by Lemma

2.18, we have a decomposition M = K⊕H with L ⊂ K, K is semisimple and H is hollow.
If we show that H = {0}, then the proof is completed. Suppose that H 6= {0}. We
consider the canonicial projection p : M → H. It is clear that if p (Hj) = H holds for some
j ∈ I, then M = K + Hj. If K ∩ Hj = Hj, then M = K and so H = {0}. Because of
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K ∩Hj 6= Hj, we get that K ∩Hj � Hj. Since M is π−projective, we have K ∩Hj = {0},
i.e. M = K⊕Hj. L⊕Hj is a direct summand of M because L is a direct summand of M .
Since j /∈ J , this is a contradiction to the maximality of J . It follows from p (Hi) 6= H for
every i ∈ I. From here, if we say T = Hi1⊕Hi2⊕.....⊕Hin for every finite i1, i2, ......, in ∈ I,
then p (T ) = p (Hi1)⊕p (Hi2)⊕ .....⊕p (Hin )� H. Moreover, for the canonicial projection
e : M → K, we get that p = IM − e and p (T ) = (IM − e) (T )� H = (IM − e) (M). Since
T is semisimple, we have T ∩H = 0 by Lemma 2.16. This situation is valid for every finite

i1, i2, ......, in we obtain

(⊕
I

Hi

)
∩H = {0} and so H = M ∩H = {0}. It is a contradiction

to the H 6= {0}. Hence H = {0}, this means M = L. �

Recall that a module M is called coatomic if every proper submodule of M is contained
in a maximal submodule of M . A ring R is called left max if every non-zero left R-module
has a maximal submodule. Note that if R is a left max ring, then every left R-module is
coatomic.

Lemma 2.20. Let M be a quasi-ss-discrete and coatomic module. Then M =
⊕
i∈I
Mi can

be written where each Mi is a strongly local module.

Proof. Proof is a corollary of [3, Theorem 30]. �

Lemma 2.21. Let M be a quasi-ss-discrete and coatomic module. There is a decomposition

M =

(⊕
I

Li

)
⊕K with strongly local modules Li, Rad

(⊕
I

Li

)
�
⊕
I

Li and Rad (K) =

K.

Proof. Since M is amply ss−supplemented, Rad (M) has a ss−supplement L which has
a ss−supplement K such that K ⊂ Rad (M). Then L ∩K = {0} by Lemma 2.7 and so
M = L⊕K. From here, if we use Proposition 2.15, we obtain that M is a quasi-ss-discrete
module. Moreover, since Rad (L) = L ∩ Rad (M) � L, there are strongly local modules
Li such that L =

⊕
I

Li. It follows that Rad (K) = K ∩ Rad (M) = K because K is a

ss−supplement of L. �

Proposition 2.22. Let R be a left max ring and M =
⊕
i∈I
Mi be a quasi-ss-discrete R-

module. Then every direct summand Mi is a strongly local module.

Proof. Clear by [3, Corollary 32]. �

Proposition 2.23. The following statements are equivalent for an amply ss-supplemented
module M .

(1) M is quasi-ss-discrete;
(2) M is π-projective.

Proof. Clear by [8, 41.15] and [3, Proposition 26]. �
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Recall from [1, 4.13] that any factor module M
N

of a π-projective module M by a fully
invariant submodule N is π-projective.

The following proposition can be proven by [3, Proposition 26].

Proposition 2.24. Let M be a quasi-ss-discrete module and N be a fully invariant sub-
module of M . Then M

N
is quasi-ss-discrete.

Proposition 2.25. The following statements are equivalent for any module M .

(1) M is quasi-ss-discrete;
(2) M is amply ss-supplemented and all ss-supplements of any coclosed submodule N

of M are K-ss-lifting.

Proof. (1) ⇒ (2) It is clear that M is amply ss-supplemented by [3, Proposition 37]. Let
N be a coclosed submodule of M and K be a ss-supplement of N in M . Then N and K
are ss-supplements of each other and so K ∩N = 0 by [7, Proposition 4.11].

(2) ⇒ (1) It is enough to prove that M is π-projective. Let N and K be submodules
of M with M = N + K. Since M is amply ss-supplemented, there exists a submodule
K

′
of M such that M = N + K

′
, N ∩ K ′ � K

′
, N ∩ K ′

is semisimple, K
′ ⊆ K and a

submodule N
′

of M such that M = K
′
+ N

′
, K

′ ∩ N ′ � N
′
, K

′ ∩ N ′
is semisimple and

N
′ ⊆ N . Therefore K

′
and N

′
are ss-supplements of each other. Define ϕ : M −→ M

K′∩N ′

by ϕ(k
′

+ n
′
) = k

′
+ (K

′ ∩ N ′
) (k

′ ∈ K
′
, n

′ ∈ N
′
). By the hypothesis, there exists a

homomorphism θ : M −→ M where θ(M) ⊆ K
′

and (1 − θ)(M) ⊆ N
′
. Hence M is

π-projective. �

Lemma 2.26. Let N be a submodule of M such that M
N
∼= M

N ′ with N
′

is a coclosed
submodule of M . If K is a N-lifting ss-supplement, then M = N ⊕K.

Proof. Suppose that K is a ss-supplement of N in M . Then we have M = N + K,
N ∩ K � K and N ∩ K is semisimple, and every homomorphism ψ : M −→ M

N∩K lifts

to a homomorphism of M . Since M
N
∼= M

N ′ , then an isomorphism ξ : M
N ′ −→ M

N
. We can

similarly obtain rest of the proof follows from [4, Lemma 2.2]. �

Corollary 2.27. Let N be a coclosed submodule of M . If K is a L-lifting ss-supplement
in M , then M = N ⊕K.

Proof. Clear by Lemma 2.26. �

In the following theorem, we give a characterization of ss-lifting modules via coclosed
submodule from renaissance of [4, Theorem 2.4].

Theorem 2.28. Let M be an amply ss-supplemented module. M is ss-lifting if and only
if every coclosed submodule N of M has a N-lifting ss-supplement.

Proof. Follows from Corollary 2.27 and [2, Theorem 1]. �

3. SS-Discrete Modules and Strongly SS-Discrete Modules

In this section, we define notions of ss-discrete modules and strongly ss-discrete modules,
and we obtain some elementary characterizations of these notions.
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Definition 3.1. Let M be a ss-supplemented module which is π-projective and direct
projective, then we call M as a ss-discrete module. If M is a ss-supplemented module
which is self-projective, then we call M as a strongly ss-discrete module.

By this definition we can obtain that if a module M is ss-lifting and has the property
(D2), then M is a ss-discrete module.

Lemma 3.2. Let N be a ss-supplement in M . N is a direct summand of M if and only
if there exists a ss-supplement K of N in M such that K is a direct summand of M and
every homomorphism f : M −→ M

N∩K can be lifted to a homomorphism ϕ : M −→M .

Proof. (⇒) Clear.
(⇐) Let L be a ss-supplement of N in M with the stated property and f : M −→ M

N∩K
be the homomorphism defined by f(a+ b) = a+ (N ∩K) for every a ∈ N and b ∈ K. By
the hypothesis, there exists a homomorphism ϕ : M −→M such that f can be lifted to the
homomorphism ϕ. We have M = K ⊕K ′

for some submodule K
′

of M and K ∩N � N
and K ∩N is semisimple. By [6, Lemma 2.1], we have M = ϕ(K

′
)⊕K. Since ϕ(K

′
) ≤ N ,

then N = ϕ(K
′
)⊕ (N ∩K). This implies that N ∩K = 0. Thus N is a direct summand

of M . �

Now we can characterize ss-lifting modules via the above lemma.

Corollary 3.3. Let M be an amply ss-supplemented module. M is ss-lifting if and only
if for every ss-supplement N in M there is a direct summand ss-supplement K of N in
M such that every homomorphism f : M −→ M

N∩K can be lifted to a homomorphism
ϕ : M −→M .

Proposition 3.4. Let M be a module with Rad(M) ⊆ Soc(M). If M is a (quasi-)discrete
module, then M is a (quasi-)ss-discrete module.

Proof. Clear by [3, Theorem 20]. �

Proposition 3.5. Let M be a ss-discrete module. Then every direct summand of M is a
ss-discrete module.

Proof. Let N be a direct summand of M . Since M is direct projective by [1, 4.22], we
have N is direct projective, i.e. N has the property (D2). Since M is ss-supplemented and
π-projective, M is ss-lifting by [2, Theorem 2]. Thus N is ss-lifting by [2, Theorem 3] and
so N is a ss-discrete module. �

Example 3.6. Consider the self-projective Z-moduleM = Z
2Z . SinceM is ss-supplemented,

M is strongly ss-discrete.

Proposition 3.7. Let M be a projective module. M is a strongly ss-discrete module if and
only if M is a strongly discrete module and Rad(M) ⊆ Soc(M).

Proof. Since M be a projective module, M is self-projective. The proof is obvious by
[3, Theorem 20] �
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Proposition 3.8. Let M be a strongly ss-discrete module. Then every direct summand of
M is a strongly ss-discrete module.

Proof. As self-projective modules are closed under direct summands, the proof clear by
[2, Theorem 3]. �

Theorem 3.9. Let {Mi}i∈I be any finite family of R-modules and let M =
⊕
i∈I
Mi. Suppose

that for every i ∈ I, Rad(Mi) ⊆ Soc(Mi). Then the following statements are equivalent.

(1) M is strongly ss-discrete;
(2) (a) each Mi is strongly discrete;

(b) for each i ∈ I, Mi is Mj-projective for j 6= i.

Proof. The proof similar to these of [1, 27.16] and [3, Theorem 20]. �

In the following corollary, we prove that strongly ss-discrete rings thanks to semiperfect
ring.

Corollary 3.10. The following statements are equivalent for a ring R:

(1) RR is ss-supplemented;
(2) RR is semiperfect and Rad(RR) ⊆ Soc(RR);
(3) for any finite set I and for each i ∈ I, every left R-module M =

⊕
i∈I
Mi where Mi

is a strongly local M-projective module;
(4) RR is strongly ss-discrete.

Proof. Follows from [3, Theorem 41]. �

Finally we give the following hierarchy for any module M :
M strongly ss-discrete⇒ M ss-discrete⇒ M quasi-ss-discrete⇒ M semi-ss-discrete⇒

M ss-lifting
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Amasya, Turkey

E-mail address: burcu.turkmen@amasya.edu.tr

Ondokuz Mayıs University, Faculty of Education, Department of Mathematics Educa-
tion, Atakum, Samsun, Turkey

E-mail address: fyuzbasi@omu.edu.tr


