References
  1. Ban, Y., Lei, T., Chen, C., Yin, Z., Qian, D. 2017. Meltwater erosion process of frozen soil as affected by thawed depth under concentrated flow in high altitude and cold regions. Earth Surface Processes and Landforms 42, 2139-2146. doi: 10.1002/esp.4173.
  2. Ban, Y., Lei, T., Chen, C., & Liu, Z. 2016. Study on the facilities and procedures for meltwater erosion of thawed soil. International Soil and Water Conservation Research 142-147. http://dx.doi.org/10.1016/j.iswcr.2016.04.003.
  3. Ban, Y., Lei, T., Liu, Z., & Chen, C. 2016. Comparison of rill flow velocity over frozen and thawed slopes with electrolyte tracer method. Journal of hydrology 534: 630-637. https://doi.org/10.1016/j.jhydrol.2016.01.028.
  4. Barnes, N., Luffman, I., Nandi, A. 2016. Gully erosion and freeze-thaw processes in clay-rich soils, northeast Tennessee, USA. GeoResJ 9-12: 67-76. http://dx.doi.org/10.1016/j.grj.2016.09.001.
  5. Bryan, R. B. 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology 32(3): 385-415. https://doi.org/10.1016/S0169-555X(99)00105-1.
  6. Chen, C., Ban, Y, Lei, T, Feng, R., & Gao Y. 2018. Water flow velocity over frozen and nonfrozen black soil slopes. Hydrological Processes 32: 2231-2238. https://doi.org/10.1002/hyp.13159.
  7. Chow, T. L., Rees, H. W., & Monteith, J. 2000. Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada. Canadian Journal of Soil Science 80(4): 649-660.
  8. Demidov, V. V., Ostroumov, V. Y., Nikitishena, I. A., et al. 1995. Seasonal freezing and soil erosion during snowmelt. Eurasian Soil Science 28: 78-87.
  9. Edwards, L. M., Burney, J. R., & Frame, P. A. 1995. Rill sediment transport on a Prince Edward Island (Canada) fine sandy loam. Soil Technology 8: 127-138.
  10. Edwards, L. M., Burney, J. R., and Frame, P. A. 1994. Relationships between rill sediment and flow time varying with freezing, groundcover, compaction and slope on a Prince Edward Island (Canada) fine sandy loam. Variability in Stream Erosion and Sediment Transport. Proceedings of the Canberra Symposium. pp. 33-41.
  11. Emmanuel, J. G., Douglas, W. B., & Beth, P. S. 2008. Modern erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters 267: 482-494. https://doi.org/10.1002/esp.1209.
  12. Fan, H. M., Wu, M., & Zhou, L. L. 2010. Study on sloping land snowmelt erosion affected by thaw depth of near-surface meadow soil. Journal of Soil and Water Conservation 24(6): 28-31 (in Chinese with English abstract).
  13. Ferrick, M. G., & Gatto, L. W. 2005. Quantifying the effect of a freeze-thaw cycle on soil erosion: laboratory experiments. Earth Surface Processes and Landforms 30(10): 1305-1326.
  14. Flanagan, D., & Nearing, M. 1995. USDA-water Erosion Prediction Project: Hillslope profile and watershed model documentation, NSERL Report No. 10. USDA-ARS National Soil Erosion Research Laboratory, West Lafayette.
  15. Formanek, G. E., Mccool, D. K. & Papendick, R. I. 1984. Freeze-thaw and consolidation effects on strength of a wet silt loam. Transactions of the ASAE 27(6): 1749-1752.
  16. Gao, X., Li, F., Chen, C., Ban, Y., & Gao, Y. 2019. Effects of thawed depth on the sediment transport capacity by melt water on partially thawed black soil slope. Land Degradation and Development 30: 84-93.
  17. Gatto, L. W., Halvorson, J. J., McCool, D. K., et al. 2001. Effects of freeze-thaw cycling on soil erosion. Landscape Erosion and evolution modeling, edited by Harmon & and Doe III, Kluwer Academic/Plenum Publishers, New York, 29-55.
  18. Gatto, L.W. 2000. Soil freeze-thaw-induced changes to a simulated rill: potential impacts on soil erosion. Geomorphology 32, 147-160. https://doi.org/10.1016/S0169-555X(99)00092-6.
  19. Golledge, N. R. 2014. Selective erosion beneath the Antarctic Peninsula Ice Sheet during LGM retreat. Antarctic Science 26(6): 698-707.
  20. Hao, X., Wang, J., Che, T., et al. 2009. The spatial distribution and properties of snow cover in Binggou watershed, Qilian mountains: measurement and analysis. Journal of Glaciology and Geocryology 31(2): 284-292. (in Chinese with English abstract).
  21. Hayhoe, H. N., Pelletier, R. G., & Coote, D. R. 1995. Estimating snowmelt runoff erosion indixes for Canada. Journal of Soil and Water Conservation 50(2): 174-179.
  22. Hinzman, L. D., Bettez, N. D., Bolton, W. R., et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72(3): 251-298. https://doi.org/10.1007/s10584-005-5352-2.
  23. Immerzeel, W. W., Lutz, A. F., Andrade, M., et al. 2020. Importance and vulnerability of the world’s water towers. Nature 577(7790): 364-369. https://doi-org-443.webvpn.las.ac.cn/10.1038/s41586-019-1822-y.
  24. Jamshidi, R. J., & Lake, C. B. 2015. Hydraulic and strength properties of unexposed and freeze-thaw exposed cement-stabilized soils. Canadian Geotechnical Journal 52(3), 283-294. https://doi.org/10.1139/cgj-2014-0100.
  25. Kok, H., & McCool, D. K. 1990. Freeze-thaw effects on soil strength. In Proceedings of the International Symposium on Frozen Soil Impacts on Agricultural, Range and Forest Lands, Cooley KR (ed.). US Army Cold Regions Research Engineering Laboratory Special Report 90(1): 70-76.
  26. Kvaerno, S. H., & Oygarden, L. 2006. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 67(3): 175-182. https://doi.org/10.1016/j.catena.2006.03.011.
  27. Lawler, D. M., 1993. Needle ice processes and sediment mobilization on river banks: The River Iliston, West Glamorgan, United Kingdom. Journal of Hydrology 150: 81-114. https://doi.org/10.1016/0022-1694(93)90157-5.
  28. Lentz, R. D., Dowdy, R. H., Rust, R. H. 1993. Soil property patterns and topographic parameters associated with ephemeral gully erosion. Journal of Soil and Water Conservation 48(4): 354-361.
  29. Liu, H., Yang, Y., Zhang, K., et al. 2017. Soil erosion as affected by freeze-thaw regime and initial soil moisture content. Soil Science Society of America Journal 81: 459-467. doi:10.2136/sssaj2016.08.0271.
  30. Lundekvam, H. 2001. ERONOR/ USLENO, new empirical erosion models for Norwegian conditions. International Symposium on Snowmelt Erosion and Related Problems, Oslo, Norway. 28-30.
  31. Nishimura, T., Kamachi, N., Imoto, H., Mizoguchi, M., Miyazaki T. 2011. Prefreeze soil moisture and compaction affect water erosion in partially melted Andisols. Soil Science Society of America Journal 75: 691-698. doi:10.2136/sssaj2010.0226.
  32. Ollesch, G., Sukhanovski, Y., Kistner, I., & Rode, M. 2005. Characterization and modelling of the spatial heterogeneity of snowmelt erosion. Earth Surface Processes and Landforms 30(2): 197-211. https://doi.org/10.1002/esp.1175.
  33. Oztas, T. & Fayetorbay, F. 2003. Effect of freezing and thawing processes on soil aggregate stability. Catena 52(1): 1-8. https://doi.org/10.1016/S0341-8162(02)00177-7.
  34. Pall, R., Dickinson, W.T., Green, D., and McGirr, R. 1982. Impacts of soil characteristics on soil erodibility: Recent developments in the explanation and prediction of erosion and sediment yield. IAHS Publ. No. 137: 39-47.
  35. Seyfried, M. S., & Flerchinger, G. N. 1994. Influence of frozen soil on rangeland erosion. In: Blackburn, W.H. et al. (Eds.), Variability of Rangeland Water Erosion Processes. Soil Sci. Soc. Am. Spec. Publ. 38: 67-82.
  36. Sharratt, B. S., Lindstrom, M. J., Benoit, G. R., Young, R. A., & Wilts, A. 2000. Runoff and soil erosion during spring thaw in the northern US cornbelt. Journal of Soil and Water Conservation 55(4): 487-494.
  37. Shi, X., Zhang, F., Wang, L., et al. 2020. Experimental study on the effects of multiple factors on spring meltwater erosion on alpine meadow slope. International Soil and Water Conservation Research 8, 116-123. https://doi.org/10.1016/j.iswcr.2020.02.001.
  38. Tsutsumi, D., & Fujita, M. 2016. Field observations, experiments, and modeling of sediment production from freeze and thaw action on a bare, weathered granite slope in a temperate region of Japan. Geomorphology 267: 37-47. https://doi.org/10.1016/j.geomorph.2016.05.020.
  39. Van Klaveren, R. W., & McCool, D. K. 1998. Erodibility and critical shear of a previously frozen soil. Transactions of the ASAE 41(5): 1315-1321.
  40. Vasilyev, A. 1994. Modelling wash-off and leaching of pollutants by spring-time flow. Journal of Hydrology 159: 215-222. https://doi.org/10.1016/0022-1694(94)90257-7.
  41. Vliet, L. V., & Hall, J. W. 1991. Effect s of two crop rotations on seasonal runoff and soil loss in the Peace River region. Canadian Journal of Soil Science 71(4): 533-543.
  42. Wang, E., Cruse, R. M., Chen, X. W., et al. 2017. Effects of moisture condition and freeze /thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science 92(3): 529.
  43. Wang, T., Li, P., Hou, J., et al. 2018. Response of the meltwater erosion to runoff energy consumption on loessal slopes. Water 10, 1522. doi:10.3390/w10111522.
  44. Wei, X., Huang, C., Wei, N., Zhao, H., He, Y., Wu, X. 2019. The impact of freeze–thaw cycles and soil moisture content at freezing on runoff and soil loss. Land Degradation and Development 30: 515-523.
  45. Wischmeier, W. H., & Smith, D. D. 1978. Predicting rainfall erosion losses - a guide to conservation planning. Agric Handbook, 537.
  46. Wu, Y., Ouyang, W., Hao, Z., Yang, B., & Wang L. 2018. Snowmelt water drives higher soil erosion than rainfall water in amid-high latitude upland watershed. Journal of Hydrology 556: 438-448. https://doi.org/10.1016/j.jhydrol.2017.11.037.
  47. Xiao, X., Zhang, F., Zeng, C., et al. 2020. Plot-scale runoff generation processes and influence factors in permafrost-dominated catchment, Tibetan Plateau. Journal of Hydrology 124966. https://doi.org/10.1016/j.jhydrol.2020.124966.
  48. Yang, Z., Yang, Z., Liang F., et al. 1993. Permafrost hydrological processes in Binggou Basin of Qilian Mountains. Journal of Glaciology and Geocryology 15(2): 235-241. (in Chinese with English abstract).
  49. Žabenská, A. & Dumbrovský, M. 2015. Changes of soil aggregate stability as a result of the effect of freeze-thaw cycles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 63(4): 1211-1218. https://doi.org/10.11118/actaun201563041211.
  50. Zhang, J., Lei, T., Qu, L., Zhang, M., Chen, P., Gao, X., Chen, C., Yuan, L. 2019. Method to quantitatively partition the temporal preferential flow and matrix infiltration in forest soil. Geoderma 347: 150-159.