References
- Ban, Y., Lei, T., Chen, C., Yin, Z., Qian, D. 2017. Meltwater erosion
process of frozen soil as affected by thawed depth under concentrated
flow in high altitude and cold regions. Earth Surface Processes and
Landforms 42, 2139-2146. doi: 10.1002/esp.4173.
- Ban, Y., Lei, T., Chen, C., & Liu, Z. 2016. Study on the facilities
and procedures for meltwater erosion of thawed soil. International
Soil and Water Conservation Research 142-147.
http://dx.doi.org/10.1016/j.iswcr.2016.04.003.
- Ban, Y., Lei, T., Liu, Z., & Chen, C. 2016. Comparison of rill flow
velocity over frozen and thawed slopes with electrolyte tracer method.
Journal of hydrology 534: 630-637.
https://doi.org/10.1016/j.jhydrol.2016.01.028.
- Barnes, N., Luffman, I., Nandi, A. 2016. Gully erosion and freeze-thaw
processes in clay-rich soils, northeast Tennessee, USA. GeoResJ 9-12:
67-76. http://dx.doi.org/10.1016/j.grj.2016.09.001.
- Bryan, R. B. 2000. Soil erodibility and processes of water erosion on
hillslope. Geomorphology 32(3): 385-415.
https://doi.org/10.1016/S0169-555X(99)00105-1.
- Chen, C., Ban, Y, Lei, T, Feng, R., & Gao Y. 2018. Water flow
velocity over frozen and nonfrozen black soil slopes. Hydrological
Processes 32: 2231-2238. https://doi.org/10.1002/hyp.13159.
- Chow, T. L., Rees, H. W., & Monteith, J. 2000. Seasonal distribution
of runoff and soil loss under four tillage treatments in the upper St.
John River valley New Brunswick, Canada. Canadian Journal of Soil
Science 80(4): 649-660.
- Demidov, V. V., Ostroumov, V. Y., Nikitishena, I. A., et al. 1995.
Seasonal freezing and soil erosion during snowmelt. Eurasian Soil
Science 28: 78-87.
- Edwards, L. M., Burney, J. R., & Frame, P. A. 1995. Rill sediment
transport on a Prince Edward Island (Canada) fine sandy loam. Soil
Technology 8: 127-138.
- Edwards, L. M., Burney, J. R., and Frame, P. A. 1994. Relationships
between rill sediment and flow time varying with freezing,
groundcover, compaction and slope on a Prince Edward Island (Canada)
fine sandy loam. Variability in Stream Erosion and Sediment Transport.
Proceedings of the Canberra Symposium. pp. 33-41.
- Emmanuel, J. G., Douglas, W. B., & Beth, P. S. 2008. Modern erosion
rates in the High Himalayas of Nepal. Earth and Planetary Science
Letters 267: 482-494. https://doi.org/10.1002/esp.1209.
- Fan, H. M., Wu, M., & Zhou, L. L. 2010. Study on sloping land
snowmelt erosion affected by thaw depth of near-surface meadow soil.
Journal of Soil and Water Conservation 24(6): 28-31 (in Chinese with
English abstract).
- Ferrick, M. G., & Gatto, L. W. 2005. Quantifying the effect of a
freeze-thaw cycle on soil erosion: laboratory experiments. Earth
Surface Processes and Landforms 30(10): 1305-1326.
- Flanagan, D., & Nearing, M. 1995. USDA-water Erosion Prediction
Project: Hillslope profile and watershed model documentation, NSERL
Report No. 10. USDA-ARS National Soil Erosion Research Laboratory,
West Lafayette.
- Formanek, G. E., Mccool, D. K. & Papendick, R. I. 1984. Freeze-thaw
and consolidation effects on strength of a wet silt loam. Transactions
of the ASAE 27(6): 1749-1752.
- Gao, X., Li, F., Chen, C., Ban, Y., & Gao, Y. 2019. Effects of thawed
depth on the sediment transport capacity by melt water on partially
thawed black soil slope. Land Degradation and Development 30: 84-93.
- Gatto, L. W., Halvorson, J. J., McCool, D. K., et al. 2001. Effects of
freeze-thaw cycling on soil erosion. Landscape Erosion and evolution
modeling, edited by Harmon & and Doe III, Kluwer Academic/Plenum
Publishers, New York, 29-55.
- Gatto, L.W. 2000. Soil freeze-thaw-induced changes to a simulated
rill: potential impacts on soil erosion. Geomorphology 32, 147-160.
https://doi.org/10.1016/S0169-555X(99)00092-6.
- Golledge, N. R. 2014. Selective erosion beneath the Antarctic
Peninsula Ice Sheet during LGM retreat. Antarctic Science 26(6):
698-707.
- Hao, X., Wang, J., Che, T., et al. 2009. The spatial distribution and
properties of snow cover in Binggou watershed, Qilian mountains:
measurement and analysis. Journal of Glaciology and Geocryology 31(2):
284-292. (in Chinese with English abstract).
- Hayhoe, H. N., Pelletier, R. G., & Coote, D. R. 1995. Estimating
snowmelt runoff erosion indixes for Canada. Journal of Soil and Water
Conservation 50(2): 174-179.
- Hinzman, L. D., Bettez, N. D., Bolton, W. R., et al. 2005. Evidence
and implications of recent climate change in northern Alaska and other
arctic regions. Climatic Change 72(3): 251-298.
https://doi.org/10.1007/s10584-005-5352-2.
- Immerzeel, W. W., Lutz, A. F., Andrade, M., et al. 2020. Importance
and vulnerability of the world’s water towers. Nature 577(7790):
364-369.
https://doi-org-443.webvpn.las.ac.cn/10.1038/s41586-019-1822-y.
- Jamshidi, R. J., & Lake, C. B. 2015. Hydraulic and strength
properties of unexposed and freeze-thaw exposed cement-stabilized
soils. Canadian Geotechnical Journal 52(3), 283-294.
https://doi.org/10.1139/cgj-2014-0100.
- Kok, H., & McCool, D. K. 1990. Freeze-thaw effects on soil strength.
In Proceedings of the International Symposium on Frozen Soil Impacts
on Agricultural, Range and Forest Lands, Cooley KR (ed.). US Army Cold
Regions Research Engineering Laboratory Special Report 90(1): 70-76.
- Kvaerno, S. H., & Oygarden, L. 2006. The influence of freeze-thaw
cycles and soil moisture on aggregate stability of three soils in
Norway. Catena 67(3): 175-182.
https://doi.org/10.1016/j.catena.2006.03.011.
- Lawler, D. M., 1993. Needle ice processes and sediment mobilization on
river banks: The River Iliston, West Glamorgan, United Kingdom.
Journal of Hydrology 150: 81-114.
https://doi.org/10.1016/0022-1694(93)90157-5.
- Lentz, R. D., Dowdy, R. H., Rust, R. H. 1993. Soil property patterns
and topographic parameters associated with ephemeral gully erosion.
Journal of Soil and Water Conservation 48(4): 354-361.
- Liu, H., Yang, Y., Zhang, K., et al. 2017. Soil erosion as affected by
freeze-thaw regime and initial soil moisture content. Soil Science
Society of America Journal 81: 459-467. doi:10.2136/sssaj2016.08.0271.
- Lundekvam, H. 2001. ERONOR/ USLENO, new empirical erosion models for
Norwegian conditions. International Symposium on Snowmelt Erosion and
Related Problems, Oslo, Norway. 28-30.
- Nishimura, T., Kamachi, N., Imoto, H., Mizoguchi, M., Miyazaki T.
2011. Prefreeze soil moisture and compaction affect water erosion in
partially melted Andisols. Soil Science Society of America Journal 75:
691-698. doi:10.2136/sssaj2010.0226.
- Ollesch, G., Sukhanovski, Y., Kistner, I., & Rode, M. 2005.
Characterization and modelling of the spatial heterogeneity of
snowmelt erosion. Earth Surface Processes and Landforms 30(2):
197-211. https://doi.org/10.1002/esp.1175.
- Oztas, T. & Fayetorbay, F. 2003. Effect of freezing and thawing
processes on soil aggregate stability. Catena 52(1): 1-8.
https://doi.org/10.1016/S0341-8162(02)00177-7.
- Pall, R., Dickinson, W.T., Green, D., and McGirr, R. 1982. Impacts of
soil characteristics on soil erodibility: Recent developments in the
explanation and prediction of erosion and sediment yield. IAHS Publ.
No. 137: 39-47.
- Seyfried, M. S., & Flerchinger, G. N. 1994. Influence of frozen soil
on rangeland erosion. In: Blackburn, W.H. et al. (Eds.), Variability
of Rangeland Water Erosion Processes. Soil Sci. Soc. Am. Spec. Publ.
38: 67-82.
- Sharratt, B. S., Lindstrom, M. J., Benoit, G. R., Young, R. A., &
Wilts, A. 2000. Runoff and soil erosion during spring thaw in the
northern US cornbelt. Journal of Soil and Water Conservation 55(4):
487-494.
- Shi, X., Zhang, F., Wang, L., et al. 2020. Experimental study on the
effects of multiple factors on spring meltwater erosion on alpine
meadow slope. International Soil and Water Conservation Research 8,
116-123. https://doi.org/10.1016/j.iswcr.2020.02.001.
- Tsutsumi, D., & Fujita, M. 2016. Field observations, experiments, and
modeling of sediment production from freeze and thaw action on a bare,
weathered granite slope in a temperate region of Japan. Geomorphology
267: 37-47. https://doi.org/10.1016/j.geomorph.2016.05.020.
- Van Klaveren, R. W., & McCool, D. K. 1998. Erodibility and critical
shear of a previously frozen soil. Transactions of the ASAE 41(5):
1315-1321.
- Vasilyev, A. 1994. Modelling wash-off and leaching of pollutants by
spring-time flow. Journal of Hydrology 159: 215-222.
https://doi.org/10.1016/0022-1694(94)90257-7.
- Vliet, L. V., & Hall, J. W. 1991. Effect s of two crop rotations on
seasonal runoff and soil loss in the Peace River region. Canadian
Journal of Soil Science 71(4): 533-543.
- Wang, E., Cruse, R. M., Chen, X. W., et al. 2017. Effects of moisture
condition and freeze /thaw cycles on surface soil aggregate size
distribution and stability. Canadian Journal of Soil Science 92(3):
529.
- Wang, T., Li, P., Hou, J., et al. 2018. Response of the meltwater
erosion to runoff energy consumption on loessal slopes. Water 10,
1522. doi:10.3390/w10111522.
- Wei, X., Huang, C., Wei, N., Zhao, H., He, Y., Wu, X. 2019. The impact
of freeze–thaw cycles and soil moisture content at freezing on runoff
and soil loss. Land Degradation and Development 30: 515-523.
- Wischmeier, W. H., & Smith, D. D. 1978. Predicting rainfall erosion
losses - a guide to conservation planning. Agric Handbook, 537.
- Wu, Y., Ouyang, W., Hao, Z., Yang, B., & Wang L. 2018. Snowmelt water
drives higher soil erosion than rainfall water in amid-high latitude
upland watershed. Journal of Hydrology 556: 438-448.
https://doi.org/10.1016/j.jhydrol.2017.11.037.
- Xiao, X., Zhang, F., Zeng, C., et al. 2020. Plot-scale runoff
generation processes and influence factors in permafrost-dominated
catchment, Tibetan Plateau. Journal of Hydrology 124966.
https://doi.org/10.1016/j.jhydrol.2020.124966.
- Yang, Z., Yang, Z., Liang F., et al. 1993. Permafrost hydrological
processes in Binggou Basin of Qilian Mountains. Journal of Glaciology
and Geocryology 15(2): 235-241. (in Chinese with English abstract).
- Žabenská, A. & Dumbrovský, M. 2015. Changes of soil aggregate
stability as a result of the effect of freeze-thaw cycles. Acta
Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
63(4): 1211-1218. https://doi.org/10.11118/actaun201563041211.
- Zhang, J., Lei, T., Qu, L., Zhang, M., Chen, P., Gao, X., Chen, C.,
Yuan, L. 2019. Method to quantitatively partition the temporal
preferential flow and matrix infiltration in forest soil. Geoderma
347: 150-159.