Conflict of interest
The authors have no conflict of interest.
References
Bleby, T., McElrone, A., & Burgess, S. (2008). Limitations of the
HRM: great at low flow rates, but not yet up to speed. Paper presented
at the 7th International Workshop on Sap Flow: Book of
Abstracts’.(International Society of Horticultural Sciences: Seville,
Spain).
Buckley, T. N., Turnbull, T. L., Pfautsch, S., & Adams, M. A. (2011).
Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall
open forests and adjacent E. pauciflora woodlands. Ecology and
Evolution, 1 (3), 435-450. doi:10.1002/ece3.44
Buckley, T. N., Turnbull, T. L., Pfautsch, S., Gharun, M., & Adams, M.
A. (2012). Differences in water use between mature and post-fire
regrowth stands of subalpine Eucalyptus delegatensis R. Baker.Forest Ecology and Management, 270 , 1-10.
Burgess, S. S., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K.,
Khan, A. A., & Bleby, T. M. (2001). An improved heat pulse method to
measure low and reverse rates of sap flow in woody plants. Tree
Physiology, 21 (9), 589-598.
Cermak, J., Kucera, J., Bauerle, W. L., Phillips, N., & Hinckley, T. M.
(2007). Tree water storage and its diurnal dynamics related to sap flow
and changes in stem volume in old-growth Douglas-fir trees. Tree
Physiology, 27 (2), 181-198. doi:10.1093/treephys/27.2.181
Chen, X., Miller, G. R., Rubin, Y., & Baldocchi, D. D. (2012). A
statistical method for estimating wood thermal diffusivity and probe
geometry using in situ heat response curves from sap flow measurements.Tree Physiology, 32 (12), 1458-1470.
Chuang, Y. L., Oren, R., Bertozzi, A. L., Phillips, N., & Katul, G. G.
(2006). The porous media model for the hydraulic system of a conifer
tree: Linking sap flux data to transpiration rate. Ecological
Modelling, 191 (3-4), 447-468. doi:10.1016/j.ecolmodel.2005.03.027
Clearwater, M., Meinzer, F., Andrade, J., Goldstein, G., & Holbrook, N.
(1999). Potential errors in measurement of nonuniform sap flow using
heat dissipation probes. Tree Physiology, 19 (10), 681-687.
Cohen, Y., Fuchs, M., & Green, G. (1981). Improvement of the heat pulse
method for determining sap flow in trees. Plant, Cell &
Environment, 4 (5), 391-397.
Deng, Z., Guan, H., Hutson, J., Forster, M. A., Wang, Y., & Simmons, C.
T. (2017). A vegetation‐focused soil‐plant‐atmospheric‐continuum model
to study hydrodynamic soil‐plant water relations. Water Resources
Research .
Edwards, W. R. N., Becker, P., & Èermák, J. (1996). A unified
nomenclature for sap flow measurements. Tree Physiology, 17 (1),
3.
Flo, V., Martinez-Vilalta, J., Steppe, K., Schuldt, B., & Poyatos, R.
(2019). A synthesis of bias and uncertainty in sap flow methods.Agricultural and Forest Meteorology, 271 , 362-374.
doi:10.1016/j.agrformet.2019.03.012
Granier, A. (1985). Une nouvelle méthode pour la mesure du flux de
sève brute dans le tronc des arbres. Paper presented at the Annales des
Sciences forestières.
Green, S., & Clothier, B. (1988). Water use of kiwifruit vines and
apple trees by the heat-pulse technique. Journal of Experimental
Botany, 39 (1), 115-123.
Green, S., Clothier, B., & Jardine, B. (2003). Theory and practical
application of heat pulse to measure sap flow. Agronomy Journal,
95 (6), 1371-1379.
Kluitenberg, G. J., & Ham, J. M. (2004). Improved theory for
calculating sap flow with the heat pulse method. Agricultural and
Forest Meteorology, 126 (1), 169-173.
Lopez-Bernal, A., Alcantara, E., Testi, L., & Villalobos, F. (2010).
Spatial sap flow and xylem anatomical characteristics in olive trees
under different irrigation regimes. Tree Physiology, 30 (12),
1536-1544. doi:10.1093/treephys/tpq095
López-Bernal, Á., Alcántara, E., & Villalobos, F. J. (2014). Thermal
properties of sapwood of fruit trees as affected by anatomy and water
potential: errors in sap flux density measurements based on heat pulse
methods. Trees, 28 (6), 1623-1634.
Marshall, D. (1958). Measurement of sap flow in conifers by heat
transport. Plant Physiology, 33 (6), 385.
Nadezhdina, N., Cermak, J., & Nadezhdin, V. (1998). Heat field
deformation method for sap flow measurements. Paper presented at the
Measuring sap flow in intact plants. Proceedings of 4th International
Workshop, Židlochovice, Czech Republic, IUFRO Publ. Brno, Czech
Republic: Mendel University.
Pearsall, K. R., Williams, L. E., Castorani, S., Bleby, T. M., &
McElrone, A. J. (2014). Evaluating the potential of a novel dual
heat-pulse sensor to measure volumetric water use in grapevines under a
range of flow conditions. Functional Plant Biology, 41 (8),
874-883. doi:https://doi.org/10.1071/FP13156
Pfautsch, S., Keitel, C., Turnbull, T. L., Braimbridge, M. J., Wright,
T. E., Simpson, R. R., . . . Adams, M. A. (2011). Diurnal patterns of
water use in Eucalyptus victrix indicate pronounced
desiccation-rehydration cycles despite unlimited water supply.Tree Physiology, 31 (10), 1041-1051. doi:10.1093/treephys/tpr082
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of
xylem sap flow in non-, diffuse- and ring-porous tree species.Plant Cell and Environment, 19 (8), 983-990.
doi:10.1111/j.1365-3040.1996.tb00463.x
Poyatos, R., Cermak, J., & Llorens, P. (2007). Variation in the radial
patterns of sap flux density in pubescent oak (Quercus pubescens) and
its implications for tree and stand transpiration measurements.Tree Physiology, 27 (4), 537-548. doi:10.1093/treephys/27.4.537
Steppe, K., Vandegehuchte, M., Tognetti, R., & Mencuccini, M. (2015).
Sap flow as a key trait in the understanding of plant hydraulic
functioning. Tree Physiology, 35 (4), 341-345.
doi:10.1093/treephys/tpv033
Testi, L., & Villalobos, F. J. (2009). New approach for measuring low
sap velocities in trees. Agricultural and Forest Meteorology,
149 (3), 730-734.
Vandegehuchte, M. W., & Steppe, K. (2012a). A triple-probe heat-pulse
method for measurement of thermal diffusivity in trees.Agricultural and Forest Meteorology, 160 , 90-99.
Vandegehuchte, M. W., & Steppe, K. (2012b). Improving sap flux density
measurements by correctly determining thermal diffusivity,
differentiating between bound and unbound water. Tree Physiol,
32 (7), 930-942.
Vandegehuchte, M. W., & Steppe, K. (2012c). Sapflow+: a four‐needle
heat‐pulse sap flow sensor enabling nonempirical sap flux density and
water content measurements. New Phytologist, 196 (1), 306-317.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., &
Wullschleger, S. D. (2001). A comparison of methods for determining
forest evapotranspiration and its components: sap-flow, soil water
budget, eddy covariance and catchment water balance. Agricultural
and Forest Meteorology, 106 (2), 153-168.
Supporting Information
The supporting information includes Methods S1 to S4, Figure S1-S6,
Table S1-S3, Notes S1. Methods S3 includes Figure S7, S8 & S9.