Bibliography
Ament, K., Kant, M.R., Sabelis, M.W., Haring, M.A., and Schuurink, R.C. (2004). Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant physiology 135 : 2025–37.
Arofatullah, N.A., Hasegawa, M., Tanabata, S., Ogiwara, I., and Sato, T. (2018). Heat Shock-Induced Resistance Against Pseudomonas syringae pv. tomato (Okabe) Young et al. via Heat Shock Transcription Factors in Tomato. Agronomy 9 : 2.
Atkinson, N. and Urwin, P. (2012). The Interaction of Plant Biotic and Abiotic Stresses: From Genes to the Field. Journal of experimental botany 63 .
Aver’yanov, A.A., Lapikova, V.P., and Djawakhia, V.G. (1993). Active oxygen mediates heat-induced resistance of rice plant to blast disease. Plant Science 92 : 27–34.
Baniwal, S.K. et al. (2004). Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences 29 : 471–487.
Bar, M. and Avni, A. (2009). EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. The Plant Journal 59 : 600–611.
Boston, R.S., Viitanen, P. V., and Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Molecular Biology 32 : 191–222.
Brading, P.A., Hammond-Kosack, K.E., Parr, A., and Jones, J.D.G. (2000). Salicylic acid is not required for Cf-2 - andCf-9 -dependent resistance of tomato to Cladosporium fulvum . The Plant Journal 23 : 305–318.
Cappetta, E., Andolfo, G., Di Matteo, A., and Ercolano, M.R.(2020). Empowering crop resilience to environmental multiple stress through the modulation of key response components. Journal of Plant Physiology 246247 .
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143 : 251–262.
Ciardi, J.A., Tieman, D.M., Lund, S.T., Jones, J.B., Stall, R.E., and Klee, H.J. (2000). Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant physiology 123 : 81–92.
Cui, H., Sun, Y., Zhao, Z., and Zhang, Y. (2019). The Combined Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness of Bemisia tabaci Mediterranean on Tomato Plants. Environmental Entomology.
D’haene, B., Vandesompele, J., and Hellemans, J. (2010). Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50 : 262–270.
di Donato, M. and Geisler, M. (2019). HSP90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Letters593 : 1415–1430.
Elad, Y. (2018). Disease management: Disease suppression by cultural means and through biocontrol. Acta Horticulturae 1207 : 105–113.
Elad, Y., Omer, C., Nisan, Z., Harari, D., Goren, H., Adler, U., Silverman, D., and Biton, S. (2016a). Passive heat treatment of sweet basil crops suppresses Peronospora belbahrii downy mildew. Annals of Applied Biology 168 : 373–389.
Elad, Y., Pertot, I., Cotes Prado, A.M., and Stewart, A.(2016b). Plant Hosts of Botrytis spp. In Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems (Springer International Publishing: Cham), pp. 413–486.
Elad, Y., Rav David, D., Israeli, L., and Fogel, M. (2017). Passive heat treatment of sweet basil crops suppresses white mould and grey mould. Plant Pathology 66 : 105–114.
Elbaz, M., Avni, A., and Weil, M. (2002). Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death and Differentiation 9 : 726–733.
Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal 18 : 265–276.
Fragkostefanakis, S., Mesihovic, A., Simm, S., Paupière, M.J., Hu, Y., Paul, P., Mishra, S.K., Tschiersch, B., Theres, K., Bovy, A., Schleiff, E., and Scharf, K.-D. (2016). HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues. Plant Physiology 170 : 2461–2477.
Harel, Y.M., Mehari, Z.H., Rav-David, D., and Elad, Y. (2014). Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104 : 150–157.
Iberkleid, I., Ozalvo, R., Feldman, L., Elbaz, M., Patricia, B., and Horowitz, S.B. (2014). Responses of Tomato Genotypes to Avirulent and Mi -Virulent Meloidogyne javanica Isolates Occurring in Israel. Phytopathology 104 : 484–496.
Jacob, D., Rav David, D., Sztjenberg, A., and Elad, Y. (2008). Conditions for Development of Powdery Mildew of Tomato Caused by Oidium neolycopersici. Phytopathology 98 : 270–281.
Jacob, P., Hirt, H., and Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15 : 405–414.
Janda, M., Lamparová, L., Zubíková, A., Burketová, L., Martinec, J., and Krčková, Z. (2019). Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana. Molecular Plant Pathology 20 : 1005–1012.
Jones, R., Jackson, A., and Morris, T. (1990). Defective-interfering RNAs and Elevated Temperatures Inhibit Replication of Tomato Bushy Stunt Virus in Inoculated Protoplasts. Virology176 .
Kumar, M., Busch, W., Birke, H., Kemmerling, B., Nürnberger, T., and Schöffl, F. (2009). Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Molecular Plant 2 : 152–165.
Lee, H., Gal, S., Newman, T., Raikhel, N., Roux, M., Chinchilla, D., Zipfel, C., and Jones, J.D.G. (2009). The Arabidopsis endoplasmic reticulum retention receptor functions in yeast. PNAS 90 : 11433–11437.
Leibman-Markus, M., Schuster, S., and Avni, A. (2017a). LeEIX2 Interactors’ Analysis and EIX-Mediated Responses Measurement. In Methods in molecular biology (Clifton, N.J.), pp. 167–172.
Leibman-Markus, M., Schuster, S., and Avni, A. (2017b). LeEIX2 Interactors’ Analysis and EIX-Mediated Responses Measurement. In Plant Pattern Recognition Receptors: Methods and Protocols, L. Shan and P. He, eds (Springer New York: New York, NY), pp. 167–172.
Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H., Zhang, Y., and Liang, Y. (2017). SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLOS ONE 12 : e0172466.
Lin, W., Lu, C., Wu, J., Cheng, M., Lin, Y., Yang, N., Black, L., Green, S., Wang, J., and Cheng, C. (2004). Transgenic Tomato Plants Expressing the Arabidopsis NPR1 Gene Display Enhanced Resistance to a Spectrum of Fungal and Bacterial Diseases. Transgenic research13 .
Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004). Molecular Chaperone Hsp90 Associates with Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to Modulate an Innate Immune Response in Plants. Journal of Biological Chemistry 279 : 2101–2108.
López-Ráez, J.A., Verhage, A., Fernández, I., García, J.M., Azcón-Aguilar, C., Flors, V., and Pozo, M.J. (2010). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany 61 : 2589–2601.
Lund, S.T., Stall, R.E., and Klee, H.J. (1998). Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10 : 371–382.
Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M.J., Jung, S.C., Pascual, J.A., and Pozo, M.J. (2013). Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science 4 : 206.
Mehari, Z.H., Elad, Y., Rav-David, D., Graber, E.R., and Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil 395 : 31–44.
Moss, W.P., Byrne, J.M., Campbell, H.L., Ji, P., Bonas, U., Jones, J.B., and Wilson, M. (2007). Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biological Control 41 : 199–206.
Nekrasov, V. et al. (2009). Control of the Pattern-Recognition Receptor EFR by an ER Protein Complex in Plant Immunity. The EMBO journal 28 .
O’Donnell, P.J., Jones, J.B., Antoine, F.R., Ciardi, J., and Klee, H.J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal25 : 315–323.
O’Donnell, P.J., Schmelz, E., Block, A., Miersch, O., Wasternack, C., Jones, J.B., and Klee, H.J. (2003). Multiple Hormones Act Sequentially to Mediate a Susceptible Tomato Pathogen Defense Response. Plant Physiology 133 : 1181.
Park, C.-J. and Seo, Y.-S. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. The Plant Pathology Journal 31 .
Piterková, J., Luhová, L., Mieslerová, B., Lebeda, A., and Petřivalský, M. (2013). Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Science207 : 57–65.
Prasch, C.M. and Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant physiology 162 : 1849–66.
Qayoum, A. and Line, R. (1985). High-Temperature, Adult-Plant Resistance to Stripe Rust of Wheat. Phytopathology 75 : 1121.
Ron, M., Kantety, R., Martin, G.B., Avidan, N., Eshed, Y., Zamir, D., and Avni, A. (2000). High-resolution linkage analysis and physical characterization of the EIX-responding locus in tomato. Theor. Appl. Genet. 100 : 184–189.
Saijo, Y. and Loo, E.P. iian (2020). Plant immunity in signal integration between biotic and abiotic stress responses. New Phytologist225 : 87–104.
Saijo, Y., Loo, E.P. iian, and Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal 93 : 592–613.
Sato, T., Kubo, M., and Watanabe, S. (2003). Heat shock induces a systemic acquired resistance (SAR)-related gene via salicylic acid accumulation in cucumber (Cucumis sativus L.). Japanese Journal of Tropical Agriculture 47 : 77–82.
Segonzac, C. and Zipfel, C. (2011). Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology 14 : 54–61.
Sharon, A., Fuchs, Y., and Anderson, J.D. (1993). The Elicitation of Ethylene Biosynthesis by a Trichoderma Xylanase Is Not Related to the Cell Wall Degradation Activity of the Enzyme. Plant physiology 102 : 1325–1329.
Shtienberg, D., Elad, Y., Bornstein, M., Ziv, G., Grava, A., and Cohen, S. (2010). Polyethylene mulch modifies greenhouse microclimate and reduces infection of Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Phytopathology 100 : 97–104.
Snyman, M. and Cronjé, M.J. (2008). Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. Journal of Experimental Botany 59 : 2125–2132.
Suzuki, N. and Katano, K. (2018). Coordination between ROS regulatory systems and other pathways under heat stress and pathogen attack. Frontiers in Plant Science 9 .
Thara, V.K., Tang, X., Gu, Y.Q., Martin, G.B., and Zhou, J.-M.(1999). Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. The Plant Journal 20 : 475–483.
Vallélian-Bindschedler, L., Schweizer, P., Mösinger, E., and Métraux, J.P. (1998). Heat-induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species. Physiological and Molecular Plant Pathology52 : 185–199.
Widiastuti, A., Yoshino, M., Hasegawa, M., Nitta, Y., and Sato, T. (2013). Heat shock-induced resistance increases chitinase-1 gene expression and stimulates salicylic acid production in melon (Cucumis melo L.). Physiological and molecular plant pathology 82 : 51–55.
Xu, Y.P., Lv, L.H., Xu, Y.J., Yang, J., Cao, J.Y., and Cai, X.Z. (2018). Leaf stage-associated resistance is correlated with phytohormones in a pathosystem-dependent manner. Journal of Integrative Plant Biology 60 : 703–722.
Yang, X., Zhu, W., Zhang, H., Liu, N., and Tian, S. (2016). Heat shock factors in tomatoes: Genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. PeerJ 2016 .
Yeh, C.-H., Kaplinsky, N.J., Hu, C., and Charng, Y. (2012). Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Science 195 : 10–23.
Yu, J., Cheng, Y., Feng, K., Ruan, M., Ye, Q., Wang, R., Li, Z., Zhou, G., Yao, Z., Yang, Y., and Wan, H. (2016). Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Frontiers in Plant Science7 : 1–14.
Zhang, H. and Sonnewald, U. (2017). Differences and commonalities of plant responses to single and combined stresses. Plant Journal 90 : 839–855.
Zhou, F., Emonet, A., Dénervaud Tendon, V., Marhavy, P., Wu, D., Lahaye, T., and Geldner, N. (2020). Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots. Cell180 : 440–453.e18.
Zhu, Y., Qian, W., and Hua, J. (2010). Temperature Modulates Plant Defense Responses Through NB-LRR Proteins. PLoS pathogens6 .