Bibliography
Ament, K., Kant, M.R., Sabelis, M.W., Haring, M.A., and
Schuurink, R.C. (2004). Jasmonic acid is a key regulator of spider
mite-induced volatile terpenoid and methyl salicylate emission in
tomato. Plant physiology 135 : 2025–37.
Arofatullah, N.A., Hasegawa, M., Tanabata, S., Ogiwara, I., and
Sato, T. (2018). Heat Shock-Induced Resistance Against Pseudomonas
syringae pv. tomato (Okabe) Young et al. via Heat Shock Transcription
Factors in Tomato. Agronomy 9 : 2.
Atkinson, N. and Urwin, P. (2012). The Interaction of Plant
Biotic and Abiotic Stresses: From Genes to the Field. Journal of
experimental botany 63 .
Aver’yanov, A.A., Lapikova, V.P., and Djawakhia, V.G. (1993).
Active oxygen mediates heat-induced resistance of rice plant to blast
disease. Plant Science 92 : 27–34.
Baniwal, S.K. et al. (2004). Heat stress response in plants: A
complex game with chaperones and more than twenty heat stress
transcription factors. Journal of Biosciences 29 : 471–487.
Bar, M. and Avni, A. (2009). EHD2 inhibits ligand-induced
endocytosis and signaling of the leucine-rich repeat receptor-like
protein LeEix2. The Plant Journal 59 : 600–611.
Boston, R.S., Viitanen, P. V., and Vierling, E. (1996).
Molecular chaperones and protein folding in plants. Plant Molecular
Biology 32 : 191–222.
Brading, P.A., Hammond-Kosack, K.E., Parr, A., and Jones,
J.D.G. (2000). Salicylic acid is not required for Cf-2 - andCf-9 -dependent resistance of tomato to Cladosporium
fulvum . The Plant Journal 23 : 305–318.
Cappetta, E., Andolfo, G., Di Matteo, A., and Ercolano, M.R.(2020). Empowering crop resilience to environmental multiple stress
through the modulation of key response components. Journal of Plant
Physiology 246 –247 .
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N.,
Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription
factor, HsfA2, is required for extension of acquired thermotolerance in
Arabidopsis. Plant Physiology 143 : 251–262.
Ciardi, J.A., Tieman, D.M., Lund, S.T., Jones, J.B., Stall,
R.E., and Klee, H.J. (2000). Response to Xanthomonas campestris pv.
vesicatoria in tomato involves regulation of ethylene receptor gene
expression. Plant physiology 123 : 81–92.
Cui, H., Sun, Y., Zhao, Z., and Zhang, Y. (2019). The Combined
Effect of Elevated O3 Levels and TYLCV Infection Increases the Fitness
of Bemisia tabaci Mediterranean on Tomato Plants. Environmental
Entomology.
D’haene, B., Vandesompele, J., and Hellemans, J. (2010).
Accurate and objective copy number profiling using real-time
quantitative PCR. Methods 50 : 262–270.
di Donato, M. and Geisler, M. (2019). HSP90 and co-chaperones:
a multitaskers’ view on plant hormone biology. FEBS Letters593 : 1415–1430.
Elad, Y. (2018). Disease management: Disease suppression by
cultural means and through biocontrol. Acta Horticulturae 1207 :
105–113.
Elad, Y., Omer, C., Nisan, Z., Harari, D., Goren, H., Adler, U.,
Silverman, D., and Biton, S. (2016a). Passive heat treatment of sweet
basil crops suppresses Peronospora belbahrii downy mildew. Annals of
Applied Biology 168 : 373–389.
Elad, Y., Pertot, I., Cotes Prado, A.M., and Stewart, A.(2016b). Plant Hosts of Botrytis spp. In Botrytis – the Fungus, the
Pathogen and its Management in Agricultural Systems (Springer
International Publishing: Cham), pp. 413–486.
Elad, Y., Rav David, D., Israeli, L., and Fogel, M. (2017).
Passive heat treatment of sweet basil crops suppresses white mould and
grey mould. Plant Pathology 66 : 105–114.
Elbaz, M., Avni, A., and Weil, M. (2002). Constitutive
caspase-like machinery executes programmed cell death in plant cells.
Cell Death and Differentiation 9 : 726–733.
Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999).
Plants have a sensitive perception system for the most conserved domain
of bacterial flagellin. Plant Journal 18 : 265–276.
Fragkostefanakis, S., Mesihovic, A., Simm, S., Paupière, M.J.,
Hu, Y., Paul, P., Mishra, S.K., Tschiersch, B., Theres, K., Bovy, A.,
Schleiff, E., and Scharf, K.-D. (2016). HsfA2 Controls the Activity of
Developmentally and Stress-Regulated Heat Stress Protection Mechanisms
in Tomato Male Reproductive Tissues. Plant Physiology 170 :
2461–2477.
Harel, Y.M., Mehari, Z.H., Rav-David, D., and Elad, Y. (2014).
Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole
and Trichoderma harzianum T39. Phytopathology 104 :
150–157.
Iberkleid, I., Ozalvo, R., Feldman, L., Elbaz, M., Patricia, B.,
and Horowitz, S.B. (2014). Responses of Tomato Genotypes to Avirulent
and Mi -Virulent Meloidogyne javanica Isolates Occurring
in Israel. Phytopathology 104 : 484–496.
Jacob, D., Rav David, D., Sztjenberg, A., and Elad, Y. (2008).
Conditions for Development of Powdery Mildew of Tomato Caused by Oidium
neolycopersici. Phytopathology 98 : 270–281.
Jacob, P., Hirt, H., and Bendahmane, A. (2017). The heat-shock
protein/chaperone network and multiple stress resistance. Plant
Biotechnology Journal 15 : 405–414.
Janda, M., Lamparová, L., Zubíková, A., Burketová, L., Martinec,
J., and Krčková, Z. (2019). Temporary heat stress suppresses
PAMP-triggered immunity and resistance to bacteria in Arabidopsis
thaliana. Molecular Plant Pathology 20 : 1005–1012.
Jones, R., Jackson, A., and Morris, T. (1990).
Defective-interfering RNAs and Elevated Temperatures Inhibit Replication
of Tomato Bushy Stunt Virus in Inoculated Protoplasts. Virology176 .
Kumar, M., Busch, W., Birke, H., Kemmerling, B., Nürnberger, T.,
and Schöffl, F. (2009). Heat shock factors HsfB1 and HsfB2b are
involved in the regulation of Pdf1.2 expression and pathogen resistance
in Arabidopsis. Molecular Plant 2 : 152–165.
Lee, H., Gal, S., Newman, T., Raikhel, N., Roux, M., Chinchilla,
D., Zipfel, C., and Jones, J.D.G. (2009). The Arabidopsis endoplasmic
reticulum retention receptor functions in yeast. PNAS 90 :
11433–11437.
Leibman-Markus, M., Schuster, S., and Avni, A. (2017a). LeEIX2
Interactors’ Analysis and EIX-Mediated Responses Measurement. In Methods
in molecular biology (Clifton, N.J.), pp. 167–172.
Leibman-Markus, M., Schuster, S., and Avni, A. (2017b). LeEIX2
Interactors’ Analysis and EIX-Mediated Responses Measurement. In Plant
Pattern Recognition Receptors: Methods and Protocols, L. Shan and P. He,
eds (Springer New York: New York, NY), pp. 167–172.
Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H., Zhang,
Y., and Liang, Y. (2017). SlMAPK3 enhances tolerance to tomato yellow
leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid
signaling in tomato (Solanum lycopersicum). PLOS ONE 12 :
e0172466.
Lin, W., Lu, C., Wu, J., Cheng, M., Lin, Y., Yang, N., Black,
L., Green, S., Wang, J., and Cheng, C. (2004). Transgenic Tomato Plants
Expressing the Arabidopsis NPR1 Gene Display Enhanced Resistance to a
Spectrum of Fungal and Bacterial Diseases. Transgenic research13 .
Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and
Dinesh-Kumar, S.P. (2004). Molecular Chaperone Hsp90 Associates with
Resistance Protein N and Its Signaling Proteins SGT1 and Rar1 to
Modulate an Innate Immune Response in Plants. Journal of Biological
Chemistry 279 : 2101–2108.
López-Ráez, J.A., Verhage, A., Fernández, I., García, J.M.,
Azcón-Aguilar, C., Flors, V., and Pozo, M.J. (2010). Hormonal and
transcriptional profiles highlight common and differential host
responses to arbuscular mycorrhizal fungi and the regulation of the
oxylipin pathway. Journal of Experimental Botany 61 :
2589–2601.
Lund, S.T., Stall, R.E., and Klee, H.J. (1998). Ethylene
regulates the susceptible response to pathogen infection in tomato.
Plant Cell 10 : 371–382.
Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M.J., Jung,
S.C., Pascual, J.A., and Pozo, M.J. (2013). Deciphering the hormonal
signalling network behind the systemic resistance induced by Trichoderma
harzianum in tomato. Frontiers in Plant Science 4 : 206.
Mehari, Z.H., Elad, Y., Rav-David, D., Graber, E.R., and Meller
Harel, Y. (2015). Induced systemic resistance in tomato (Solanum
lycopersicum) against Botrytis cinerea by biochar amendment involves
jasmonic acid signaling. Plant and Soil 395 : 31–44.
Moss, W.P., Byrne, J.M., Campbell, H.L., Ji, P., Bonas, U.,
Jones, J.B., and Wilson, M. (2007). Biological control of bacterial
spot of tomato using hrp mutants of Xanthomonas campestris pv.
vesicatoria. Biological Control 41 : 199–206.
Nekrasov, V. et al. (2009). Control of the Pattern-Recognition
Receptor EFR by an ER Protein Complex in Plant Immunity. The EMBO
journal 28 .
O’Donnell, P.J., Jones, J.B., Antoine, F.R., Ciardi, J., and
Klee, H.J. (2001). Ethylene-dependent salicylic acid regulates an
expanded cell death response to a plant pathogen. The Plant Journal25 : 315–323.
O’Donnell, P.J., Schmelz, E., Block, A., Miersch, O.,
Wasternack, C., Jones, J.B., and Klee, H.J. (2003). Multiple Hormones
Act Sequentially to Mediate a Susceptible Tomato Pathogen Defense
Response. Plant Physiology 133 : 1181.
Park, C.-J. and Seo, Y.-S. (2015). Heat Shock Proteins: A
Review of the Molecular Chaperones for Plant Immunity. The Plant
Pathology Journal 31 .
Piterková, J., Luhová, L., Mieslerová, B., Lebeda, A., and
Petřivalský, M. (2013). Nitric oxide and reactive oxygen species
regulate the accumulation of heat shock proteins in tomato leaves in
response to heat shock and pathogen infection. Plant Science207 : 57–65.
Prasch, C.M. and Sonnewald, U. (2013). Simultaneous application
of heat, drought, and virus to Arabidopsis plants reveals significant
shifts in signaling networks. Plant physiology 162 : 1849–66.
Qayoum, A. and Line, R. (1985). High-Temperature, Adult-Plant
Resistance to Stripe Rust of Wheat. Phytopathology 75 : 1121.
Ron, M., Kantety, R., Martin, G.B., Avidan, N., Eshed, Y.,
Zamir, D., and Avni, A. (2000). High-resolution linkage analysis and
physical characterization of the EIX-responding locus in tomato. Theor.
Appl. Genet. 100 : 184–189.
Saijo, Y. and Loo, E.P. iian (2020). Plant immunity in signal
integration between biotic and abiotic stress responses. New Phytologist225 : 87–104.
Saijo, Y., Loo, E.P. iian, and Yasuda, S. (2018). Pattern
recognition receptors and signaling in plant–microbe interactions.
Plant Journal 93 : 592–613.
Sato, T., Kubo, M., and Watanabe, S. (2003). Heat shock induces
a systemic acquired resistance (SAR)-related gene via salicylic acid
accumulation in cucumber (Cucumis sativus L.). Japanese Journal of
Tropical Agriculture 47 : 77–82.
Segonzac, C. and Zipfel, C. (2011). Activation of plant
pattern-recognition receptors by bacteria. Current Opinion in
Microbiology 14 : 54–61.
Sharon, A., Fuchs, Y., and Anderson, J.D. (1993). The
Elicitation of Ethylene Biosynthesis by a Trichoderma Xylanase Is Not
Related to the Cell Wall Degradation Activity of the Enzyme. Plant
physiology 102 : 1325–1329.
Shtienberg, D., Elad, Y., Bornstein, M., Ziv, G., Grava, A., and
Cohen, S. (2010). Polyethylene mulch modifies greenhouse microclimate
and reduces infection of Phytophthora infestans in tomato and
Pseudoperonospora cubensis in cucumber. Phytopathology 100 :
97–104.
Snyman, M. and Cronjé, M.J. (2008). Modulation of heat shock
factors accompanies salicylic acid-mediated potentiation of Hsp70 in
tomato seedlings. Journal of Experimental Botany 59 :
2125–2132.
Suzuki, N. and Katano, K. (2018). Coordination between ROS
regulatory systems and other pathways under heat stress and pathogen
attack. Frontiers in Plant Science 9 .
Thara, V.K., Tang, X., Gu, Y.Q., Martin, G.B., and Zhou, J.-M.(1999). Pseudomonas syringae pv tomato induces the expression of tomato
EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and
jasmonate. The Plant Journal 20 : 475–483.
Vallélian-Bindschedler, L., Schweizer, P., Mösinger, E., and
Métraux, J.P. (1998). Heat-induced resistance in barley to powdery
mildew (Blumeria graminis f.sp. hordei) is associated with a burst of
active oxygen species. Physiological and Molecular Plant Pathology52 : 185–199.
Widiastuti, A., Yoshino, M., Hasegawa, M., Nitta, Y., and Sato,
T. (2013). Heat shock-induced resistance increases chitinase-1 gene
expression and stimulates salicylic acid production in melon (Cucumis
melo L.). Physiological and molecular plant pathology 82 :
51–55.
Xu, Y.P., Lv, L.H., Xu, Y.J., Yang, J., Cao, J.Y., and Cai,
X.Z. (2018). Leaf stage-associated resistance is correlated with
phytohormones in a pathosystem-dependent manner. Journal of Integrative
Plant Biology 60 : 703–722.
Yang, X., Zhu, W., Zhang, H., Liu, N., and Tian, S. (2016).
Heat shock factors in tomatoes: Genome-wide identification, phylogenetic
analysis and expression profiling under development and heat stress.
PeerJ 2016 .
Yeh, C.-H., Kaplinsky, N.J., Hu, C., and Charng, Y. (2012).
Some like it hot, some like it warm: phenotyping to explore
thermotolerance diversity. Plant Science 195 : 10–23.
Yu, J., Cheng, Y., Feng, K., Ruan, M., Ye, Q., Wang, R., Li, Z.,
Zhou, G., Yao, Z., Yang, Y., and Wan, H. (2016). Genome-wide
identification and expression profiling of tomato Hsp20 gene family in
response to biotic and abiotic stresses. Frontiers in Plant Science7 : 1–14.
Zhang, H. and Sonnewald, U. (2017). Differences and
commonalities of plant responses to single and combined stresses. Plant
Journal 90 : 839–855.
Zhou, F., Emonet, A., Dénervaud Tendon, V., Marhavy, P., Wu, D.,
Lahaye, T., and Geldner, N. (2020). Co-incidence of Damage and
Microbial Patterns Controls Localized Immune Responses in Roots. Cell180 : 440–453.e18.
Zhu, Y., Qian, W., and Hua, J. (2010). Temperature Modulates
Plant Defense Responses Through NB-LRR Proteins. PLoS pathogens6 .