References
Alfieri L., Salamon P., Bianchi A., Neal J., Bates P., Feyen L. 2013.
Advances in pan-European flood hazard mapping. Hydrological Processes,
28(13), 4067–4077. doi:10.1002/hyp.9947
Altunkaynak A. 2007. Forecasting surface water level fluctuations of
lake van by artificial neural networks. Water Resour. Manage.
21:399-408. doi: 10.1007/s11269-006-9022-6.
Buyukyildiz, M., Tezel, G. & Yilmaz, V. 2014. Water Resources
Management 28:4747. doi: 10.1007/s11269-014-0773-1.
Choné, G., Biron, P.M., Buffin-Bélanger, T., Mazgareanu, I., Neal, J.C.,
Sampson, C.C. In review. An assessment of large-scale non-calibrated
flood modelling based on LiDAR data. Hydrological Processes.
Crétaux, J.-F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V.,
Bergé-Nguyen, M., Gennero M.-C., Nino F., Abarca Del Rio R., Cazaneve A,
Maisongrande, P. 2011. SOLS: A lake database to monitor in the Near Real
Time water level and storage variations from remote sensing data.
Advances in Space Research 47(9), 1497–1507. doi:
10.1016/j.asr.2011.01.004.
Dottori, F., P. Salamon, A. Bianchi, L. Alfieri, F. A. Hirpa, and L.
Feyer (2016), Development and evaluation of a framework for global flood
hazard mapping, Adv. Water Resour., 94, 87–102. doi:
10.1016/j.advwatres.2016.05.002.
Floodlist.com. (2019). Canada – Floods Damage Over 2,000 Homes in
Québec. [online] Available at:
http://floodlist.com/america/canada-floods-quebec-april-2019 [Accessed
16 Dec. 2019].
Fortin, J. P., R. Moussa, C. Bocquillon, J. P. Villeneuve. 1995.
Hydrotel, a Distributed Hydrological Model Compatible with Remote
Sensing and Geographical Information Systems. Revue Des Sciences de
l’Eau 8 (1): 97–124.
Fortin, J.P, R. Turcotte, S. Massicotte, R. Moussa, J. Fitzback, J.-P.
Villeneuve. 2001. Distributed Watershed Model Compatible with Remote
Sensing and GIS Data. I: Description of Model. Journal of Hydrologic
Engineering 6 (2): 91–99.
Gibson J. J., Prowse T. D., Peters D. L. 2006. Hydroclimatic controls on
water balance and water level variability in Great Slave Lake.
Hydrological Processes, 20(19), 4155–4172. doi: 10.1002/hyp.6424
Gioia, A., 2016. Reservoir routing on double-peak design flood. Water.
8. 553. doi: 10.3390/w8120553.
Khan M. S., Coulibaly P. 2006. Application of support vector machine in
lake water level prediction. Journal of Hydrologic Engineering 11(3)
199-205. doi: 10.1061/(ASCE)1084-0699(2006)11:3(199).
Lee K.T., Chang C.H., Yang M.S., Yu W.S. 2001. Reservoir attenuation of
floods from ungauged basins. Hydrological Sciences Journal Vol. 46, No.
3, pp. 349-362.
Mailhot A., Talbot G., Ricard S., Turcotte R., Guinard K. 2018.
Assessing the potential impacts of dam operation on daily flow at
ungauged river reaches. Journal of Hydrology: Regional Studies. doi:
10.1016/j.ejrh.2018.06.006.
Messager M., Lehner B., Grill G., Nedeva I., Schmitt O. 2016. Estimating
the volume and age of water stored in global lakes using a
geo-statistical approach. Nature Communications 7, 13603 (2016)
doi:10.1038/ncomms13603
Montaldo N., Mancini M., Rosso R. (2004). Flood hydrograph attenuation
induced by a reservoir system: analysis with a distributed
rainfall-runoff model. Hydrological Processes, 18(3), 545–563.
doi:10.1002/hyp.1337
Piasecki A., Jurasz J., Adamowski, J.F. 2018. Forecasting surface
water-level fluctuations of a small glacial lake in Poland using a
wavelet-based artificial intelligence method. Acta Geophysica (2018) 66:
1093. doi: 10.1007/s11600-018-0183-5.
Sampson, C. C., A. M. Smith, P. D. Bates, J. C. Neal, L. Alfieri, and J.
E. Freer (2015), A high-resolution global flood hazard model, Water
Resour. Res., 51, 7358–7381, doi:10.1002/ 2015WR016954.
Setegn S. G., Srinivasan R., Dargahi B. 2008. Hydrological Modelling in
the Lake Tana Basin, Ethiopia Using SWAT Model. The Open Hydrology
Journal. doi: 10.2174/1874378100802010049.
Schumann G. 2014. Fight floods on a global scale. Nature 507, 169 (2014)
doi:10.1038/507169e
United States. National Resources Conservation Service. National
Engineering Handbook. Section 630, Hydrology. Chapter 17, Flood Routing.
Washington, D.C.: U.S. Dept. of Agriculture, Natural Resources
Conservation Service, 2014.
United States. National Resources Conservation Service. National
Engineering Handbook. Section 630, Hydrology. Chapter 15, Time of
Concentration. Washington, D.C.: U.S. Dept. of Agriculture, Natural
Resources Conservation Service, 2014.Wing, O. E. J., P. D. Bates, C. C.
Sampson, A. M. Smith, K. A. Johnson, and T. A. Erickson (2017),
Validation of a 30 m resolution flood hazard model of the conterminous
United States, Water Resour. Res., 53, 7968–7986, doi:10.1002/
2017WR020917.
Winsemius, H. C., L. P. H. Van Beek, B. Jongman, P. J. Ward, and A.
Bouwman (2013), A framework for global river flood risk assessments,
Hydrol. Earth Syst. Sci., 17, 1871–1892, doi:10.5194/hess-17-1871-2013.