References
Abe, M., Honda, A., Hoshizaki, K., &
Miguchi, H. (2008). Advantage of early seedling emergence in Fagus
crenata : importance of cotyledon stage for predator escape and pathogen
avoidance. Ecological Research, 23 , 681-688.
Afonso, A., Castro, S., Loureiro, J.,
Mota, L., Cerca de Oliveira, J., & Torices, R. (2014). The effects of
achene type and germination time on plant performance in the
heterocarpic Anacyclus clavatus (Asteraceae). American
Journal of Botany, 101 (5), 892-898.
Akiyama, R., & Ågren, J. (2014).
Conflicting selection on the timing of germination in a natural
population of Arabidopsis thaliana . Journal of Evolutionary
Biology, 27 , 193-199.
Andrés, F., & Coupland, G. (2012).
The genetic basis of flowering responses to seasonal cues. Nature
Reviews Genetics, 13 (1), 627-639.
Bianchi, E., Bugmann, H., & Bigler,
C. (2019). Early emergence increases survival of tree seedlings in
Central European temperate forests despite severe late frost.Ecology and Evolution, 9 (14), 8238-8252.
Blackman, B. K. (2017). Changing
responses to changing seasons: Natural variation in the plasticity of
flowering time. Plant Physiology, 173 , 16-26.
Bradshaw, A. D. (1965). Evolutionary
significance of phenotypic plasticity. Advances in Genetics, 13 ,
115-155.
Burghardt, L. T., Metcalf, C. J. E.,
Wilczek, A. M., Schmitt, J., & Donohue, K. (2015). Modeling the
influence of genetic and environmental variation on the expression of
plant life cycles across landscapes. The American Naturalist,
185 (2), 212-227.
Castro, J. (2006). Short delay in
timing of emergence determines establishment success in Pinus
sylvestris across microhabitats. Annals of Botany, 98 (6),
1233-1240.
Cogoni, D., Fenu, G., & Bacchetta,
G. (2013). Effects of timing of emergence and microhabitat conditions on
the seedling performance of a coastal Mediterranean plant.Ecoscience, 20 (2), 131-136.
de Kroon, H., Huber, H., Stuefer, J.
F., & van Groenendael, J. M. (2005). A modular concept of phenotypic
plasticity in plants. New Phytologist, 166 (1), 73-82.
Donaldson-Matasci, M. C., Bergstrom,
C. T., & Lachmann, M. (2013). When unreliable cues are good enough.The American Naturalist, 182 , 313-327.
Donohue, K. (2005). Niche
construction through phenological plasticity: Life history dynamics and
ecological consequences. New Phytologist, 166 (1), 83-92.
Donohue, K. (2014). Why ontogeny
matters during adaptation: developmental niche construction and
pleiotorpy across the life cycle in Arabidopsis thaliana .Evolution, 68 , 32-47.
Donohue, K., de Casas, R. R.,
Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination,
postgermination adaptation, and species ecological ranges. Annual
Review of Ecology, Evolution, and Systematics, 41 (1), 293-319.
Donohue, K., Dorn, D., Griffith, C.,
Kim, E., Aguilera, A., Polisetty, C. R., & Schmitt, J. (2005). Niche
construction through germination cueing: Life-history responses to
timing of germination in Arabidopsis thaliana . Evolution,
59 (4), 771-785.
Dyer, A., Fenech, A., & Rice, K. J.
(2000). Accelerated seedling emergence in interspecific competitive
neighbourhoods. Ecology Letters, 3 , 523-529.
Galloway, L. F., & Burgess, K. S.
(2009). Manipulation of flowering time: Phenological integration and
maternal effects. Ecology, 90 , 2139-2148.
Gremer, J. R., Wilcox, C. J., Chiono,
A., Suglia, E., & Schmitt, J. (2020). Germination timing and chilling
exposure create contingency in life history and influence fitness in the
native wildflower Streptanthus tortuosus . Journal of
Ecology, 108 (1), 239-255.
Grime, J. P. (1979). Plant
Strategies and Vegetation Processes . Chichester: Wiley.
Grundy, A. C. (2003). Predicting weed
emergence: a review of approaches and future challenges. Weed
Research, 43 , 1-11.
Harper, J. L. (1977).Population biology of plants . New York, USA: Academic Press.
Hartzler, R., Battles, B., & Nordby,
D. (2004). Effect of common waterhemp (Amaranthus rudis )
emergence date on growth and fecundity in soybean. Weed Science,
52 , 242-245.
Hodgson, J. G. (1999). Alloctating
C-S-R plant functional types: a soft approach to a hard problem.Oikos, 85 , 282-294.
Huang, Z., Liu, S., Bradford, K. J.,
Huxman, T. E., & Venable, D. L. (2016). The contribution of germination
functional traits to population dynamics of a desert plant community.Ecology, 97 , 250-261.
Jones, R. H., & Sharitz, R. R.
(1989). Potential advantages and disadvantages of germinating early for
trees in floodplain forests. Oecologia, 81 , 443-449.
Kalisz, S. (1986). Variable selection
on the timing of germination in Collinsia verna(Scrophulariaceae). Evolution, 40 , 479-491.
Kelly, M. G., & Levin, D. A. (1997).
Fitness consequences and heritability aspects of emergence date inPhlox drummondii . Journal of Ecology, 85 , 755-766.
Leverett, L. D., IV, G. F. S., &
Donohue, K. (2018). The fitness benefits of germinating later than
neighbors. American Journal of Botany, 105 (1), 20-30.
Lortie, C. J., & Turkington, R.
(2002). The effect of initial seed density on the structure of a desert
annual plant community. Journal of Ecology, 90 , 435-445.
McConnaughay, K. D. M., & Bazzaz, F.
A. (1992). The occupation and fragmentation of space: consequences of
neighbouring shoots. Functional Ecology, 6 , 711-718.
McConnaughay, K. D. M., & Coleman,
J. S. (1999). Biomass allocation in plants: ontogeny or optimality? A
test along three resource gradients. Ecology, 80 (8), 2581-2593.
Mercer, K. L., Alexander, H. M., &
Snow, A. A. (2011). Selection on seedling emergence timing and size in
an annual plant, Helianthus Annuus (Common Sunflower,
Asteraceae). American Journal of Botany, 98 , 975-985.
Metcalf, C. J. E., Burghardt, L. T.,
& Koons, D. N. (2015). Avoiding the crowds: the evolution of plastic
responses to seasonal cues in a density-dependent world. Journal
of Ecology, 103 , 819-828.
Metcalf, J. C., Rose, K. E., & Rees,
M. (2003). Evolutionary demography of monocarpic perennials.Trends in Ecology & Evolution, 18 , 471-480.
Miller, T. E., Winn, A. A., &
Schemske, D. W. (1994). The effect of density and spatial distribution
on selection for emergence time in Prunella vulgaris (Lamiaceae).American Journal of Botany, 81 , 1-6.
Orrock, J. L., & Christopher, C. C.
(2010). Density of intraspecific competitors determines the occurrence
and benefits of accelerated germination. American Journal of
Botany, 97 , 694-699.
Poethke, H. J., Hovestadt, T., &
Mitesser, O. (2016). The evolution of optimal emergence times:
bet-hedging and the quest for an ideal free temporal distribution of
individuals. Oikos, 125 , 1647-1656.
Rice, K. J. (1990). Reproductive
hierarchies in Erodium: effects of variation in plant density and
rainfall distribution. Ecology, 71 , 1316-1322.
Silvertown, J. (1988). The
demographic and evolutionary consequences of seed dormancy. In A. Davy
& M. Hutchings (Eds.), Plant Population Ecology (pp. 205-219).
Oxford, UK: Blackwell.
Stratton, D. A. (1992). Life-Cycle
components of selection in Erigeron annuus : I. Phenotypic
Selection. Evolution, 46 , 92-106.
ten Brink, H., Gremer, J. R., &
Kokko, H. (2020). Optimal germination timing in unpredictable
environments: the importance of dormancy for both among- and
within-season variation. Ecology Letters, 23 (4), 620-630.
Tuljapurkar, S. (1990). Delayed
reproduction and fitness in variable environments. Proceedings of
the National Academy of Sciencesa, 87 , 1139-1143.
Verdu´, M., & Traveset, A. (2005).
Early emergence enhances plant fitness: a phylogenetically controlled
meta-analysis. Ecology, 86 , 1385-1394.
Wang, S., Li, L., & Zhou, D.-W.
(2017). Morphological plasticity in response to population density
varies with soil conditions and growth stage in Abutilon
theophrasti (Malvaceae). Plant Ecology, 218 , 785-797.
Wang, S., Li, L., & Zhou, D.-W.
(2021). Root morphological responses to population density vary with
soil conditions and growth stages: The complexity of density effects.Ecology and Evolution, 11 (15), 10590-10599.
Wang, S., & Zhou, D.-W. (2021).
Architectural plasticity in response to population density inAbutilon theophrasti (Malvaceae). Ecological Research .
Wang, T.-H., Zhou, D.-W., Wang, P.,
& Zhang, H.-X. (2006). Size-dependent reproductive effort inAmaranthus retroflexus : the fluence of planting density and
sowing date. Canadian Journal of Botany, 84 , 485-492.
Weekley, C. W., Menges, E. S., &
Quintana-Ascencio, P. F. (2007). Seedling emergence and survival ofWarea carteri (Brassicaceae), an endangered annual herb of the
Florida Scrub. Canadian Journal of Botany, 85 , 621-628.
Weiner, J. (1988). Variation in the
performance of individuals in plant populations. In A. J. Davy, M. J.
Hutchings, & A. R. Watkinson (Eds.), Plant Population Ecology(pp. 59-81). Oxford, UK: Blackwell.
Weiner, J. (2004). Allocation,
plasticity and allometry in plants. Perspectives in Plant Ecology,
Evolution and Systematics, 6 (4), 207-215.
Weinig, C. (2000). Differing
selection in alternative competitive environments: shade-avoidance
responses and germination timing. Evolution, 54 , 124-136.
Wilczek, A. M., Roe, J. L., Knapp, M.
C., Cooper, M. D., Lopez-Gallego, C., Martin, L. J., . . . Schmitt, J.
(2009). Effects of genetic perturbation on seasonal life history
plasticity. Science, 323 , 930-934.
Wu, C., & Owen, M. D. (2014). When
is the best time to emerge: reproductive phenology and success of
natural common waterhemp (Amaranthus rudis ) cohorts in the
Midwest United States? Weed Science, 62 (1), 107-117.
Xue, B., & Leibler, S. (2018).
Benefits of phenotypic plasticity for population growth in varying
environments. Proceedings of the National Academy of Sciences,
115 , 12745-12750.
Zhao, H.-Y., Xie, L.-W., Ma, Y.-Y.,
Li, H.-K., Yan, X., & An, Y.-L. (2010). Application of
organic-inorganic composite ameliorants on the aeolian sandy soil in the
western Jilin. Journal of Northeast Normal University (Natural
Science Edition), 42 (2), 132-136.
Zhou, D.-W., Wang, T.-H., &
Valentine, I. (2005). Phenotypic plasticity of life-history characters
in response to different germination timing in two annual weeds.Canadian Journal of Botany, 83 , 28-36.
Table 1 The information on germination treatments, planting and
sampling in this study.