AUTHOR CONTRIBUTIONS:
Participated in research design: Galley, Durgin, Miller, Hahn, Stocker,
Straub. Conducted experiments: Galley, Miller, Durgin, Hahn, Stocker.
Contributed new reagents or analytic tools: Galley, Hahn, Durgin,
Jackson, Stocker. Performed data analysis: Galley, Miller, Hahn. Wrote
or contributed to the writing of the manuscript: Galley, Durgin, Straub.
REFERENCES :
Arnold WP, Mittal CK, Katsuki S, & Murad F (1977). Nitric oxide
activates guanylate cyclase and increases guanosine 3’:5’-cyclic
monophosphate levels in various tissue preparations. Proc Natl Acad Sci
U S A 74: 3203-3207.
Benjamin MM, Fazel P, Filardo G, Choi JW, & Stoler RC (2014).
Prevalence of and risk factors of renal artery stenosis in patients with
resistant hypertension. Am J Cardiol 113: 687-690.
Beyer C, Zenzmaier C, Palumbo-Zerr K, Mancuso R, Distler A, Dees
C, et al. (2015). Stimulation of the soluble guanylate cyclase
(sGC) inhibits fibrosis by blocking non-canonical TGFbeta signalling.
Ann Rheum Dis 74: 1408-1416.
Biggs WH, 3rd, Meisenhelder J, Hunter T, Cavenee WK, & Arden KC (1999).
Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion
of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A
96: 7421-7426.
Blankley CJ, Hodges JC, Klutchko SR, Himmelsbach RJ, Chucholowski A,
Connolly CJ, et al. (1991). Synthesis and structure-activity
relationships of a novel series of non-peptide angiotensin II receptor
binding inhibitors specific for the AT2 subtype. J Med Chem 34:3248-3260.
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al.(1999). Akt promotes cell survival by phosphorylating and inhibiting a
Forkhead transcription factor. Cell 96: 857-868.
Carey RM, Sakhuja S, Calhoun DA, Whelton PK, & Muntner P (2019).
Prevalence of Apparent Treatment-Resistant Hypertension in the United
States. Hypertension 73: 424-431.
Crassous PA, Couloubaly S, Huang C, Zhou Z, Baskaran P, Kim DD, et
al. (2012). Soluble guanylyl cyclase is a target of angiotensin
II-induced nitrosative stress in a hypertensive rat model. Am J Physiol
Heart Circ Physiol 303: H597-604.
Dautzenberg M, Keilhoff G, & Just A (2011). Modulation of the myogenic
response in renal blood flow autoregulation by NO depends on endothelial
nitric oxide synthase (eNOS), but not neuronal or inducible NOS. J
Physiol 589: 4731-4744.
de Mast Q, & Beutler JJ (2009). The prevalence of atherosclerotic renal
artery stenosis in risk groups: a systematic literature review. J
Hypertens 27: 1333-1340.
DeLalio LJ, Hahn S, Katayama PL, Wenner MM, Farquhar WB, Straub
AC, et al. (2020). Excessive dietary salt promotes aortic
stiffness in murine renovascular hypertension. Am J Physiol Heart Circ
Physiol 318: H1346-H1355.
Derkx FH, & Schalekamp MA (1994). Renal artery stenosis and
hypertension. Lancet 344: 237-239.
Doughan AK, Harrison DG, & Dikalov SI (2008). Molecular mechanisms of
angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial
oxidative damage and vascular endothelial dysfunction. Circ Res
102: 488-496.
Durgin BG, Hahn SA, Schmidt HM, Miller MP, Hafeez N, Mathar I, et
al. (2019). Loss of smooth muscle CYB5R3 amplifies angiotensin
II-induced hypertension by increasing sGC heme oxidation. JCI Insight 4.
Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Lorenzo O,
Demaegdt H, et al. (2005). Angiotensin IV activates the nuclear
transcription factor-kappaB and related proinflammatory genes in
vascular smooth muscle cells. Circ Res 96: 965-973.
Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, & Stasch JP
(2006). NO-independent stimulators and activators of soluble guanylate
cyclase: discovery and therapeutic potential. Nat Rev Drug Discov
5: 755-768.
Galley JC, Durgin BG, Miller MP, Hahn SA, Yuan S, Wood KC, et al.(2019). Antagonism of Forkhead Box Subclass O Transcription Factors
Elicits Loss of Soluble Guanylyl Cyclase Expression. Mol Pharmacol
95: 629-637.
Geisterfer AA, Peach MJ, & Owens GK (1988). Angiotensin II induces
hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle
cells. Circ Res 62: 749-756.
Goldblatt H, Lynch J, Hanzal RF, & Summerville WW (1934). Studies on
Experimental Hypertension : I. The Production of Persistent Elevation of
Systolic Blood Pressure by Means of Renal Ischemia. J Exp Med
59: 347-379.
Goldfarb DA (2003). Prevalence of renovascular disease in the elderly: a
population-based study. J Urol 170: 1053-1054.
Granger JP, Alexander BT, & Llinas M (2002). Mechanisms of pressure
natriuresis. Curr Hypertens Rep 4: 152-159.
Griendling KK, Minieri CA, Ollerenshaw JD, & Alexander RW (1994).
Angiotensin II stimulates NADH and NADPH oxidase activity in cultured
vascular smooth muscle cells. Circ Res 74: 1141-1148.
Harrison-Bernard LM, Navar LG, Ho MM, Vinson GP, & el-Dahr SS (1997).
Immunohistochemical localization of ANG II AT1 receptor in adult rat
kidney using a monoclonal antibody. Am J Physiol 273: F170-177.
Ichiki T, Tokunou T, Fukuyama K, Iino N, Masuda S, & Takeshita A
(2003). Cyclic AMP response element-binding protein mediates reactive
oxygen species-induced c-fos expression. Hypertension 42:177-183.
Iglesias JI, Hamburger RJ, Feldman L, & Kaufman JS (2000). The natural
history of incidental renal artery stenosis in patients with aortoiliac
vascular disease. Am J Med 109: 642-647.
Jackson EK, & Herzer WA (2001). Regional vascular selectivity of
angiotensin II. J Pharmacol Exp Ther 297: 736-745.
Kalra PA, Guo H, Gilbertson DT, Liu J, Chen SC, Ishani A, et al.(2010). Atherosclerotic renovascular disease in the United States.
Kidney Int 77: 37-43.
Kalra PA, Guo H, Kausz AT, Gilbertson DT, Liu J, Chen SC, et al.(2005). Atherosclerotic renovascular disease in United States patients
aged 67 years or older: risk factors, revascularization, and prognosis.
Kidney Int 68: 293-301.
Kaschina E, Grzesiak A, Li J, Foryst-Ludwig A, Timm M, Rompe F, et
al. (2008). Angiotensin II type 2 receptor stimulation: a novel option
of therapeutic interference with the renin-angiotensin system in
myocardial infarction? Circulation 118: 2523-2532.
Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, &
Burgering BM (1999). Direct control of the Forkhead transcription factor
AFX by protein kinase B. Nature 398: 630-634.
Kuo JF, & Greengard P (1970). Cyclic nucleotide-dependent protein
kinases. VI. Isolation and partial purification of a protein kinase
activated by guanosine 3’,5’-monophosphate. J Biol Chem 245:2493-2498.
Li F, & Malik KU (2005). Angiotensin II-induced Akt activation through
the epidermal growth factor receptor in vascular smooth muscle cells is
mediated by phospholipid metabolites derived by activation of
phospholipase D. J Pharmacol Exp Ther 312: 1043-1054.
Majid DS, & Navar LG (1997). Nitric oxide in the mediation of pressure
natriuresis. Clin Exp Pharmacol Physiol 24: 595-599.
Majid DS, & Navar LG (2001). Nitric oxide in the control of renal
hemodynamics and excretory function. Am J Hypertens 14:74S-82S.
Majid DS, Omoro SA, Chin SY, & Navar LG (1998). Intrarenal nitric oxide
activity and pressure natriuresis in anesthetized dogs. Hypertension
32: 266-272.
Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, et
al. (2002). Effects of angiotensin II infusion on the expression and
function of NAD(P)H oxidase and components of nitric oxide/cGMP
signaling. Circ Res 90: E58-65.
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al.(2004). Mammalian SIRT1 represses forkhead transcription factors. Cell
116: 551-563.
Murphy WR, Coleman TG, Smith TL, & Stanek KA (1984). Effects of graded
renal artery constriction on blood pressure, renal artery pressure, and
plasma renin activity in Goldblatt hypertension. Hypertension
6: 68-74.
Nagashima T, Shigematsu N, Maruki R, Urano Y, Tanaka H, Shimaya A,
et al. (2010). Discovery of novel forkhead box O1 inhibitors for
treating type 2 diabetes: improvement of fasting glycemia in diabetic
db/db mice. Mol Pharmacol 78: 961-970.
Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carratino MD, Stocker SD
(2019). Renal sensory nerves increase sympathetic nerve activity and
blood pressure in 2-kidney 1-clip hypertensive mice. J
Neurophysiol 122(1): 358-367.
O’Connor PM, & Cowley AW, Jr. (2010). Modulation of
pressure-natriuresis by renal medullary reactive oxygen species and
nitric oxide. Curr Hypertens Rep 12: 86-92.
Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino-Watkins C, Jobbagy
S, et al. (2017). Cytochrome b5 Reductase 3 Modulates Soluble
Guanylate Cyclase Redox State and cGMP Signaling. Circ Res 121:137-148.
Rippe C, Zhu B, Krawczyk KK, Bavel EV, Albinsson S, Sjolund J, et
al. (2017). Hypertension reduces soluble guanylyl cyclase expression in
the mouse aorta via the Notch signaling pathway. Sci Rep 7:1334.
Sadjadi J, Puttaparthi K, Welborn MB, 3rd, Rogers TE, Moe O, Clagett
GP, et al. (2002). Upregulation of autocrine-paracrine
renin-angiotensin systems in chronic renovascular hypertension. J Vasc
Surg 36: 386-392.
Salminen A, Kaarniranta K, & Kauppinen A (2013). Crosstalk between
Oxidative Stress and SIRT1: Impact on the Aging Process. Int J Mol Sci
14: 3834-3859.
Sandner P, & Stasch JP (2017). Anti-fibrotic effects of soluble
guanylate cyclase stimulators and activators: A review of the
preclinical evidence. Respir Med 122 Suppl 1: S1-S9.
Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K,
Pessoa DC, et al. (2010). Vascular relaxation, antihypertensive
effect, and cardioprotection of a novel peptide agonist of the MAS
receptor. Hypertension 56: 112-120.
Sawicki PT, Kaiser S, Heinemann L, Frenzel H, & Berger M (1991).
Prevalence of renal artery stenosis in diabetes mellitus–an autopsy
study. J Intern Med 229: 489-492.
Selkurt EE (1951). Effect of pulse pressure and mean arterial pressure
modification on renal hemodynamics and electrolyte and water excretion.
Circulation 4: 541-551.
Smolenski A, Bachmann C, Reinhard K, Honig-Liedl P, Jarchau T,
Hoschuetzky H, et al. (1998). Analysis and regulation of
vasodilator-stimulated phosphoprotein serine 239 phosphorylation in
vitro and in intact cells using a phosphospecific monoclonal antibody. J
Biol Chem 273: 20029-20035.
Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer
A, et al. (2001). NO-independent regulatory site on soluble
guanylate cyclase. Nature 410: 212-215.
Stasch JP, Pacher P, & Evgenov OV (2011). Soluble guanylate cyclase as
an emerging therapeutic target in cardiopulmonary disease. Circulation
123: 2263-2273.
Stasch JP, Schlossmann J, & Hocher B (2015). Renal effects of soluble
guanylate cyclase stimulators and activators: a review of the
preclinical evidence. Curr Opin Pharmacol 21: 95-104.
Stephenson LA, Haney LB, Hussaini IM, Karns LR, & Glass WF, 2nd (1998).
Regulation of smooth muscle alpha-actin expression and hypertrophy in
cultured mesangial cells. Kidney Int 54: 1175-1187.
Textor SC (2003). Managing renal arterial disease and hypertension. Curr
Opin Cardiol 18: 260-267.
Timmermans PB, Duncia JV, Carini DJ, Chiu AT, Wong PC, Wexler RR,
et al. (1995). Discovery of losartan, the first angiotensin II receptor
antagonist. J Hum Hypertens 9 Suppl 5: S3-18.
Tollefson DF, & Ernst CB (1991). Natural history of atherosclerotic
renal artery stenosis associated with aortic disease. J Vasc Surg
14: 327-331.
van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, &
Burgering BM (2004). FOXO4 is acetylated upon peroxide stress and
deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem
279: 28873-28879.
Zhang Y, Griendling KK, Dikalova A, Owens GK, & Taylor WR (2005).
Vascular hypertrophy in angiotensin II-induced hypertension is mediated
by vascular smooth muscle cell-derived H2O2. Hypertension 46:732-737.
Zhu X, & Jackson EK (2017). RACK1 regulates angiotensin II-induced
contractions of SHR preglomerular vascular smooth muscle cells. Am J
Physiol Renal Physiol 312: F565-F576.