AUTHOR CONTRIBUTIONS:
Participated in research design: Galley, Durgin, Miller, Hahn, Stocker, Straub. Conducted experiments: Galley, Miller, Durgin, Hahn, Stocker. Contributed new reagents or analytic tools: Galley, Hahn, Durgin, Jackson, Stocker. Performed data analysis: Galley, Miller, Hahn. Wrote or contributed to the writing of the manuscript: Galley, Durgin, Straub.
REFERENCES :
Arnold WP, Mittal CK, Katsuki S, & Murad F (1977). Nitric oxide activates guanylate cyclase and increases guanosine 3’:5’-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74: 3203-3207.
Benjamin MM, Fazel P, Filardo G, Choi JW, & Stoler RC (2014). Prevalence of and risk factors of renal artery stenosis in patients with resistant hypertension. Am J Cardiol 113: 687-690.
Beyer C, Zenzmaier C, Palumbo-Zerr K, Mancuso R, Distler A, Dees C, et al. (2015). Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFbeta signalling. Ann Rheum Dis 74: 1408-1416.
Biggs WH, 3rd, Meisenhelder J, Hunter T, Cavenee WK, & Arden KC (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96: 7421-7426.
Blankley CJ, Hodges JC, Klutchko SR, Himmelsbach RJ, Chucholowski A, Connolly CJ, et al. (1991). Synthesis and structure-activity relationships of a novel series of non-peptide angiotensin II receptor binding inhibitors specific for the AT2 subtype. J Med Chem 34:3248-3260.
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al.(1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-868.
Carey RM, Sakhuja S, Calhoun DA, Whelton PK, & Muntner P (2019). Prevalence of Apparent Treatment-Resistant Hypertension in the United States. Hypertension 73: 424-431.
Crassous PA, Couloubaly S, Huang C, Zhou Z, Baskaran P, Kim DD, et al. (2012). Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model. Am J Physiol Heart Circ Physiol 303: H597-604.
Dautzenberg M, Keilhoff G, & Just A (2011). Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS. J Physiol 589: 4731-4744.
de Mast Q, & Beutler JJ (2009). The prevalence of atherosclerotic renal artery stenosis in risk groups: a systematic literature review. J Hypertens 27: 1333-1340.
DeLalio LJ, Hahn S, Katayama PL, Wenner MM, Farquhar WB, Straub AC, et al. (2020). Excessive dietary salt promotes aortic stiffness in murine renovascular hypertension. Am J Physiol Heart Circ Physiol 318: H1346-H1355.
Derkx FH, & Schalekamp MA (1994). Renal artery stenosis and hypertension. Lancet 344: 237-239.
Doughan AK, Harrison DG, & Dikalov SI (2008). Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102: 488-496.
Durgin BG, Hahn SA, Schmidt HM, Miller MP, Hafeez N, Mathar I, et al. (2019). Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation. JCI Insight 4.
Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Lorenzo O, Demaegdt H, et al. (2005). Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ Res 96: 965-973.
Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, & Stasch JP (2006). NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5: 755-768.
Galley JC, Durgin BG, Miller MP, Hahn SA, Yuan S, Wood KC, et al.(2019). Antagonism of Forkhead Box Subclass O Transcription Factors Elicits Loss of Soluble Guanylyl Cyclase Expression. Mol Pharmacol 95: 629-637.
Geisterfer AA, Peach MJ, & Owens GK (1988). Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 62: 749-756.
Goldblatt H, Lynch J, Hanzal RF, & Summerville WW (1934). Studies on Experimental Hypertension : I. The Production of Persistent Elevation of Systolic Blood Pressure by Means of Renal Ischemia. J Exp Med 59: 347-379.
Goldfarb DA (2003). Prevalence of renovascular disease in the elderly: a population-based study. J Urol 170: 1053-1054.
Granger JP, Alexander BT, & Llinas M (2002). Mechanisms of pressure natriuresis. Curr Hypertens Rep 4: 152-159.
Griendling KK, Minieri CA, Ollerenshaw JD, & Alexander RW (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141-1148.
Harrison-Bernard LM, Navar LG, Ho MM, Vinson GP, & el-Dahr SS (1997). Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody. Am J Physiol 273: F170-177.
Ichiki T, Tokunou T, Fukuyama K, Iino N, Masuda S, & Takeshita A (2003). Cyclic AMP response element-binding protein mediates reactive oxygen species-induced c-fos expression. Hypertension 42:177-183.
Iglesias JI, Hamburger RJ, Feldman L, & Kaufman JS (2000). The natural history of incidental renal artery stenosis in patients with aortoiliac vascular disease. Am J Med 109: 642-647.
Jackson EK, & Herzer WA (2001). Regional vascular selectivity of angiotensin II. J Pharmacol Exp Ther 297: 736-745.
Kalra PA, Guo H, Gilbertson DT, Liu J, Chen SC, Ishani A, et al.(2010). Atherosclerotic renovascular disease in the United States. Kidney Int 77: 37-43.
Kalra PA, Guo H, Kausz AT, Gilbertson DT, Liu J, Chen SC, et al.(2005). Atherosclerotic renovascular disease in United States patients aged 67 years or older: risk factors, revascularization, and prognosis. Kidney Int 68: 293-301.
Kaschina E, Grzesiak A, Li J, Foryst-Ludwig A, Timm M, Rompe F, et al. (2008). Angiotensin II type 2 receptor stimulation: a novel option of therapeutic interference with the renin-angiotensin system in myocardial infarction? Circulation 118: 2523-2532.
Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, & Burgering BM (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398: 630-634.
Kuo JF, & Greengard P (1970). Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3’,5’-monophosphate. J Biol Chem 245:2493-2498.
Li F, & Malik KU (2005). Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D. J Pharmacol Exp Ther 312: 1043-1054.
Majid DS, & Navar LG (1997). Nitric oxide in the mediation of pressure natriuresis. Clin Exp Pharmacol Physiol 24: 595-599.
Majid DS, & Navar LG (2001). Nitric oxide in the control of renal hemodynamics and excretory function. Am J Hypertens 14:74S-82S.
Majid DS, Omoro SA, Chin SY, & Navar LG (1998). Intrarenal nitric oxide activity and pressure natriuresis in anesthetized dogs. Hypertension 32: 266-272.
Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, et al. (2002). Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90: E58-65.
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al.(2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551-563.
Murphy WR, Coleman TG, Smith TL, & Stanek KA (1984). Effects of graded renal artery constriction on blood pressure, renal artery pressure, and plasma renin activity in Goldblatt hypertension. Hypertension 6: 68-74.
Nagashima T, Shigematsu N, Maruki R, Urano Y, Tanaka H, Shimaya A, et al. (2010). Discovery of novel forkhead box O1 inhibitors for treating type 2 diabetes: improvement of fasting glycemia in diabetic db/db mice. Mol Pharmacol 78: 961-970.
Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carratino MD, Stocker SD (2019). Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J Neurophysiol 122(1): 358-367.
O’Connor PM, & Cowley AW, Jr. (2010). Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 12: 86-92.
Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino-Watkins C, Jobbagy S, et al. (2017). Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. Circ Res 121:137-148.
Rippe C, Zhu B, Krawczyk KK, Bavel EV, Albinsson S, Sjolund J, et al. (2017). Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep 7:1334.
Sadjadi J, Puttaparthi K, Welborn MB, 3rd, Rogers TE, Moe O, Clagett GP, et al. (2002). Upregulation of autocrine-paracrine renin-angiotensin systems in chronic renovascular hypertension. J Vasc Surg 36: 386-392.
Salminen A, Kaarniranta K, & Kauppinen A (2013). Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process. Int J Mol Sci 14: 3834-3859.
Sandner P, & Stasch JP (2017). Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respir Med 122 Suppl 1: S1-S9.
Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC, et al. (2010). Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension 56: 112-120.
Sawicki PT, Kaiser S, Heinemann L, Frenzel H, & Berger M (1991). Prevalence of renal artery stenosis in diabetes mellitus–an autopsy study. J Intern Med 229: 489-492.
Selkurt EE (1951). Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation 4: 541-551.
Smolenski A, Bachmann C, Reinhard K, Honig-Liedl P, Jarchau T, Hoschuetzky H, et al. (1998). Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 273: 20029-20035.
Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, et al. (2001). NO-independent regulatory site on soluble guanylate cyclase. Nature 410: 212-215.
Stasch JP, Pacher P, & Evgenov OV (2011). Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123: 2263-2273.
Stasch JP, Schlossmann J, & Hocher B (2015). Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr Opin Pharmacol 21: 95-104.
Stephenson LA, Haney LB, Hussaini IM, Karns LR, & Glass WF, 2nd (1998). Regulation of smooth muscle alpha-actin expression and hypertrophy in cultured mesangial cells. Kidney Int 54: 1175-1187.
Textor SC (2003). Managing renal arterial disease and hypertension. Curr Opin Cardiol 18: 260-267.
Timmermans PB, Duncia JV, Carini DJ, Chiu AT, Wong PC, Wexler RR, et al. (1995). Discovery of losartan, the first angiotensin II receptor antagonist. J Hum Hypertens 9 Suppl 5: S3-18.
Tollefson DF, & Ernst CB (1991). Natural history of atherosclerotic renal artery stenosis associated with aortic disease. J Vasc Surg 14: 327-331.
van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, & Burgering BM (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279: 28873-28879.
Zhang Y, Griendling KK, Dikalova A, Owens GK, & Taylor WR (2005). Vascular hypertrophy in angiotensin II-induced hypertension is mediated by vascular smooth muscle cell-derived H2O2. Hypertension 46:732-737.
Zhu X, & Jackson EK (2017). RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 312: F565-F576.