References
- Niezen MGH, Edelenbosch R. Van Bodegom L. Verhoef P. Health at
the centre - Responsible data sharing in the digital society. The
Hague: Rathenau Instituut. 2019
- Kool L, Timmer L, Royakkers L, Van Est R. Urgent Upgrade -
Protect public values in our digitized society. The Hague: Rathenau
Instituut. 2017
- Kelly C J, Karthikesalingam A, Suleyman M, Corrado G, King D. Key
challenges for delivering clinical impact with artificial
intelligence. BMC med. 2019;17(1). doi:
10.1186/s12916-019-1426-2
- Greenes RA, Bates DW, Kawamoto K, Middleton B, Osheroff J, Shahar Y.
Clinical decision support models and frameworks: seeking to address
research issues underlying implementation successes and
failures. J. biomed. inform . 2018;78:134-143. doi:
10.1016/j.jbi.2017.12.005.
- Wyatt J, Spiegelhalter D. Field trials of medical decision-aids:
potential problems and solutions. In: Clayton P, ed. Proc.
15th Annu. Symp. on Comput. Appl. Med. Care. 1991.
Washington.
- Sikma T, Edelenbosch R, Verhoef P. The use of AI in healthcare:
A focus on clinical decision support system. 2020 [RECIPES project:
https://recipes-project.eu/]
- Mahadevaiah G, Prasad RV, Bermejo I, Jaffray D, Dekker A, Wee L.
Artificial intelligence‐based clinical decision support in modern
medical physics: Selection, acceptance, commissioning, and quality
assurance. Med. Phys. 2020;47(5): e228-e235. Doi:
https://doi.org/10.1002/mp.13562
- Montani S, Striani M. Artificial Intelligence in Clinical Decision
Support: a Focused Literature Survey. Yearb. of Med. Inform.2019;28(1):120-127. Doi: 10.1055/s-0039-1677911.
- Sloane EB , Silva RJ. Artificial intelligence in medical devices and
clinical decision support systems. In: Iadanza E, ed. Clinical
Engineering Handbook . Academic Press. 2020.: 556-568 Doi:
https://doi.org/10.1016/B978-0-12-813467-2.00084-5
- Steels L, Lopez de Mantaras R. The Barcelona Declaration for the
Proper Development and Usage of Artificial Intelligence in Europe.AI Comm. 2018;31(6): 485 – 494.
DOI: 10.3233/AIC-180607
- Van Baalen S, Boon M. An epistemological shift: from evidence-based
medicine to epistemological responsibility. J Eval Clin Pract ,
2015;21(3):433-439. DOI: 10.1111/jep.12282.
- Savage N. Another set of eyes for cancer diagnostics. Nature2020;579:S14-S16. doi 41586-020-00847-2
- Dagliati A, Tibollo V, Sacchi L. et al. Big Data as a Driver for
Clinical Decision Support Systems: A Learning Health Systems
Perspective. Frontiers in Digital Humanities 2020;5
https://doi.org/10.3389/fdigh.2018.00008
- Van Baalen S, Boon M. Evidence-based medicine versus expertise –
knowledge, skills and epistemic actions. In: Bluhm R, ed.Knowing and Acting in Medicine. Rowman & Littlefield;
2017:21-38. ISBN: 978-178348810.
- Boon M. (2020) How scientists are brought back into science - The
error of empiricism. In: Bertolaso M, Sterpetti F, eds. A
critical Reflection on Automated Science - Will Science Remain Human.Springer Series Human Perspectives in Health Sciences and Technologie.
Dordrecht: Springer. 2020:43-66. DOI 978-3-030-25001-0_4
- Topol EJ. High-performance medicine: the convergence of human and
artificial intelligence. Nat. Med. 2019;25:44-56. doi:
https://doi.org/10.1038/s41591-018-0300-7
- Kahneman D. Thinking fast and slow. New York: Farrar, Straus
and Giroux. 2011
- Ankeny R A. Using cases to establish novel diagnoses: Creating generic
facts by making particular facts travel together. In: Howletts P,
Morgan MS, eds. How Well Do Facts Travel? The Dissemination of
Reliable Knowledge. New York: Cambridge University Press.
2011:252-272.
- Solomon M. Epistemological reflections on the art of medicine and
narrative medicine. Perspectives in Biology and Medicine,2008;51(3):406-417.
- Russo R, Williamson J. Interpreting Causality in the Health Sciences.Int. Stud. Philos. Sci. 2007;21. pp. 157-170,
https://doi.org/10.1080/02698590701498084
- Parkkinen V-P, Wallmann C, Wilde M, et al. Evaluating Evidence
of Mechanisms in Medicine: Principles and Procedure. 2018;
SpringerOpenhttps://doi.org/10.1007/978-3-319-94610-8
- Khushf G. ‘The Aesthetics of Clinical Judgment: Exploring the Link
between Diagnostic Elegance and Effective Resource Utilization’,Med Health Care Philos. 1999; 2(2):141-59
DOI:10.1023/a:1009941101276.
- Van Baalen S, Carusi A, Sabroe I, Kiely DG. A social-technological
epistemology of clinical decision-making as mediated by imaging.J Eval Clin Pract , 2016;23(5):949-958. DOI: 10.1111/jep.12637.
- Code L. (1984), ‘Toward a ‘Responsibilist’ Epistemology’,Philos. Phenomenol. Res. 1984;45(1):29-50. DOI:
10.2307/2107325.
- Leonelli S, Tempini N, eds. Data Journeys in the Sciences .
Berlin: Springer. 2020
- McAllister, J.W. (2011). What do Patterns in Empirical Data Tell Us
About the Structure of the World? Synthese 182 (1): 73–87.
https://doi.org/10.1007/s11229-009-9613-x.
- Chin-Yee B, Upshur R. Three problem with big data and artificial
intelligence in medicine. Perspect. Biol. and Med. 2019;62(2):
237-256 DOI:https://doi.org/10.1353/pbm.2019.0012
- Sullivan E. Understanding from Machine Learning Models. Brit. J.
Philos. Sci. 2020;axz035,https://doi.org/10.1093/bjps/axz035
- Esteva A, Kuprel B, Nova R, Ko J, Swetter S, Blau H, and Thrun S.
Dermatologist-Level Classification of Skin Cancer with Deep Neural
Networks. Nature. 2017;542:115–8.
- Dellermann D, Ebel P, Söllner M, Leimeister JM. Hybrid Intelligence.Bus. Inform. Syst. Eng+ 2019;61:637-643.
Doi:https://doi.org/10.1007/s12599-019-00595-2
- Adamson AS, Smith A. Machine Learning and Health Care Disparities in
Dermatology. JAMA Dermatol. 2018;154(11):1247-1248 DOI:
10.1001/jamadermatol.2018.2348