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1 INTRODUCTION

Hyperbolic equations with strong dissipation arise in the study of various problems of mechanics and physics with viscosity1,2,3.
A mixed problem with dynamic boundary conditions or with dynamic transmission conditions also arises in the mathematical
modelling of various problems of mechanics4,5,6,7,8,9,10,11,12.
The mixed problem for wave equations with strong dissipation was studied in13,14,15. A mixed problem with dynamic boundary
conditions for one - dimensional wave equations with strong dissipation was studied in16. The asymptotic of the solutions of the
mixed problem for wave equations with strong dissipation was studied in14,15,17,18.
Recently, numerous studies of nonlocal problems for various evolution equations have been carried out. Among these problems,
mixed problems with integral boundary conditions are of particular interest (see19, as well as the literature cited in these works).
In this paper, we study amixed problem for one - dimensional wave equations with strong dissipation and a dynamic transmission
condition. We investigate the correctness of the considered problem in Lp – type spaces.

2 STATEMENT OF THE PROBLEM ANDMAIN RESULT

In the domain QT = [0, T ] × [0, 2] we consider the mixed problem:

utt − (�1(x)ux)xt − �1(x)uxx = f1(u) + �1 (t, x) , 0 ≤ t ≤ T , 0 ≤ x ≤ 1, (1)

vtt − (�2(x)vx)xt − �2(x)vxx = f2(v) + �2 (t, x) , 0 ≤ t ≤ T , 1 ≤ x ≤ 2 (2)
with the boundary conditions

u (t, 0) = 0, v(t, 2) = 0, (3)

†This is an example for title footnote.
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the transmission conditions
u(t, 1) = v(t, 1) = �(t), (4)

�tt(t) + 
1uxt(t, 1) − 
2vxt(t, 1) + �1ux(t, 1) − �2vx(t, 1) = ℎ (�) + g(t) (5)
and the initial conditions

u (0, x) = u0(x), ut (0, x) = u1(x), (6)

�′(0) = �1. (7)
Assume that the following conditions are satisfied:

(i) �1(⋅) ∈ C1[0, 1], �2(⋅) ∈ C1[1, 2];

(ii) �1(x) > 0, 0 ≤ x ≤ 1, �2(x) > 0, 1 ≤ x ≤ 2;

(iii) �1(⋅) ∈ L∞(0, 1), �2(⋅) ∈ L∞(1, 2);

(iv) 
1 > 0, 
2 > 0;

(v) �1, �2 ∈ R;

(vi) �1 (⋅) ∈ C1([0, T ] × Lp(0, 1));

(vii) �2 (⋅) ∈ C1([0, T ] × Lp(1, 2));

(viii) g(⋅) ∈ C1 [0, T ];

(ix) |

|

fk(�2) − fk(�1)|| ≤ c1(�2, �1) ⋅ ||�2 − �1|| , k = 1, 2, c1(⋅) ∈ C(R × R);

(x) |

|

ℎk(�2) − ℎk(�1)|| ≤ c2(�2, �1) ⋅ ||�2 − �1|| , k = 1, 2, c2(⋅) ∈ R × R.

We denote by ‖⋅‖p,1 the norm in the space Lp(0, 1), and by ‖⋅‖p,2 the norm in the space Lp(1, 2), respectively, i.e.

‖u‖p,1 =
⎡

⎢

⎢

⎣

1

∫
0

|u(x)|p dx
⎤

⎥

⎥

⎦

1
p

, ‖v‖p,2 =
⎡

⎢

⎢

⎣

2

∫
1

|v(x)|p dx
⎤

⎥

⎥

⎦

1
p

.

ByW 1
p ((a, b); c), where c ∈ [a, b] denote the following subspace of the Sobolev spaceW

1
p (a, b), i.e.

W 1
p ((a, b); c) =

{

w ∶ w ∈ W 1
p (a, b), w(c) = 0

}

,

We will also use the following spaces:

Xp =
{

w ∶ w = (u, v, �), u ∈ Lp(0, 1), v ∈ Lp(1, 2), � ∈ C
}

with norm

‖w‖Xp
=
⎡

⎢

⎢

⎣

1

∫
0

‖u(x)‖pp dx
⎤

⎥

⎥

⎦

1
p

+
⎡

⎢

⎢

⎣

2

∫
1

‖v(x)‖pp dx
⎤

⎥

⎥

⎦

1
p

+ |�| ,

and
Yp =

{

w ∶ w = (u, v, �), u ∈ W 2
p (0, 1)

⋂

W 1
p ((0, 1); 0),

v ∈ W 2
p (1, 2)

⋂

W 1
p ((1, 2); 2), u(1) = v(1) = �

}

with norm
‖w‖Yp =

‖

‖

uxx‖‖p,1 + ‖

‖

ux‖‖p,1 + ‖

‖

vxx‖‖p,2 + ‖

‖

vx‖‖p,2 .
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Theorem 1. Let the conditions (i) - (x) be satisfied, then for any u0(⋅) ∈ W 2
p (0, 1)

⋂

W 1
p ((0, 1); 0), u1(⋅) ∈ Lp(0, 1), v0(⋅) ∈

W 2
p (1, 2)

⋂

W 1
p ((1, 2); 2), v1(⋅) ∈ Lp(1, 2), �1 ∈ R there is such T0, that problem (1) - (5) has a unique solution (u, v, �) such

that
u(⋅) ∈ C([0, T0] ×W 1

p ((0, 1); 0))
⋂

C1((0, T0) × Lp[0, 1])
⋂

⋂

C1((0, T0] ×W 2
p (0, 1)

⋂

W 1
p ((0, 1); 0))

⋂

C2((0, T0) × Lp[0, 1]),

v(⋅) ∈ C([0, T0] ×W 1
p ((1, 2); 2))

⋂

C1((0, T0) × Lp[1, 2])
⋂

⋂

C1((0, T0] ×W 2
p (1, 2)

⋂

W 1
p ((1, 2); 2))

⋂

C2((0, T0) × Lp[1, 2]),

�(⋅) ∈ C[0, T0]
⋂

C1(0, T0]
⋂

C2(0, T0), ux(⋅, 1), vx(⋅, 1) ∈ C(0, T0),
utt(⋅, 1), vtt(⋅, 1), uxt(⋅, 1), vxt(⋅, 1) ∈ C(0, T0).

If T ′ the length of the maximum interval for the existence of a global solution, then one of the following statements is true:

a) T ′ = +∞;

b) lim
t→T ′−0

sup{‖
‖

uxx‖‖p,1 + ‖

‖

ut‖‖p,1 + ‖

‖

vxx‖‖p,2 + ‖

‖

vt‖‖p,2} = +∞.

Proof. In the space Xp we define a linear operator A, where

D(A) = Yp =
{

w ∶ w = (u, v, �), u ∈ W 2
p (0, 1)

⋂

W 1
p ((0, 1); 0),

v ∈ W 2
p (1, 2)

⋂

W 1
p ((1, 2); 2), u(1) = v(1) = �

}

,

Aw = (−(�1(x)ux)x(x), −(�2(x)vx)x(x), 
1ux(1) − 
2vx(1)), w = (u, v, �),
similarly linear operator B, where

D(B) = Yp =
{

w ∶ w = (u, v, �), u ∈ W 2
p (0, 1)

⋂

W 1
p ((0, 1); 0),

v ∈ W 2
p (1, 2)

⋂

W 1
p ((1, 2); 2), u(1) = v(1) = �

}

,

Bw = (−�1(x)uxx(x), −�2(x)vxx(x), �1ux(1) − �2vx(1)),
w = (u, v, �).

The mixed problem (1) - (5) can be written as the following Cauchy problem in the space Xp:

w′′ + Aw′ + Bw = F (w) + G(t), (8)

w(0) = w0, w′(0) = w1, (9)
where w0 = (u0, v0, �0), �0 = u0(1) = v0(1), w1 = (u1, v1, �1), F (w) = (f1(u), f2(v), ℎ(�)), G(t) = (�1(t, ⋅), �2(t, ⋅), g(t)).

Lemma 1. Let the conditions (i), (ii), (iv) be satisfied and p ≥ 1, then A - is a sectorial operator in Xp.

Note that the definition of a sectorial operator can be found in20,21, as well as in the literature cited there. In these papers, the
main properties of a sectorial operator are also is given.

Lemma 2. Let the conditions (iii) - (v) be satisfied and p ≥ 1, then B - linear bounded operator, acting from Yp in Xp.

The following lemmas are obtained from conditions (viii)-(x), by virtue of the embedding theorems.

Lemma 3. Let the conditions (ix) - (xii) be satisfied and p ≥ 1, then nonlinear operator F acting from Yp in Xp satisfies the
local Lipshits condition, i.e. for all w1, w2 inequality is true

‖

‖

F (w1) − F (w2)‖‖Xp
≤ c(‖

‖

w1
‖

‖Yp
, ‖
‖

w2
‖

‖Yp
) ‖
‖

w1 −w2
‖

‖Yp
.

Lemma 4. Let the conditions (vi) - (viii) be satisfied, then G(t) ∈ C1([0, T ];Xp).

By virtue of the Lemma 1 linear operator A generates the analytic semigroup U (t) = e−tA in the space Xp. It is known that
‖

‖

‖

tAe−tA‖‖
‖Xp→Xp

≤ C, 0 ≤ t ≤ T (see20,21? ), (10)
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where C > 0 is a constant.
The problem (8), (9) can be reduced to the problem

�′ = S� + Φ(�) + Ψ(t), (11)

�(0) = �0 (12)
in the Banach space E = Yp ×Xp, where

� = �(t) =
(

v1(t)
v2(t)

)

=
(

w(t)
wt(t)

)

, �0 =
(

w0
w1

)

,Φ(�) =
(

0
F (w)

)

,Ψ(t) =
(

0
G(t)

)

,

S = S0 + S1, S0 =
(

0 I
0 − A

)

, S1 =
(

0 0
−B 0

)

.

In the space E = Yp ×Xp the linear operator S0 generates the strongly continuous semigroup

etS0�0 = (w0 +

t

∫
0

e−�Aw1d�, e
−tAw1).

Taking (10) into account, we see that
‖

‖

‖

tS0e
tS0‖
‖

‖E→E
≤ C, 0 ≤ t ≤ T .

It follows that S0 generates an analytic semigroup.
On the other hand, the linear operator S1 is bounded on the space E = Yp ×Xp, hence, the operator S also generates an analytic
semigroup20,21,22

Taking into account the Lemma 3 and Lemma 4
‖

‖

Φ(�1) − Φ(�2)‖‖E ≤ c(‖
‖

�1‖‖E , ‖‖�2‖‖E) ‖‖�1 − �2‖‖E ,

Ψ(t) ∈ C1([0, T ] ;E).
Thus, all conditions for the existence and uniqueness of a local solution for nonlinear equations in a Banach space are
satisfied20,22? .

Theorem 2. Let p = 2 and the conditions (i) - (x) be satisfied. Suppose, that the following conditions are additionally satisfied:

(xi) |

|

Fk(t)|| ≤ c(1 + |t|vk), 0 ≤ vk < 2, where Fk(t) = ∫ t
0 fk(s)ds, k = 1, 2;

(xii) |H(t)| ≤ c(1 + |t|v), 0 ≤ v < 2, whereH(t) = ∫ t
0 ℎ(s)ds;

(xiii)
|

|

|

|

|

�1(1) �1(1)

1 �1

|

|

|

|

|

= 0,
|

|

|

|

|

�2(1) �2(1)

2 �2

|

|

|

|

|

= 0.

Then for any u0(⋅) ∈ W 2
2 (0, 1)

⋂

W 1
2 ((0, 1); 0), u1(⋅) ∈ L2(0, 1), v0(⋅) ∈ W 2

2 (1, 2)
⋂

W 1
2 ((1, 2); 2), v1(⋅) ∈ L2(1, 2), �1 ∈ R

problem (1) - (5) has a unique solution (u, v, �) such that
u(⋅) ∈ C([0, T ] ×W 1

2 ((0, 1); 0))
⋂

C1((0, T ) × L2[0, 1])
⋂

⋂

C1((0, T ] ×W 2
2 (0, 1)

⋂

W 1
2 ((0, 1); 0))

⋂

C2((0, T ) × L2[0, 1]),

v(⋅) ∈ C([0, T ] ×W 1
2 ((1, 2); 2))

⋂

C1((0, T ) × L2[1, 2])
⋂

⋂

C1((0, T ] ×W 2
2 (1, 2)

⋂

W 1
2 ((1, 2); 2)

⋂

C2((0, T ) × L2[1, 2]),
�(⋅) ∈ C[0, T ]

⋂

C1(0, T ]
⋂

C2(0, T ), ux(⋅, 1), vx(⋅, 1) ∈ C(0, T ),
utt(⋅, 1), vtt(⋅, 1), uxt(⋅, 1), vxt(⋅, 1) ∈ C(0, T ).

Proof. If for a local solution the following a priori estimate is true
1

∫
0

|

|

ut(t, x)||
2 dx +

2

∫
1

|

|

vt(t, x)||
2 dx +

1

∫
0

|

|

uxx(t, x)||
2 dx +

2

∫
1

|

|

vxx(t, x)||
2 dx ≤ C, 0 ≤ t ≤ T ′, (13)

then, by virtue of Theorem 1, this solution can be globally continued on the entire interval [0, T ].
In order to get an a priori estimate (13), first, we multiply both sides of (1) by 
1

�1(1)
ut(t, x) and integrate in [0, t] × [0, 1]. Then,
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we multiply both sides of (2) by 
2
�2(1)

vt(t, x) and integrate in [0, t] × [1, 2]. Lastly we multiply both sides of (5) by �t(t) and
integrate in [0, t]. Next, by applying the integration by parts and using the conditions (3), (4), (6) and (7) we can get


1
2�1(1)

1

∫
0

|

|

ut(t, x)||
2 dx +


1
2�1(1)

1

∫
0

�1(x) ||ux(t, x)||
2 dx+

+

2

2�2(1)

2

∫
1

|

|

vt(t, x)||
2 dx +


2
2�2(1)

2

∫
1

�2(x) ||vx(t, x)||
2 dx+

+

1
�1(1)

t

∫
0

1

∫
0

�1(x) ||uxt(s, x)||
2 dxds +


2
�2(1)

t

∫
0

2

∫
1

�2(x) ||vxt(s, x)||
2 dxds+

+

1
�1(1)

t

∫
0

1

∫
0

�1x(x)ux(s, x)ut(s, x)dxds +

2
�2(1)

t

∫
0

2

∫
1

�2x(x)vx(s, x)vt(s, x)dxds+

+1
2
|

|

�t(t)||
2 =

1

∫
0

F1(u(t, x))dx +

2

∫
1

F2(v(t, x))dx +H(�(t))+

+

1
�1(1)

t

∫
0

1

∫
0

�1(s, x)ut(s, x)dxds +

2
�2(1)

t

∫
0

2

∫
1

�2(s, x)vt(s, x)dxds+

+

t

∫
0

g(s)�t(s)ds +

1

2�1(1)

1

∫
0

|

|

u1(x)||
2 dx +


1
2�1(1)

1

∫
0

�1(x) ||u0x(x)||
2 dx+

+

2

2�2(1)

2

∫
1

|

|

v1(x)||
2 dx +


2
2�2(1)

2

∫
1

�2(x) ||v0x(x)||
2 dx + 1

2
|

|

�1(t)||
2 −

−

1

∫
0

F1(u0(x))dx −

2

∫
1

F2(v0(x))dx −H(�(0)). (14)

Taking into account conditions (xi), (xii) and applying the Holder and Young inequalities, we obtain that
1

∫
0

F1(u(t, x))dx ≤ c

1

∫
0

(1 + |u(t, x)|v1)dx ≤ c

(

1 +
(1
"

)

2
2−v1

)

+ c"

1

∫
0

|

|

ux(t, x)||
2 dx; (15)

2

∫
1

F2(v(t, x))dx ≤ c

(

1 +
(1
"

)

2
2−v2

)

+ c"

2

∫
1

|

|

vx(t, x)||
2 dx; (16)

|H(�(t))| ≤ c1
(1
"
+ " |�(t)|2

)

, (17)
also following inequality

|

|

|

|

|

|

|

t

∫
0

1

∫
0

�1(s, x)ut(s, x)dxds
|

|

|

|

|

|

|

≤ 1
"

t

∫
0

1

∫
0

|

|

�1(s, x)||
2 dxds + "

t

∫
0

1

∫
0

|

|

ut(s, x)||
2 dxds; (18)

|

|

|

|

|

|

|

t

∫
0

2

∫
1

�2(s, x)vt(s, x)dxds
|

|

|

|

|

|

|

≤ 1
"

t

∫
0

2

∫
1

|

|

�2(s, x)||
2 dxds + "

t

∫
0

2

∫
1

|

|

vt(s, x)||
2 dxds; (19)

|

|

|

|

|

|

|

t

∫
0

1

∫
0

�1x(x)ux(s, x)ut(s, x)dxds
|

|

|

|

|

|

|

≤ c
⎡

⎢

⎢

⎣

t

∫
0

1

∫
0

|

|

ut(s, x)||
2 dxds +

t

∫
0

1

∫
0

|

|

ux(s, x)||
2 dxds

⎤

⎥

⎥

⎦

; (20)
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|

|

|

|

|

|

|

t

∫
0

2

∫
1

�2x(x)vx(s, x)vt(s, x)dxds
|

|

|

|

|

|

|

≤ c
⎡

⎢

⎢

⎣

t

∫
0

2

∫
1

|

|

vt(s, x)||
2 dxds +

t

∫
0

2

∫
1

|

|

vx(s, x)||
2 dxds

⎤

⎥

⎥

⎦

. (21)

Taking into account inequalities (15) - (21) in (14) and applying the Gronwall’s lemma, we obtain the following a priori estimate
1

∫
0

|

|

ut(t, x)||
2 dx +

1

∫
0

|

|

ux(t, x)||
2 dx +

2

∫
1

|

|

vt(t, x)||
2 dx +

2

∫
1

|

|

vx(t, x)||
2 dx+

+

t

∫
0

1

∫
0

|

|

uxt(s, x)||
2 dxds +

t

∫
0

2

∫
1

|

|

vxt(s, x)||
2 dxds + |

|

�t(t)||
2 ≤ C. (22)

Now multiply both sides of (1) by 
1uxx(t, x) and integrate in [0, t] × [0, 1]. Then, we multiply both sides of (2) by 
2vxx(t, x)
and integrate in [0, t] × [1, 2]. Lastly we multiply both sides of (5) by �t(t) and integrate in [0, t].
Next, by applying the integration by parts and using the conditions (3), (4), (6) and (7) we can get

−

1
2

1

∫
0

�1(x) ||uxx(t, x)||
2 dx −


2
2

2

∫
1

�2(x) ||vxx(t, x)||
2 dx−

−
1

t

∫
0

1

∫
0

�1x(x)uxx(s, x)uxt(s, x)dxds − 
2

t

∫
0

2

∫
1

�2x(x)vxx(s, x)vxt(s, x)dxds+

+
1

1

∫
0

uxx(t, x)ut(t, x)dx + 
1

t

∫
0

1

∫
0

|

|

uxt(s, x)||
2 dxds + 
2

2

∫
1

vxx(t, x)vt(t, x)dx+

+
2

t

∫
0

2

∫
1

|

|

vxt(s, x)||
2 dxds − 
1

t

∫
0

1

∫
0

�1(x) ||uxx(s, x)||
2 dxds − 
2

t

∫
0

2

∫
1

�2(x) ||vxx(s, x)||
2 dxds+

+1
2
|

|

�t(t)||
2 = 
1

1

∫
0

u0xx(x)u1(x)dx + 
2

2

∫
1

v0xx(x)v1(x)dx +
1
2
|

|

�1||
2 +

+

t

∫
0

1

∫
0

[f1(u(s, x)) + �1(u(s, x))]uxx(s, x)dxds +

t

∫
0

2

∫
1

[f2(v(s, x)) + �2(v(s, x))]vxx(s, x)dxds+

+

t

∫
0

[ℎ(�(s)) + g(s)]�t(s)ds. (23)

Using Holder inequality and taking into account a priori estimate (22) from (23), we have
1

∫
0

|

|

uxx(t, x)||
2 dx +

2

∫
1

|

|

vxx(t, x)||
2 dx ≤ C1 + C2

t

∫
0

⎡

⎢

⎢

⎣

1

∫
0

|

|

uxx(t, x)||
2 dx +

2

∫
1

|

|

vxx(t, x)||
2 dx

⎤

⎥

⎥

⎦

dt, (24)

where C1 > 0 and C2 > 0 constants independent of t, x, u and v.
From (24), in view of Gronwall lemma, it follows

1

∫
0

|

|

uxx(t, x)||
2 dx +

2

∫
1

|

|

vxx(t, x)||
2 dx ≤ C, 0 ≤ t ≤ T . (25)

It follows from (22), (24) that the local solution presented in Theorem 1 satisfies a priori estimate (13).
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3 PROOF OF THE LEMMA 1

According to the definition, for showing that the operator A is a sectorial, we must evalute its resolvent.
To estimate the resolvent of the operator A, we consider the equation

�ũ + Aũ = G, (26)

where G = (�1(⋅), �2(⋅), �) ∈ Xp.
Equation (26) is equivalent to the boundary value problem:

�u(x) − (�1(x)u′(x))′ = �1(x), 0 ≤ x ≤ 1, (27)

�v(x) − (�2(x)v′(x))′ = �2(x), 1 ≤ x ≤ 2, (28)

u(1) = v(1) = �, (29)

u(0) = 0, (30)

v(2) = 0, (31)

�� + 
1u′(1) − 
2v′(1) = �, (32)
where � ∈ C , �1(x) ∈ Lp(0, 1), �2(x) ∈ Lp(1, 2), � ∈ R.
Let u(x) and v(x) smooth functions satisfy (27) - (32). Following23, we multiply both sides of (27) by the function ū(x) |u(x)|p−2.
Further, integrating by parts, we obtain

�

1

∫
0

|u(x)|p dx +

1

∫
0

�1(x)u′(x)(ū(x) |u(x)|
p−2)xdx − �1(1)u′(1)(ū(1) |u(1)|

p−2) =

=

1

∫
0

�1(x)ū(x) |u(x)|
p−2 dx. (33)

Multiplying both sides of (28) by v̄(x) |v(x)|p−2 and integrating by parts, we see that

�

2

∫
1

|v(x)|p dx +

2

∫
1

�2(x)v′(x)(v̄(x) |v(x)|
p−2)xdx + �2(1)v′(1)(v̄(1) |v(1)|

p−2) =

=

2

∫
1

�2(x)v̄(x) |v(x)|
p−2 dx. (34)

Next, we multiply both sides of (32) by �̄ |�|p−2, we get

� |�|p +
[


1u
′(1) − 
2v′(1)

]

�̄ |�|p−2 = ��̄ |�|p−2 . (35)

Now, multiplying both sides of (33) by 
1
�1(1)

, and multiplying both sides of (34) by 
2
�2(1)

. If we add up the equalities that got and
(35), we obtain

�

1
�1(1)

1

∫
0

|u(x)|p dx + �

2
�2(1)

2

∫
1

|v(x)|p dx + � |�|p +

1

∫
0

J1dx +

2

∫
1

J2dx =

=

1
�1(1)

1

∫
0

�1(x)ū(x) |u(x)|
p−2 dx +


2
�2(1)

2

∫
1

�2(x)v̄(x) |v(x)|
p−2 dx + ��̄ |�|p−2 , (36)

where
J1 =


1�1(x)
�1(1)

[u′(x)ū′(x) |u(x)|p−2 + u′(x)ū(x)(|u(x)|p−2)x], 0 ≤ x ≤ 1,
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J2 =

2�2(x)
�2(1)

[v′(x)v̄′(x) |v(x)|p−2 + v′(x)v̄(x)(|v(x)|p−2)x], 1 ≤ x ≤ 2.

It can be verified directly that

|

|

Im J1|| ≤

1�1(x)
�1(1)

|p − 2| |u(x)|p−2
|

|

|

|

Im
u′(x)ū(x)
u(x)

|

|

|

|

|

|

(|u(x)|)x|| ,

Re J1 =

1�1(x)
�1(1)

[

(p − 1) |u(x)|p−2 |
|

(|u(x)|)x||
2 + |u(x)|p−2

|

|

|

|

Im
u′(x)ū(x)
u(x)

|

|

|

|

2
]

.

Hence we have
|

|

Im J1||
Re J1

≤
|p − 2| 1

2
√

p−1
2
√

p − 1 ||
|

Im u′(x)ū(x)
u(x)

|

|

|

|

|

(|u(x)|)x||

(p − 1) |
|

(|u(x)|)x||
2 + |

|

|

Im u′(x)ū(x)
u(x)

|

|

|

2
≤ |p − 2|

2
√

p − 1
,

i.e.
|

|

Im J1|| ≤
|p − 2|

2
√

p − 1
Re J1, (37)

|

|

Im J2|| ≤
|p − 2|

2
√

p − 1
Re J2. (38)

On the other hand, from (36) we obtain

Re �(

1
�1(1)

‖u‖pp,1 +

2
�2(1)

‖v‖pp,2 + |�|p) + Re

1

∫
0

J1dx + Re

2

∫
1

J2dx =

= Re
⎡

⎢

⎢

⎣


1
�1(1)

1

∫
0

�1(x)ū(x) |u(x)|
p−2 dx +


2
�2(1)

2

∫
1

�2(x)v̄(x) |v(x)|
p−2 dx + ��̄ |�|p−2

⎤

⎥

⎥

⎦

, (39)

Im �(

1
�1(1)

‖u‖pp,1 +

2
�2(1)

‖v‖pp,2 + |�|p) + Im

1

∫
0

J1dx + Im

2

∫
1

J2dx =

= Im
⎡

⎢

⎢

⎣


1
�1(1)

1

∫
0

�1(x)ū(x) |u(x)|
p−2 dx +


2
�2(1)

2

∫
1

�2(x)v̄(x) |v(x)|
p−2 dx + ��̄ |�|p−2

⎤

⎥

⎥

⎦

. (40)

Inviewing of (39), (40) we can write

Re

1

∫
0

J1dx + Re

2

∫
1

J2dx − �
|

|

|

|

|

|

|

Im

1

∫
0

J1dx

|

|

|

|

|

|

|

− �
|

|

|

|

|

|

|

Im

2

∫
1

J2dx

|

|

|

|

|

|

|

≥ 0,

where 0 ≤ � ≤ 2
√

p−1
|p−2|

.
Taking into account this inequality, we see from (39), (40) that

(Re � + � |Im�|)(

1
�1(1)

‖u‖pp,1 +

2
�2(1)

‖v‖pp,2 + |�|p) ≤

≤

1
�1(1)

(1 + �)
⎛

⎜

⎜

⎝

1

∫
0

|

|

�1(x)||
p dx

⎞

⎟

⎟

⎠

1
p
⎛

⎜

⎜

⎝

1

∫
0

|u(x)|p dx
⎞

⎟

⎟

⎠

p−1
p

+

+

2
�2(1)

(1 + �)
⎛

⎜

⎜

⎝

2

∫
1

|

|

�2(x)||
p dx

⎞

⎟

⎟

⎠

1
p
⎛

⎜

⎜

⎝

2

∫
1

|v(x)|p dx
⎞

⎟

⎟

⎠

p−1
p

+ � |�|p−1 .

Hence we obtain
(Re � + � |Im�|)(‖u‖pp,1 + ‖v‖pp,2 + |�|p) ≤
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≤ C

⎡

⎢

⎢

⎢

⎣

(1 + �)
⎛

⎜

⎜

⎝

1

∫
0

|

|

�1(x)||
p dx

⎞

⎟

⎟

⎠

1
p

+ (1 + �)
⎛

⎜

⎜

⎝

2

∫
1

|

|

�2(x)||
p dx

⎞

⎟

⎟

⎠

1
p

+ �

⎤

⎥

⎥

⎥

⎦

×

×

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1

∫
0

|u(x)|p dx
⎞

⎟

⎟

⎠

1
p

+
⎛

⎜

⎜

⎝

2

∫
1

|v(x)|p dx
⎞

⎟

⎟

⎠

1
p

+ |�|

⎤

⎥

⎥

⎥

⎦

p−1

,

where

C =
max

{


1
�1(1)

, 
2
�2(1)

}

min
{


1
�1(1)

, 
2
�2(1)

} .

From here we get
(Re � + � |Im�|)(‖u(⋅)‖pp,1 + ‖v(⋅)‖pp,2 + |�|p) ≤

≤ 3C(1 + �)
⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1

∫
0

|

|

�1(x)||
p dx

⎞

⎟

⎟

⎠

1
p

+
⎛

⎜

⎜

⎝

2

∫
1

|

|

�2(x)||
p dx

⎞

⎟

⎟

⎠

1
p

+ �

⎤

⎥

⎥

⎥

⎦

×

×

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1

∫
0

|u(x)|p dx
⎞

⎟

⎟

⎠

1
p

+
⎛

⎜

⎜

⎝

2

∫
1

|v(x)|p dx
⎞

⎟

⎟

⎠

1
p

+ |�|

⎤

⎥

⎥

⎥

⎦

p−1

,

i.e.
(Re � + � |Im�|)(‖u(⋅)‖p,1 + ‖v(⋅)‖p,2 + |�|) ≤

≤ 3C(1 + �)(‖
‖

�1(⋅)‖‖p,1 + ‖

‖

�2(⋅)‖‖p,2 + |�|).
Hence, taking into account (27), (28) and (32), we have

(Re � + � |Im�|)(‖u(⋅)‖p,1 + ‖v(⋅)‖p,2 + |�|) ≤

≤ 3C(1 + �)(‖
‖

�u(⋅) − u′′(⋅)‖
‖p,1 + ‖

‖

�v(⋅) − v′′(⋅)‖
‖p,2 +

+ |

|

�� + u′(1) − v′(1)|
|

). (41)
We consider problem (27) - (32) at the point � = 0. Solving the corresponding problem, we obtain

u(x) = �1(1)K1

x

∫
0

dy
�1(y)

+

x

∫
0

1
�1(y)

⎛

⎜

⎜

⎝

1

∫
y

�1(s)ds
⎞

⎟

⎟

⎠

dy, 0 ≤ x ≤ 1,

v(x) = −�2(1)K2

2

∫
x

dy
�2(y)

+

2

∫
x

1
�2(y)

⎛

⎜

⎜

⎝

y

∫
1

�2(s)ds
⎞

⎟

⎟

⎠

dy, 1 ≤ x ≤ 2,

� =
⎡

⎢

⎢

⎣


1
�1(1) ∫

1
0

dy
�1(y)

+

2

�2(1) ∫
2
1

dy
�2(y)

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

� −

1

�1(1) ∫
1
0

dy
�1(y)

1

∫
0

1
�1(y)

⎛

⎜

⎜

⎝

1

∫
y

�1(s)ds
⎞

⎟

⎟

⎠

dy+

+

2

�2(1) ∫
2
1

dy
�2(y)

2

∫
1

1
�2(y)

⎛

⎜

⎜

⎝

y

∫
1

�2(s)ds
⎞

⎟

⎟

⎠

dy
⎤

⎥

⎥

⎦

,

where

K1 =
⎡

⎢

⎢

⎣


2�1(1)

1

∫
0

dy
�1(y)

+ 
1�2(1)

2

∫
1

dy
�2(y)

⎤

⎥

⎥

⎦

−1

×
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×
⎡

⎢

⎢

⎣

��2(1)

2

∫
1

dy
�2(y)

+ 
2

2

∫
1

1
�2(y)

⎛

⎜

⎜

⎝

y

∫
1

�2(s)ds
⎞

⎟

⎟

⎠

dy + 
2

1

∫
0

1
�1(y)

⎛

⎜

⎜

⎝

1

∫
y

�1(s)ds
⎞

⎟

⎟

⎠

dy
⎤

⎥

⎥

⎦

,

K2 =
⎡

⎢

⎢

⎣


2�1(1)

1

∫
0

dy
�1(y)

+ 
1�2(1)

2

∫
1

dy
�2(y)

⎤

⎥

⎥

⎦

−1

×

×
⎡

⎢

⎢

⎣

��1(1)

1

∫
0

dy
�1(y)

+ 
1

2

∫
1

1
�2(y)

⎛

⎜

⎜

⎝

y

∫
1

�2(s)ds
⎞

⎟

⎟

⎠

dy − 
1

1

∫
0

1
�1(y)

⎛

⎜

⎜

⎝

1

∫
y

�1(s)ds
⎞

⎟

⎟

⎠

dy
⎤

⎥

⎥

⎦

.

Taking conditions (i) - (viii), we have

‖u(⋅)‖p,1 + ‖v(⋅)‖p,2 + |�| ≤ c
[

‖

‖

�1(⋅)‖‖p,1 + ‖

‖

�2(⋅)‖‖p,2 + |�|
]

,

i.e.
‖w‖Xp

≤ c ‖Aw‖Xp
, w ∈ D(A).

Thus, � = 0 belongs to the resolvent set of the operator A. Therefore, by virtue of (24)

ℜ = {� ∶ Re � + � |Im �| > 0}

is contained in the resolvent set of the linear operator A and there exists anM > 0, such that
‖

‖

‖

(� + A)−1‖‖
‖Xp→Xp

≤ M
|�|
, � ∈ ℜ,

i.e., A is a sectorial operator in Xp (see20,21).

4 PROOF OF THE LEMMA 2

By the definition of the operator B and the norm in Xp, we have

‖Bw‖Xp
= ‖

‖

�1(x)uxx(x)‖‖p,1 + ‖

‖

�2(x)vxx(x)‖‖p,2 + |

|

�1ux(1) + �2vx(1)|| .

Further, taking into account conditions (iii), (v) we obtain that

‖Bw‖Xp
≤ c[‖

‖

uxx(x)‖‖p,1 + ‖

‖

vxx(x)‖‖p,2 + |

|

ux(1)|| + |

|

vx(1)||]. (42)

By virtue of embedding theorems
|

|

ux(1)|| ≤ c ‖u‖W 2
p (0,1)

≤ c ‖w‖Yp , (43)

|

|

vx(1)|| ≤ c ‖v‖W 2
p (1,2)

≤ c ‖w‖Yp . (44)
It follows from (42) - (44) that the linear operator B is a bounded operator acting from Yp in Xp.

5 MIXED PROBLEMWITH CONDITION OF DYNAMICAL FUNCTIONAL
TRANSMISSION FOR A ONE-DIMENSIONALWAVE EQUATIONWITH STRONG
DISSIPATION

In the domain QT = [0, T ] × [0, 2] we consider the mixed problem:

utt − (�1(x)ux)xt − �1(x)uxx = f (t, x) , 0 ≤ t ≤ T , 0 ≤ x ≤ 1, (45)

vtt − (�2(x)vx)xt − �2(x)vxx = g (t, x) , 0 ≤ t ≤ T , 1 ≤ x ≤ 2 (46)
with the boundary conditions

u (t, 0) = 0, v(t, 2) = 0, (47)



A.B. ALIEV AND G.KH. SHAFIEVA 11

the transmission conditions
u(t, 1) = v(t, 1) = �(t), (48)

�tt(t) + 
1uxt(t, 1) − 
2vxt(t, 1) +K[u(t, ⋅), v(t, ⋅)] = ℎ(t) (49)
and the initial conditions

u (0, x) = u0(x), ut (0, x) = u1(x), (50)

�t(0) = �1, (51)
where K[⋅, ⋅] linear continuous functional, acting from Yp in R (see19).
The mixed problem (45) - (51) can be written as the following Cauchy problem in the space Xp:

w′′ + Aw′ + B1w = F (w) + G(t), (52)

w(0) = w0, w′(0) = w1, (53)
where

D(B1) = Yp =
{

w ∶ w = (u, v, �), u ∈ W 2
p (0, 1)

⋂

W 1
p ((0, 1); 0),

v ∈ W 2
p (1, 2)

⋂

W 1
p ((1, 2); 2), u(1) = v(1) = �

}

,

B1w = (−�1(x)uxx(x), −�2(x)vxx(x), K[u(⋅), v(⋅)]),
w = (u, v, �).

Thus, it is B1 which a linear bounded operator from Yp in Xp, then for problem (44) - (50) all the statements of Theorem 1 and
Theorem 2 are valid.
Note that instead of K[u(⋅), v(⋅)] we can take an arbitrary functional. For example, a functional like the following

K[u(⋅), v(⋅)] =
1
∑

k=0
ak

1

∫
0

Dk
xu(x)dx +

1
∑

k=0
bj

2

∫
1

Dj
xv(x)dx, ak, bj ∈ R, k = 0, 1, j = 0, 1

that satisfying all the requirements of Theorem 1 and Theorem 2.
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