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1 INTRODUCTION

We are concerned with a class of nonlinear nonlocal problems in presence of a weight �, possibly unbounded, which is allowed
to change sign. The prototype equations are

{

(−Δ)su + �(x)u = ℎ(�, x, u) in Ω
u = 0 in ℝN ⧵Ω,

but, actually, we shall consider problems where the leading operator (−Δ)s is replaced by more general nonlocal ones denoted
by LK , see Section 2 for the precise setting. Here Ω ⊂ ℝN is a bounded domain with Lipschitz boundary )Ω, � ∈ ℝ and ℎ
satisfies suitable structure conditions.
We shall start analyzing the eigenvalue problem

{

LKu + �(x)u = �u in Ω
u = 0 in ℝn ⧵Ω,

(1)

showing the existence of a principle eigenvalue �̂1 enjoying the usual properties of the first eigenvalue in the classical locale
case. This fact is far from being trivial, due to the fact that, at this step, � is assumed to be unbounded and sign–changing. Once
the existence of �̂1 is proved, it is standard to show the existence of a diverging sequence of eigenvalues solving (1), see Theorem
2 below.
After this preliminary result, we will look for solutions to problems of the form

{

LKu + �(x)u = f (x, u) in Ω
u = 0 in ℝN ⧵Ω,

(2)
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with different assumptions on f . In particular, we produce two constant sign solutions in Theorem 3 by using the Mountain Pass
Theorem.
Finally, we consider a problem of the form

{

LKu + �(x)u = �g(x, u) + f (x, u) in Ω
u = 0 in ℝn ⧵Ω,

(3)

where g(x, ⋅) has sublinear growth at infinity, while f (x, ⋅) exhibits a superlinear growth. In this case we find two constant sign
solutions, and we produce a third nontrivial one by using the Weiestrass Theorem, provided that � is positive and small. Of
course, this result has the flavour of the celebrated one in2 for the local case. However, we shall treat a nonlinear source f
which does not satisfy the usual Ambrosetti-Rabinowitz condition (AR-condition for short), as done in10 for the local Neumann
case. Indeed, we employ a more general condition introduced in15, which covers the case of superlinear reactions with slower
growth near ±∞ and which fail to satisfy the AR-condition; of course, the lack of the AR-condition makes the situation more
complicated, since it is not clear if Palais-smale sequences are bounded. Thus, our result improves those in3, where the existence
of two solutions when � = 0 is proved in presence of pure powers. For related results, see also5 for the spectral fractional
Laplacian, recalling that such an operator is quite different from the one considered here, see1, Section 2.3 for a detailed discussion
on this fact. We also mention7, where a probem like (3) with pure powers and with f having critical growth has been studied
in presence of continuous and sign changing coefficients, showing the existence of two positive solutions for � small enough.
We conclude recalling that many other concave–convex problems have been studied in different situations, for instance in4,6,9
and22.

2 MATHEMATICAL BACKGROUND

The underlying operator LK is defined as follows:

LKu(x) = −∫
ℝN

(u(x) − u(y))K(x − y) dy,

where K ∶ ℝN ⧵ {0}→ (0,∞) is a function satisfying the following
�-assumption:

1. 
K ∈ L1(ℝN ), where 
(x) = min
{

1, |x|2
}

;

2. there exist z > 0 such that K(x) ≥ z|x|−(N+2s) for any x ∈ ℝN ⧵ {0};

3. K(x) = K(−x) for any x ∈ ℝN ⧵ {0}.

Notice that, up to some positive multiplicative constant, LK = −(−Δ)s when K(x) = |x|∕(N+2s).
In order to work with the operator LK , it is necessary to introduce a suitable functional setting.
From now on, we fix s ∈ (0, 1) ,N > 2s, and Ω ⊂ ℝN an open bounded set with Lipschitz Boundary. The space X is

X =
{

v ∶ ℝN → ℝ ∶ v|Ω ∈ L2(Ω), (v(x) − v(y))
√

K(x − y) ∈ L2()
}

,

where  = ℝ2N ⧵  and  = Ωc × Ωc . The space X is endowed with the norm

‖v‖X = ‖v‖L2(Ω) +
⎛

⎜

⎜

⎝

∫


|v(x) − v(y)|2K(x − y) dxdy
⎞

⎟

⎟

⎠

1
2

.

Moreover, we set
X0 =

{

v ∈ X ∶ v = 0 a.e. in ℝN ⧵Ω
}

.
Like in the case of Sobolev spaces with integer s, it is possible to define a critical exponent that plays the same role in the
embedding theorems. Precisely we define

2⋆ = 2N
N − 2s

,

and we have the following
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Lemma 1 (20, Lemma 6). Let K ∶ ℝN ⧵ {0}→ (0,∞) satisfy the �-assumption. Then

1. there exists a positive constant c = c(N, s), such that for any v ∈ X0

‖v‖2
L2⋆ (Ω)

= ‖v‖2
L2⋆ (ℝN )

≤ c ∫


|v(x) − v(y)|2

|x − y|n+2s
dxdy;

2. there exist a constant C = (N, s, �,Ω) > 1 such that for any v ∈ X0

∫


|v(x) − v(y)|2K(x − y) dxdy ≤ ‖v‖2X ≤ C ∫


|v(x) − v(y)|2K(x − y) dxdy,

that is

‖v‖X0
=
⎛

⎜

⎜

⎝

∫


|v(x) − v(y)|2K(x − y) dxdy
⎞

⎟

⎟

⎠

1
2

is a norm in X0 equivalent to the usual one defined in X.

Lemma 2 (20, Lemma 7). (X0, ‖ ⋅ ‖X0
) endowed with the scalar product

⟨u, v⟩X0
= ∫



(u(x) − u(y)) (v(x) − v(y))K(x − y) dxdy

is a Hilbert space.

Recalling that Ω has a Lipschitz boundary, we have:

Lemma 3 (19, Lemma 9). Let K ∶ ℝN ⧵ {0}→ (0,∞) satisfies the �-assumption. Then the following assertions hold true:

1. the embedding X0 → Lp(ℝN ) is compact for every p ∈ [1, 2⋆);

2. the embedding X0 → L2⋆(ℝN ) is continuous.

A fundamental compactness tool is the following

Definition 1. Let X be a Banach Space, and let X∗ be its topological dual. Let ' ∈ C1(X); we say that ' satisfies the Cerami
condition - (C) for short - if the following holds: every sequence (un)n ⊂ X such that

(

'(un)
)

n ⊂ ℝ is bounded and (1 + ‖un‖X)'′(un)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence.

We shall use the following variant of the Mountain Pass Theorem, where the original Palais-Smale condition is replaced by
(C), see13 for a proof.

Theorem 1 (Mountain Pass Theorem). If X is a Banach space, ' ∈ C1(X) satisfies (C), u0, u1 satisfy ‖u1 − u0‖X > � > 0

max
{

'(u0), '(u1)
}

≤ inf
{

'(u) ∶ ‖u − u0‖X = �
}

= ��,

set Γ ∶=
{


 ∈ C ([0, 1] , X) 
(0) = u0, 
(1) = u1
}

and

c ∶= inf

∈Γ

sup
t∈[0,1]

'(
(t)),

then c ≥ �� and c is a critical value for '.

3 THE EIGENVALUE PROBLEM

In this section we give some results about the following nonlocal eigenvalue problem:
{

LKu + �(x)u = �u in Ω
u = 0 in ℝn ⧵Ω,

(P�)

where LK and Ω are as above. More precisely, we prove
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Theorem 2. LetK satisfy the �-assumption and let � ∈ Lq(Ω)with q > 2⋆

2⋆−2
. Then there exists a diverging sequence (�̂n)n and

associated eigenfunctions (ûn)n ⊂ X0 ⧵ {0} such that (�̂n, ûn) solve (P�̂n) for any n ∈ ℕ. Moreover, �̂1 is simple with associated
eigenfunction û1 ≥ 0 a.e. in Ω.

The proof of Theorem 2 essentially consists in proving that the candidate first eigenvalue is finite, and this is the hardest
part, because � is unbounded and sign-changing. Once the finiteness of �̂1 is proved, the existence of a diverging sequence of
eigenvalues follows in a standard way by applying the classical genus theory to a perturbed functional. Hence, we start from

Proposition 1. LetK satisfy the �-assumption and let � ∈ Lq(Ω) with q > 2⋆

2⋆−2
. Then problem (P�) has a smallest eigenvalue

�̂1 ∈ ℝ which is simple and has an eigenfunction û1 ∈ X0 such that û1 ≥ 0 a.e. in Ω.

Remark 1. If �+ ∈ L∞loc(Ω), or K(x) =
1
|x|
, we can conclude that û1 > 0 in Ω, for instance see12 or8, Remark 1.3.

Proof of Proposition 1. Let Ψ ∶ X0 → ℝ be the functional defined by

Ψ(u) = ‖u‖2X0
+ ∫
Ω

�u2 dx

and consider the set

M =

⎧

⎪

⎨

⎪

⎩

u ∈ X0 ∶ ∫
Ω

u2dx = 1

⎫

⎪

⎬

⎪

⎭

.

Set
�̂1 = inf

u∈M
Ψ(u). (4)

Claim 1: �̂1 > −∞.
Note that q > 2⋆

2⋆−2
, hence 2q′ < 2⋆. Then, if u ∈ X0, by Theorem 3 we have that u2 ∈ Lq′(Ω). Hence, by Hölder’s inequality,

we have that
|

|

|

|

|

|

|

∫
Ω

�u2 dz

|

|

|

|

|

|

|

≤ ‖�‖q‖u‖
2
2q′ . (5)

We know that X0 → L2q′(Ω) → L2(Ω) and the first embedding is compact. So, by Ehrling’s inequality (for instance,
see17, Lemma 10.1.28, given � > 0 we can find c(�) > 0 such that

‖u‖22q′ ≤ �‖u‖2X0
+ c(�)‖u‖22 ∀ u ∈ X0. (6)

From (5) and (6) we get
‖u‖2X0

− ∫
Ω

�u2 dz ≤ ‖u‖2X0
+ �‖�‖q‖u‖2X0

+ c(�)‖�‖q‖u‖22. (7)

Now, we choose � ∈ (0, 1∕‖�‖q). Reordering the terms from (7), we have

0 ≤ ‖u‖2X0
(1 − �‖�‖q) ≤ Ψ(u) + c(�)‖�‖q‖u‖22, (8)

hence
−c(�)‖�‖q‖u‖22 ≤ Ψ(u),

which implies �̂1 > −∞.
Claim 2: The infimum is obtained at a function û1 ∈M with û1 ≥ 0 in Ω.
Let (un)n ⊂ M be a minimizing sequence for (4), i.e. Ψ(un)→ �̂1 as n→∞. Now, from (8) we observe that (un)n is bounded,

so we may assume that
un ⇀ û1 in X0 and un → û1 in L2q

′(Ω) as n→∞.
By the weak sequential lower semicontinuity and Lemma 3, we have that

‖û1‖
2
X0

≤ lim inf
n→∞

‖un‖
2
X0

and lim
n→∞∫

Ω

�u2n dx = ∫
Ω

�û21 dx,

and thus Ψ(û1) ≤ �̂1. Since û1 ∈M , we get that Ψ(û1) = �̂1.
By the Lagrange multiplier rule, we have that (�̂1, û1) solve problem (P�̂1), and so û1 ∈ X0 is an associated eigenfunction to �̂1.
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We observe that if u is a normalized eigenfunction for (P�̂1), by the triangle inequality we have

�̂1 ≤ Ψ(|u|) = ∫ ∫
D

(|u(x)| − |u(y)|)2K(x − y) dxdy + ∫
Ω

�u2 dx

≤ ∫ ∫
D

(u(x) − u(y))2K(x − y) dxdy + ∫
Ω

�u2 dx = Ψ(u) = �̂1,

hence we may assume u ≥ 0.
Claim 3: �̂1 is simple.
We start noticing that

⟨

u+, u−
⟩

X0
= −∫



[

u+(y)u−(x) + u+(x)u−(y)
]

K(x − y) dxdy ≤ 0 (9)

for every u ∈ X0.
Now we improve Claim 2, showing that any weak solution u ∈ X0 of (P�̂1), u ≠ 0, is such that either

u ≥ 0 in Ω

or
u ≤ 0 in Ω.

Without loss of generality we assume that ‖u‖2 = 1 and by (9) we have

�̂1 = Ψ(u) = Ψ(u+) + Ψ(u−) − 2
⟨

u+, u−
⟩

X0

≥ �̂1‖u
+
‖

2
2 + �̂1‖u

−
‖

2
2 = �̂1.

Hence, in the previous inequality we find all equalities, and so

Ψ(u+) = �̂1‖u+‖22 and Ψ(u−) = �̂1‖u−‖22,

that is u+ and u− are weak solution of (P�̂1), as well. Moreover, we also get that ⟨u+, u−⟩X0
= 0, that is

0 = ∫


[

u+(y)u−(x) + u+(x)u−(y)
]

K(x − y) dxdy.

Since K > 0, we get that
u+(y)u−(x) + u+(x)u−(y) = 0 a.e. in  and so in Ω.

As a consequence, u− = 0, or u+ = 0, as claimed.
Now, let u, v be non trivial solutions of (P�̂1). We have shown that we can suppose u, v ≥ 0 with ∫Ω u > 0 and ∫Ω v > 0.

Hence it is possible to solve the equation in �

0 = ∫
Ω

(u − �v) dx = ∫
Ω

u dx − � ∫
Ω

v dx.

Recalling that u − �v is a solution of (P�̂1) as well, we have just seen that there are two available options: u − �v ≥ 0 with
u − �v ≠ 0 or u − �v ≡ 0; in the first case we would have ∫Ω (u − �v) dz > 0, and so we deduce that u = �v, which proves the
simplicity of �̂1.

Remark 2. If � ∈ L∞(Ω), then û1 ∈ L∞(Ω) by11, and so by18, Prop. 1.1 we get that u ∈ Cs(Ω̄).

Remark 3. From now on we will denote by û1 the first eigenfunction with ‖û1‖2 = 1 and û1 ≥ 0 in Ω.

Proposition 2. Let V =
{

u ∈ X0 ∶ ∫Ω û1u dx = 0
}

and set

�̂V = inf {Ψ(u) ∶ u ∈M ∩ V } .

Then �̂1 < �̂V .

Proof. First of all, it is clear from the definition above that �̂1 ≤ �̂V .



6 AUTHOR ONE ET AL

Suppose by contradiction that �̂1 = �̂V . Then we can find a sequence (un)n ⊂ M ∩ V such that Ψ(un) → �̂V = �̂1. By (8) we
have

‖un‖
2
X0
(1 − �‖�‖q) ≤ Ψ(un) + c(�)‖�‖q‖un‖22 → �̂1 + c(�)‖�‖q ,

hence (un)n ⊂ X0 is bounded, and so we may assume

un ⇀ u in X0 and un → u in L2q′(Ω). (10)

Exploiting the sequential weak lower semicontinuity of Ψ, by (10) and since u ∈M ∩ V , we have

�̂1 ≤ Ψ(u) ≤ lim infn→∞
Ψ(un) = �̂1 = �̂V ,

and hence
Ψ(u) = �̂1.

By Proposition 1 this implies that u = ±�û1 for some � > 0, a contradiction to the fact that u ∈M ∩ V . Thus �̂1 < �̂V .

Proof of Theorem 2. The first part is contained in Proposition 1. Then, solving (P�) is equivalent to solving the eigenvalue
problem

{

LKu + �̃(x)u = Λu in Ω
u = 0 in ℝn ⧵Ω,

(P̃Λ)

where �̃ = � − �̂1 + 1 and Λ = � − �̂1 + 1. Thus, in order to show that (P̃Λ) has a diverging sequence of eigenvalues, we apply
the classical genus theorem in the form of13, Theorem 9.26. Hence, set

�(u) = ∫
Ω

u2dx,  (u) = Ψ(u) − (�̂1 − 1)∫
Ω

u2dx

and
ℳ ∶=

{

u ∈ X0 ∶  (u) = 1
}

.

By definition of �̂1, it is readily seen that ∫ u2 ≤ 1 if u ∈ℳ.As a consequence, by (8) we get that, if u ∈ℳ, then

‖u‖2X0
(1 − �‖�‖q) ≤ 1 + |�̂1 − 1| + c(�)‖�‖q .

Hence,ℳ is bounded. The other assumptions of13, Theorem 9.26 are easily verified, and so there exists a sequence {(Λn, un)}n of
solutions to (P̃Λ) with Λn ≠ 0 and 1∕Λn → 0, ∫ un → 0 as n→∞. In particular,

1 =  (un) = (Λn − �̂1 + 1)∫
Ω

u2ndx for all n ∈ ℕ,

which implies that Λn → +∞ as n→∞, and so

�̂n → +∞ as n→∞,

as claimed.

4 MOUNTAIN PASS SOLUTIONS BELOW THE FIRST EIGENVALUE

In this section, we study the following nonlinear fractional problem
{

LKu + �(x)u = f (x, u(x)) in Ω
u = 0 in ℝN ⧵Ω,

(P )

where, as before, Ω ⊂ ℝN is a bounded domain with Lipschitz boundary )Ω and � may be sign changing. As for f , we shall
assume

Hypothesis 1. f ∶ Ω ×ℝ → ℝ is a Carathéodory function such that f (x, 0) = 0 for a.e. x ∈ Ω and

(1) |f (x, t)| ≤ a(x)(1 + |t|p−1) for a.e x ∈ Ω, all t ∈ ℝ with a ∈ L∞(Ω)+ = {a ∈ L∞ (Ω) ∶∶ a ≥ 0 a.e. in Ω}, p ∈ (2, 2⋆);
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(2) if F (x, t) = ∫ t
0 f (x,w) dw, then

lim
t→±∞

F (x, t)
t2

= ∞ uniformly for a.e x ∈ Ω;

(3) if �(x, t) = f (x, t)t − 2F (x, t), then there exists �∗ ∈ L1(Ω)+ such that

�(x, t) ≤ �(x, y) + �∗(x) for a.e. x ∈ Ω and all 0 ≤ t ≤ y, or y ≤ t ≤ 0;

(4) there exist #0 ∈ L∞(Ω) and �0 > 0 such that

−�0 ≤ lim inft→0

f (x, t)
t

≤ lim sup
t→0

f (x, t)
t

≤ #0(x)

uniformly for a.e x ∈ Ω, where #0 is such that one of the following conditions holds:

(i) �+ ∈ L∞loc(Ω) or K(x) =
1
|x|

and #0 ≤ �̂1, #0 ≠ �̂1;

(ii) #0 < �̂1 a.e. in Ω.

Of course, the requirement in Hypothesis 1(4)(i) ensures that the first eigenfunction is strictly positive in Ω, see Remark 1.

Remark 4. Hypothesis 4.1(3) was introduced in15 to replace the stronger Ambrosetti–Rabinowitz condition.

Now, we introduce the functional ' ∶ X0 → ℝ defined as

'(u) = 1
2
Ψ(u) − ∫

Ω

F (x, u(x)) dx,

whose critical points are solutions of (P ).

Proposition 3. If Hypotheses 1(1) − (3) hold and � ∈ Lq(Ω) with q > 2⋆

2⋆−2
, then ' satisfies (C).

Proof. Let (un)n ⊂ X0 be a sequence such that

|'(un)| ≤M1 for someM1 > 0, all n ≥ 1 (11)

and
(1 + ‖un‖X0

)'′(un)→ 0 in X∗
0 as n→∞. (12)

We have
2'(un)'′(un)(un) = ∫

Ω

[

f (x, un)un − 2F (x, un)
]

dx.

By using (11) and (12), we immediately obtain that

∫
Ω

�(x, un) dx ≤M2 for all n ≥ 1. (13)

Claim: (un)n ⊂ X0 is bounded. By contradiction we suppose that, up to a subsequence,

‖un‖X0
→∞ as n→∞. (14)

Let yn =
un

‖un‖X0
, n ≥ 1. Then ‖yn‖X0

= 1 for all n ≥ 1 and so we may assume that

yn ⇀ y in X0 and yn → y in Lp(Ω) as n→∞. (15)

First suppose that y ≠ 0 and let Ω0 = {x ∈ Ω ∶ y(x) = 0}. Then

|un(x)| →∞ for a.e x ∈ Ωc0 ∶= {x ∈ Ω ∶ x ∉ Ω0}.

Then Hypothesis 1(2) and Fatou’s Lemma imply that

lim
n→∞∫

Ωc0

F (x, un(x))
‖un‖2X0

dx = ∞.
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But

∫
Ω

F (x, un(x))
‖un‖2X0

dx = ∫
Ω0

F (x, un(x))
‖un‖2X0

dx + ∫
Ωc0

F (x, un(x))
‖un‖2X0

dx,

and so
lim
n→∞∫

Ωc0

F (x, un(x))
‖un‖2X0

dx = ∞. (16)

On the other hand, from (11) we know that

∫
Ω

F (x, un(x))
‖un‖2X0

dx ≤M3 for some M3 and all n ≥ 1,

which contradicts (16).
Now suppose that y = 0. We fix � > 0 and define

vn = (2�)
1
2 yn ∈ X0 for all n ≥ 1.

Since
vn → 0 in Lp(Ω),

we have

∫
Ω

F (x, vn) dx→ 0 as n→∞. (17)

By (14), we can find n0 ≥ 1 such that
0 < (2�)

1
2

1
‖un‖X0

≤ 1 for all n ≥ n0. (18)

Let �n ∈ [0, 1] be such that
'(�nun) = max

0≤�≤1
'(�un).

From (18) it follows that
'(�nun) ≥ '(vn) = �Ψ(yn) − ∫

Ω

F (x, vn) dx for all n ≥ n0. (19)

As we have just seen,
|

|

|

|

|

|

|

∫
Ω

�u2 dx

|

|

|

|

|

|

|

≤ ‖�‖q‖u‖
2
2q′ .

Again by Theorems 3, X0 → L2q′(Ω) → L2(Ω) and the first embedding is compact. By Ehrling’s inequality, given � > 0 we
can find c(�) > 0 such that

‖u‖22q′ ≤ �‖u‖2X0
+ c(�)‖u‖22 for all u ∈ X0.

Like in (8), we get
(1 − �‖�‖q)‖u‖2X0

≤ Ψ(u) + c(�)‖�‖q‖u‖22. (20)
Now use (20) in (19) , so that

'(�nun) ≥ �
[

(1 − �‖�‖q) − c(�)‖�‖q‖yn‖22
]

− ∫
Ω

F (x, vn) dx n ≥ n0. (21)

Choose � ∈
(

0, 1∕‖�‖q
)

and note that
‖yn‖

2
2 → 0 as n→∞, (22)

see (15) and recall that y = 0. By (21), using (17) and (22), we get that

lim inf
n→∞

'(�nun) ≥ �(1 − �‖�‖q).

Since � > 0 is arbitrary, by letting � →∞ we conclude that

'(�nun)→∞ as n→∞. (23)

Notice that
'(0) = 0 and '(un) ≤M1 for all n ≥ 1.
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Therefore, (23) implies that exists n1 ≥ n0 such that �n ∈ (0, 1) for all n ≥ n1, hence
d
d�
'(�un)|�=�n = 0 for all n ≥ n1,

and so
Ψ(�nun) = ∫

Ω

f (x, �nun)�nun dx for all n ≥ n1. (24)

Using Hypothesis 1(3) we have

∫
Ω

�(x, �nun) dx ≤ ∫
Ω

�(x, un) dx + ‖�∗‖1 for all n ≥ n1.

Using the definition of �, (24) and (13) we obtain

2'(�nun) = Ψ(�nun) − 2∫
Ω

F (x, �nun) dx = ∫
Ω

�(x, �nun) dx ≤M4 (25)

fore someM4 > 0 and all n ≥ n1. Comparing (23) and (25) we reach a contradiction. This proves the claim.
By the previous claim, now we may assume that

un ⇀ u in X0 and un → u in Lp(Ω). (26)

Choosing un − u ∈ X0 as test function in (12), passing to the limit as n→∞ and using (26), we find

lim
n→∞

⟨LKun, un − u⟩ = 0

which implies that un → u in X0 as n→∞, and so ' satisfies (C).

Lemma 4. If Hypothesis 1(4) holds, then there exists �0 > 0 such that

Σ(u) = Ψ(u) − ∫
Ω

#u2 dx ≥ �0‖u‖
2
X0
.

Proof. The lines of the proof follow those of in the proof of16, Lemma 18.
Of course Σ(u) ≥ 0. By contradiction, we suppose the lemma is not true. Using the 2-homogenity of Σ, we can find (un)n ⊂ X0

such that
‖un‖X0

= 1 for all n ≥ 1 and Σ(un)→ 0+ as n→∞. (27)
We may assume

un ⇀ u in X0 and un → u in L2(Ω) as n→∞. (28)
It follows from (28) and the lower weak semicontinuity of Ψ that Σ(u) ≤ 0, and so

Ψ(u) ≤ ∫
Ω

#u2 dx ≤ �̂1‖u‖
2
2. (29)

If u = 0 then from (8) applied to un and (28) we see that un → 0 in X0, a contradiction to the fact that ‖un‖X0
= 1 for all n ≥ 1.

Hence u ≠ 0, but now from (29) and Proposition 1 we can deduce that Ψ(u) = �̂1‖u‖22, and so u = ±�û1 for some � > 0. If
Hypothesis 1.4(i) holds, then û1(x) > 0 for a.e. x ∈ Ω, and so from the first inequality in (29) we have Ψ(u) < �̂1‖u‖22, again a
contradiction; if 1.4(ii) holds, then the contradiction is reached using #0 < �̂1 and u ≠ 0. The lemma is thus proved.

Now, we want to prove the existence of nontrivial solutions of constant sign. For this, we introduce the following truncations-
perturbations of the reaction f :

f̂+(x, t) =

{

0 if t ≤ 0,
f (x, t) + 
t if 0 < t

(30)

and

f̂−(x, t) =

{

f (x, t) + 
t if t < 0
0 if 0 ≤ t,

(31)



10 AUTHOR ONE ET AL

where 
 > c(�)‖�‖q once � is chosen (see the Proof of proposition 3). We set

F̂±(x, t) =

t

∫
0

f̂±(x,w) dw.

Then, set �̂(x) = � + 
 and define
Ψ̂(u) = ‖u‖2X0

+ ∫
Ω

�̂(x)u2 dx for all u ∈ X0.

Finally, we consider the functionals '̂± ∶ X0 → ℝ defined by

'̂±(u) =
1
2
Ψ̂(u) − ∫

Ω

F̂±(x, u) dx for all u ∈ X0.

Remark 5. If we repeat the proof of Proposition 3 for the functionals '̂±, we immediately have that they both satisfy (C).

Proposition 4. If Hypothesis 1 holds, � ∈ Lq(Ω) with q > 2⋆

2⋆−2
, then u = 0 is a strict local minimizer for ' and '̂±.

Proof. We do the proof for the functional ', for the others being similar. By Hypotheses 1(1) and 1(4), given � > 0 we can find
c� such that

F (x, t) ≤ 1
2
(#(x) + �)t2 + c�|t|p for a.e. x ∈ Ω, all t ∈ ℝ, p > 2. (32)

Then, for every u ∈ X0 we have

'(u) = 1
2
Ψ(u) − ∫

Ω

F (x, u) dx ≥ 1
2
Ψ(u) − 1

2 ∫
Ω

#u2 dx − �
2
‖u‖22 − c�‖u‖

p
p.

Recalling Lemma 3, we can find C > 0 such that ‖u‖22 ≤ C‖u‖2X0
and ‖u‖pp ≤ C‖u‖pX0

. Applying these inequalities to (4)
toghther with Lemma 4, we obtain

'(u) ≥ 1
2
Ψ(u) − ∫

Ω

#u2 dz − �C
2
‖u‖2X0

− C�‖u‖
p
X0

≥
�0 − �C
2

‖u‖2X0
− C�‖u‖

p
X0
.

Choosing � ∈ (0, �0∕C), we have
'(u) ≥ C1‖u‖

2
X0
− C2‖u‖

p
X0
. (33)

for some C1, C2 > 0. Since p > 2, from (33) we get that u = 0 is a strict local minimizer of ' (and similarly for the functionals
'̂±).

Proposition 5. If Hypothesis 1 holds and � ∈ Lq(Ω) with q > 2⋆

2⋆−2
, then for every u ∈ X0 ⧵ {0}, we have '(�u) → −∞ as

� → ±∞.

Proof. By Hypothesis 1(1) and 1(2), given any � > 0 we can find c� > 0 such that

F (x, t) ≥ �
2
t2 − c� for a.e x ∈ Ω and all t ∈ ℝ.

Hence, for u ∈ X0 , u ≠ 0 and � > 0, choosing � > 0 big enough, we have

'(�u)→ −∞ as � →∞.

Theorem 3. If Hypothesis 1 holds, � ∈ Lq(Ω) with q > 2⋆

2⋆−2
, then problem (P ) admits at least two nontrivial weak solutions

û, v̂ ∈ X0 such that
v̂(x) ≤ 0 ≤ û(x) a.e. in Ω.

Proof. By Proposition 4, we can find � ∈ (0, 1) so small that

'̂+(0) = 0 < inf
{

'̂+(u) ‖u‖X0
= �

}

∶= m̂+. (34)
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Then (34), together with Proposition 5 and Remark 5, implies that we can use the Mountain Pass Theorem. So we can find
û ∈ X0 such that

'̂+(0) = 0 < m̂+ ≤ '̂+(û) (35)
and

'̂′+(û) = 0. (36)
From (35), we see that û ≠ 0, while from (36), we have

LK û + �̂(x)û = f+(x, û). (37)

By (9)
⟨û, û−⟩X0

=
⟨

û+ − û−, û−
⟩

X0
=
⟨

û+, û−
⟩

X0
− ‖û−‖2X0

≤ −‖û−‖2X0
. (38)

On (37), we act with −û− ∈ X0. Then together with (38), we get

Ψ(û−) + 
‖û−‖22 ≤ ⟨û,−û−⟩X0
+ ∫
Ω

� (û−)2 dx + 
‖û−‖22 = 0. (39)

From (8) with � > 0 small enough, we have

(1 − �‖�‖q)‖û−‖2X0
− c(�)‖�‖q‖û−‖22 ≤ Ψ(û

−). (40)

Since 
 > c(�)‖�‖q , from (39), (40) and recalling that ‖û−‖22 ≤ C‖û−‖2X0
(see Lemma 3) it follows that

C‖û−‖2X0
≤ 0 (41)

for some C > 0, which implies that
û ≥ 0, û ≠ 0.

So, (37) becomes
LK û + �(x)û = f (x, û).

i.e. û is a weak solution for (P ).
In a similar fashion, working this time with '̂−, we obtain another nontrivial solution v̂ ∈ X0 having negative sign.

5 A PARAMETRIC PROBLEMWITH COMPETING NONLINEARITIES

In this section we study the following parametric nonlinear problem:
{

LKu + �(x)u = �g(x, u(x)) + f (x, u(x)) in Ω
u = 0 in ℝn ⧵Ω,

(E�)

� > 0 being a parameter. Strengthening the previous assumption, here we will assume that � ∈ L∞(Ω). Moreover, f is a
general superlinear function at∞, while g is sublinear. In this case problem (E�) is an extension of the problem studied in2 to
the fractional setting and with more general nonlinearities and a sign changing weight in the operator.
Going into details, we impose the following conditions on g and f :

Hypothesis 2. g ∶ Ω ×ℝ → ℝ is a Carathéodory function such that g(x, 0) = 0 for a.e. x ∈ Ω and

(1) there exist b ∈ L∞(Ω) and  ∈ (2, 2⋆) such that

|g(x, t)| ≤ b(x)(1 + |t|−1) for a.e x ∈ Ω, all t ∈ ℝ;

(2)
lim
t→±∞

g(x, t)
t

= 0 uniformly for a.e. x ∈ Ω;

(3) if G(x, t) = ∫ t
0 g(x, z) dz, then there exist p, q ∈ (1, 2), � > 0 and �̂0, �0 > 0 such that
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0 < g(x, t) ≤ pG(x, t) for a.e. x ∈ Ω, 0 < |t| ≤ �,
ess inf

Ω
G(⋅,±�) > 0,

lim sup
t→0

g(x, t)
|t|p−2t

≤ �̂0 uniformly for a.e x ∈ Ω and

�0|t|
q ≤ g(x, t)t for a.e. x ∈ Ω, all t ∈ ℝ.

Hypothesis 3. f ∶ Ω ×ℝ → ℝ is a Carathéodory function such that f (x, 0) = 0 for a.e. x ∈ Ω and

(1) there exist a ∈ L∞(Ω)+ and r ∈ (2, 2⋆) such that

|f (x, t)| ≤ a(x)(1 + |t|r−1) for a.e. x ∈ Ω, all t ∈ ℝ;

(2)
lim
t→±∞

f (x, t)
t

= +∞ uniformly for a.e. x ∈ Ω;

(3)
lim
t→0

f (x, t)
t

= 0 uniformly for a.e. x ∈ Ω.

Now, if � > 0 set
��(x, t) = �g(x, t)t + f (x, t)t − �pG(x, t) − pF (x, t),

where F (x, t) = ∫ t
0 f (x,w) dw.

Hypothesis 4. For every � > 0, there exists �∗� ∈ L
1(Ω) such that

��(x, t) ≤ ��(x, y) + �∗� (x)

for a.e x ∈ Ω and all 0 ≤ t ≤ y or y ≤ t ≤ 0.

Remark 6. The condition ess infΩG(⋅,±�) > 0 in Hypothesis 2(3) is automatically satisfied if stronger assumptions on g are
required, see14.

In what follows, for every � > 0, by '� ∶ X0 → ℝ we denote the energy functional associated to problem (E�) defined as

'�(u) =
1
2
Ψ(u) − �∫

Ω

G(x, u(x)) dx − ∫
Ω

F (x, u(x)) dx

for all u ∈ X0. Evidently, '� ∈ C1(X0).
As above, in order to generate nontrivial solutions of constant sign, we introduce suitable truncation–perturbations of the map

t → �g(x, t) + f (x, t). To do that, from now on we assume that � ∈ L∞(Ω). So, by (6), fixed � > 0, if � > 2⋆

2⋆−2
, we choose


 > ‖�‖∞ and

 > c(�)‖�‖∞ |Ω|

1
� ≥ c(�)‖�‖� with c(�) ≥ 1.

Now define

ℎ+� (x, t) =

{

0 if t ≤ 0,
�g(x, t) + f (x, t) + 
t if 0 < t

(42)

ℎ−� (x, t) =

{

�g(x, t) + f (x, t) + 
t if t < 0
0 if 0 ≤ t.

Both ℎ±� are Carathéodory functions. We set

H±
� (x, t) =

t

∫
0

ℎ±� (x,w) dw

and consider the C1-functionals '±� ∶ X0 → ℝ defined by

'±� (u) =
1
2
Ψ(u) +



2
‖u‖22 − ∫

Ω

H±
� (x, u(x)) dx for all u ∈ X0.
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Note that using Hypotheses 2, 3, 4, the map (x, t) → �g(x, t) + f (x, t) satisfies Hypothesis 1, and so from Proposition 3, we
have:

Proposition 6. If Hypotheses 2, 3 and 4 hold, � > 0 and � ∈ L∞(Ω), then functionals '� and '±� satisfy (C).

The next two propositions show that for � > 0 small, the functionals '±� satisfy the Mountain Pass geometry.

Proposition 7. Assume Hypotheses 2, 3 and 4 hold, � > 0 and � ∈ L∞(Ω). Then:

1. There exists �∗+ > 0 such that for all � ∈ (0, �
∗
+) there exists �

+
� > 0 such that

inf
{

'+� (u) ∶ ‖u‖X0
= �+�

}

∶= m+� > 0.

2. There exists �∗− > 0 such that for all � ∈
(

0, �∗−
)

there exists �−� > 0 for which we have

inf
{

'−� (u) ∶ ‖u‖X0
= �−�

}

∶= m−� > 0.

Proof. Without loss of generality, we assume  ≤ r (otherwise r is replaced by  in the calculations below).
Hypotheses 2 and 3 imply that given # > 0 we can find C = C(#) > 0 such that

H+
� (x, t) ≤

#
2
(t+)2 + �C(t+)p + C(1 + �)(t+)r for a.e. x ∈ Ω, all t ∈ ℝ (43)

since |t|2 ≤ |t|p + |t|r for every t ∈ R.
Then, for all u ∈ X0, using (8) and Theorem 3 we have

'+� (u) ≥
(1 − �‖�‖�)

2
‖u‖2X0

−
c(�)‖�‖�

2
‖u‖22 +



2
‖u‖22 −

#
2
‖u‖22

− �C‖u‖pp − (1 + �)C‖u‖
r
r

≥ 1
2
(1 − �‖�‖�)‖u‖2X0

+ 1
2
(−c(�)‖�‖� + 
 − #)‖u‖22

− �B‖u‖pX0
− (1 + �)D‖u‖rX0

≥
(

A − �B‖u‖p−2X0
−D(1 + �)‖u‖r−2X0

)

‖u‖2X0
, (44)

for some A, B, D > 0.
Now, we consider the function

k�(y) = �Byp−2 +D(1 + �)yr−2 for all y ∈ ℝ.
Evidently, k� ∈ C1(0,∞) and since p < 2 < r (see Hypotheses 2 and 3), we have

k�(y)→∞ as y→ 0+ and as y→∞.

So, we can find y0 ∈ (0,∞) such that

k�(y0) = min
{

k�(y) ∶ y > 0
}

⇒ k′�(y0) = 0,

that is �B(2 − p) = D(1 + �)(r − 2)yr−p0 , and so

y0(�) =
[

�B(2 − p)
D(1 + �)(r − 2)

]
1
r−p

.

Then, observing that
1 +

p − 2
r − p

= r − 2
r − p

> 0,

we can deduce that k�(y0)→ 0+ as �→ 0+ and so we can find �∗+ > 0 such that for every � ∈ (0, �
∗
+) we have

k�(y0) < A.

So, from (44) it follows that
inf

{

'+� (u) ∶ ‖u‖X0
= �+� = y0(�)

}

= m+� ≥ A − k�(y0) > 0
for all � ∈ (0, �∗+). In a similar fashion, we show the corresponding result for '−� .

For the next result, we set
�∗ = min

{

�∗+, �
∗
−
}

.
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Proposition 8. If Hypotheses 2, 3, 4 hold, � ∈ (0, �∗) and � ∈ L∞(Ω), then for every u ∈ X0, with u ≥ 0 and ‖u‖2 = 1, we
have '+� (�u)→ −∞ as � →∞.

Proof. Hypotheses 2(1) and 2(2) imply that, given # > 0, there exists C1 = C1(#) > 0 such that

�G(x, t) ≥ −#
2
t2 − C1 for a.e. x ∈ Ω, all t ∈ ℝ, all, � ∈ (0, �∗). (45)

Similarly, Hypotheses 3(1) and 3(2) imply that, given � > 0, we can find C2 = C2(�) > 0 such that

F (x, t) ≥ �
2
t2 − C2 for a.e. x ∈ Ω, all t ∈ ℝ. (46)

Let u ∈ X0, with u ≥ 0 and ‖u‖2 = 1, and let � > 0. Then, from (42), (45) and (46), we have

'+� (�u) ≤
�2

2

[

‖u‖2X0
+ (‖�‖∞ + # − � + C)

]

(since ‖u‖2 = 1) (47)

for some C > 0.
Since # > 0 and � > 0 are arbitrary, we can choose # > 0 so small and � > 0 so large that �−# > ‖u‖2X0

+ ‖�‖∞ +C . Then,
from (47), we infer that

'+� (�u)→ −∞ as � →∞.

Remark 7. In a similar fashion, we show that if u ∈ X0, with u ≤ 0 and ‖u‖2 = 1, then

'−� (�u)→ −∞ as � →∞.

Next we will produce two nontrivial constant sign solution.

Proposition 9. If Hypotheses 2, 3 and 4 hold, � ∈ (0, �∗) and � ∈ L∞(Ω), then problem (E�) admits at least two nontrivial
weak solution such that

v0(x) ≤ 0 ≤ u0(x) for a.e x ∈ Ω.

Proof. We do the proof for the functional '+� . By Proposition 7, for every � ∈ (0, �
∗) it is possible to find �+� > 0 such that

m+� = inf
{

'+� (u) ∶ ‖u‖X0
= �+�

}

> 0. (48)

Thanks to (48) and Propositions 6 and 8, we can apply the Mountain Pass Theorem. So we can find u0 ∈ X0 such that

'+� (0) = 0 < m
+
� ≤ '+� (u0) (49)

and
'+′� (u0) = 0. (50)

The inequalities in (49) tell us that u0 ≠ 0, while from (50) we have

LKu0 + (�(x) + 
)u0 = ℎ+� (x, u0). (51)

Like we have already done in Proposition 3, thanks to (9) we have
⟨

u0, u
−
0
⟩

X0
=
⟨

u+0 − u
−
0 , u

−
0
⟩

X0
=
⟨

u+0 , u
−
0
⟩

X0
− ‖u−0 ‖X0

≤ −‖u−0 ‖X0
. (52)

Acting on (51) with u−0 and using (52), we obtain

Ψ(u−0 ) + 
‖u
−
0 ‖

2
2 ≤

⟨

u0,−u−0
⟩

X0
+ ∫
Ω

�(u−0 )
2 dx + 
‖u−0 ‖ = 0. (53)

Recalling now (8) with � > 0 small enough, we have

(1 − �‖�‖�)‖u−0 ‖
2
X0
− c(�)‖�‖�‖u−0 ‖

2
2 ≤ Ψ(u0

−), (54)

with 
 > c(�)‖�‖� . Hence, by (53), (54) and recalling that ‖u0−‖22 ≤ C‖u0−‖2X0
(see 3) it follows that

C̃‖u−0 ‖
2
X0

≤ 0

for some C̃ > 0, which implies that
u0 ≥ 0, u0 ≠ 0.
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So, 51 becomes
LKu0 + �(x)u0 = f (x, u0) + �g(x, u),

i.e. u0 is weak solution for (E�).
Analogously, working with '̂−� , we obtain the other nontrivial constant sign solution v0 ∈ X0.

In the next proposition we produce a third nontrivial solution for (E�) when � ∈ (0, �∗).

Proposition 10. If Hypotheses 2, 3, 4 hold, � ∈ (0, �∗) and � ∈ L∞(Ω), then problem (E�) has a third nontrivial weak solution
y0 ∈

[

u0, v0
]

.

Proof. Let u0 and v0 the two constant sign solutions found in Proposition 9. With 
 as before, we consider the following
truncation perturbation of the reaction in problem (E�):

d�(x, t) =

⎧

⎪

⎨

⎪

⎩

�g(x, v0(x)) + f (x, v0(x)) + 
v0(x), if t < v0(x),
�g(x, t)) + f (x, t) + 
t, if v0(x) < t < u0(x),
�g(x, u0(x)) + f (x, u0(x)) + 
u0(x), if t > u0(x).

(55)

This is a Carathéodory function. Set D� = ∫ x
0 d�(x,w) dw and consider the C1-functional Ξ� ∶ X0 → ℝ defined by

Ξ�(u) =
1
2
Ψ(u) +



2
‖u‖22 − ∫

Ω

D�(x, u(x)) dx for all u ∈ X0.

By (8), since 
 > ‖�‖∞, we get that
Ψ(u) + 
‖u‖22 ≥ C‖u‖2X0

(56)
for some C > 0.
From (56) and (55), it is clear that Ξ� is coercive. Moreover, it is sequentially weakly lower semicontinuous. So, by the

Weierstrass Theorem (see21, Theorem 1.2), we can find y0 ∈ X0 such that

Ξ�(y0) = inf
{

Ξ�(u) ∶ u ∈ X0
}

. (57)

By Hypothesis 3 (3), given � > 0 we can find � = �(�) > 0 such that

−F (x, t) ≤ �
2
t2 for a.e. x ∈ Ω, all |t| ≤ �. (58)

Recalling Remark 2, for � ∈ (0, 1) small enough, we have that �û1 ∈ (0, �] for all x ∈ Ω, see Remark 2. Then

Ξ�(�û1) ≤
�2

2
[

�̂1 + 
 + �
]

−
��0� q

q
‖û1‖

q
q ,

see (4), (42), (58) and Hypothesis 2 (3).
Since by Hypothesis 2 (3) q < 2, by choosing � ∈ (0, 1) even smaller if necessary, we have

Ξ�(�û1) < 0,

so that from (57)
Ξ�(y0) < 0 = Ξ�(0), (59)

and hence y0 ≠ 0.
From 57 we have Ξ′�(y0) = 0, that is

LKy0 + (�(x) + 
) y0 = d�(x, y0). (60)
On (60) we act with (v0 − y0)+ ∈ X0. Then, by (55) we get

⟨

y0, (v0 − y0)+
⟩

X0
+ ∫
Ω

(�(x) + 
) y0(v0 − y0)+ dx

= ∫
Ω

d�(x, y0)(v0 − y0)+ dx = ∫
Ω

d�(x, v0)(v0 − y0)+ dx

=
⟨

v0, (v0 − y0)+
⟩

X0
+ ∫
Ω

(�(x) + 
) v0(v0 − y0)+ dx,
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hence
⟨

v0 − y0, (v0 − y0)+
⟩

X0
+ ∫
Ω

(�(x) + 
) (v0 − y0)(v0 − y0)+ dx = 0.

Then, recalling the choice of 
 , there exists C̃ > 0 such that
⟨

v0 − y0, (v0 − y0)+
⟩

X0
+ C̃ ∫

Ω

(

v0 − y0
)

(v0 − y0)+ dx ≤ 0,

and so, using (9) in the first inequality, we get
‖(v0 − y0)+‖2X0

≤ ‖(v0 − y0)+‖2X0
−
⟨

(v0 − y0)−, (v0 − y0)+
⟩

X0

+ C̃ ∫
Ω

[

(v0 − y0)+
]2

=
⟨

v0 − y0, (v0 − y0)+
⟩

X0
+ C̃ ∫

Ω

(v0 − y0)(v0 − y0)+ ≤ 0.

Thus we deduce that v0 ≤ y0 in Ω.
Similarly, acting on on (60) with (y0 − u0)+ ∈ X0 and repeating analogous calculations, we obtain y0 ≤ u0. Putting together

the two inequalities, we have y0 ∈
[

v0, u0
]

=
{

u ∈ X0 ∶ v0(x) ≤ u(x) ≤ u0(x) ∀x ∈ Ω
}

.
Then (60) becomes

LKy0 + �(x)y0 = �g(x, y0) + f (x, y0),
i.e. y0 is a weak solution of problem (E�).

So, summarizing the situation for problem (E�), we can state the following multiplicity theorem:

Theorem 4. If Hypotheses 2, 3, 4 hold and � ∈ L∞(Ω), then there exists �∗ > 0 such that for all � ∈ (0, �∗) problem (E�) has
at least three nontrivial weak solutions u0, v0, y0 ∈ Cs(Ω̄) ⧵ {0} such that

u0 ≥ 0 for a.e. x ∈ Ω,
v0 ≤ 0 for a.e. x ∈ Ω,
y0 ∈

[

u0, v0
]

.
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