References
1. Association AD. Diagnosis and classification of diabetes mellitus.Diabetes care. 2013;36(Supplement 1):S67-S74.
2. Halban PA, Polonsky KS, Bowden DW, et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. The Journal of Clinical Endocrinology & Metabolism.2014;99(6):1983-1992.
3. Koloverou E, Panagiotakos DB. Inflammation: a new player in the link between Mediterranean diet and diabetes mellitus: a review.Current Nutrition Reports. 2017;6(3):247-256.
4. Donath MY, Størling J, Maedler K, Mandrup-Poulsen T. Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. Journal of molecular medicine. 2003;81(8):455-470.
5. Gareri C, De Rosa S, Indolfi C. MicroRNAs for restenosis and thrombosis after vascular injury. Circulation research.2016;118(7):1170-1184.
6. Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. Journal of human genetics.2017;62(2):141.
7. Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders.Nature reviews Molecular cell biology. 2012;13(4):239.
8. Rong Y, Bao W, Shan Z, et al. Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus.PloS one. 2013;8(9):e73272.
9. Liu Y, Gao G, Yang C, et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. International journal of molecular sciences. 2014;15(6):10567-10577.
10. Osmai M, Osmai Y, Bang‐Berthelsen CH, et al. MicroRNAs as regulators of beta‐cell function and dysfunction. Diabetes/metabolism research and reviews. 2016;32(4):334-349.
11. Al-Muhtaresh H, Al-Kafaji G. Evaluation of two-diabetes related microRNAs suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus. Journal of clinical medicine. 2018;7(2):12.
12. Babashah S, Bakhshinejad B, Birgani MT, Pakravan K, Cho WC. Regulation of microRNAs by phytochemicals: A promising strategy for cancer chemoprevention. Current cancer drug targets.2018;18(7):640-651.
13. Meydani M, Azzi A. Dietary antioxidants and bioflavonoids in atherosclerosis and angiogenesis. Nutrigenomics and Proteomics in Health and Disease: Towards a systems-level understanding of gene–diet interactions. 2017:125-142.
14. Sila A, Ghlissi Z, Kamoun Z, et al. Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. European journal of nutrition. 2015;54(2):301-307.
15. Roohbakhsh A, Karimi G, Iranshahi M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review.Biomedicine & Pharmacotherapy. 2017;91:31-42.
16. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci. 2005;8(3):387-393.
17. Mashhadi NS, Zakerkish M, Mohammadiasl J, Zarei M, Mohammadshahi M, Haghighizadeh MH. Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pacific journal of clinical nutrition. 2018;27(2):341.
18. García‐Jacobo RE, Uresti‐Rivera EE, Portales‐Pérez DP, et al. Circulating miR‐146a, miR‐34a and miR‐375 in type 2 diabetes patients, pre‐diabetic and normal‐glycaemic individuals in relation to β‐cell function, insulin resistance and metabolic parameters. Clinical and Experimental Pharmacology and Physiology. 2019;46(12):1092-1100.
19. Khatir SA, Bayatian A, Barzegari A, et al. Saffron (Crocus sativus L.) Supplements Modulate Circulating MicroRNA (miR-21) in Atherosclerosis Patients; A Randomized, Double-Blind, Placebo-Controlled Trial. Iranian Red Crescent Medical Journal. 2018;20(10).
20. Corrêa TA, Rogero MM. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition. 2019;59:150-157.
21. Angel-Morales G, Noratto G, Mertens-Talcott S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food & function. 2012;3(7):745-752.
22. Saba R, Gushue S, Huzarewich RL, et al. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PloS one.2012;7(2):e30832.
23. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circulation research. 2010;107(6):810-817.
24. Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochemical and biophysical research communications. 2015;463(1):60-63.