REFERENCES
1. Keatinge-Clay, A.T., The Uncommon Enzymology of Cis-Acyltransferase Assembly Lines. Chem Rev, 2017. 117 (8): p. 5334-5366.
2. Helfrich, E.J. and J. Piel, Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep, 2016. 33 (2): p. 231-316.
3. Keatinge-Clay, A.T., The structures of type I polyketide synthases. Nat Prod Rep, 2012. 29 (10): p. 1050-73.
4. Zhang, L., et al., Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angew Chem Int Ed Engl, 2017.56 (7): p. 1740-1745.
5. Keatinge-Clay, A.T., Polyketide Synthase Modules Redefined.Angew Chem Int Ed Engl, 2017. 56 (17): p. 4658-4660.
6. Vander Wood, D.A. and A.T. Keatinge-Clay, The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein. Proteins, 2018. 86 (6): p. 664-675.
7. Whicher, J.R., et al., Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis.Chem Biol, 2013. 20 (11): p. 1340-51.
8. Dutta, S., et al., Structure of a modular polyketide synthase.Nature, 2014. 510 (7506): p. 512-7.
9. Pidot, S.J., et al., Deciphering the genetic basis for polyketide variation among mycobacteria producing mycolactones. BMC Genomics, 2008. 9 : p. 462.
10. Taylor, J.S. and F. Breden, Slipped-strand mispairing at noncontiguous repeats in Poecilia reticulata: a model for minisatellite birth. Genetics, 2000. 155 (3): p. 1313-20.
11. Zhou, K., A. Aertsen, and C.W. Michiels, The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev, 2014.38 (1): p. 119-41.
12. Kautsar, S.A., et al., MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res, 2020.48 (D1): p. D454-D458.
13. Benson, G., Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999. 27 (2): p. 573-80.
14. Galtier, N., M. Gouy, and C. Gautier, SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny.Comput Appl Biosci, 1996. 12 (6): p. 543-8.
15. Sievers, F., et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol, 2011. 7 : p. 539.
16. Robert, X. and P. Gouet, Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 2014.42 (Web Server issue): p. W320-4.
17. Rice, P., I. Longden, and A. Bleasby, EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet, 2000.16 (6): p. 276-7.
18. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.
19. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66 (Pt 4): p. 486-501.
20. Tang, Y., et al., The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase.Proc Natl Acad Sci U S A, 2006. 103 (30): p. 11124-9.
21. Zheng, J., et al., Divergence of multimodular polyketide synthases revealed by a didomain structure. Nat Chem Biol, 2012.8 (7): p. 615-21.
22. Herbst, D.A., et al., Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases. Nature, 2016.531 (7595): p. 533-7.
23. Gay, D.C., et al., A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure, 2014.22 (3): p. 444-51.
24. Kawasaki, D., et al., Functional and Structural Analyses of the Split-Dehydratase Domain in the Biosynthesis of Macrolactam Polyketide Cremimycin. Biochemistry, 2019. 58 (48): p. 4799-4803.
25. Keatinge-Clay, A., Crystal structure of the erythromycin polyketide synthase dehydratase. J Mol Biol, 2008. 384 (4): p. 941-53.
26. Moretto, L., et al., Modular type I polyketide synthase acyl carrier protein domains share a common N-terminally extended fold. Sci Rep, 2019. 9 (1): p. 2325.
27. Zheng, J., et al., The missing linker: a dimerization motif located within polyketide synthase modules. ACS Chem Biol, 2013.8 (6): p. 1263-70.
28. Bikard, D., et al., Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev, 2010.74 (4): p. 570-88.
29. Peng, H., et al., Emulating evolutionary processes to morph aureothin-type modular polyketide synthases and associated oxygenases.Nat Commun, 2019. 10 (1): p. 3918.
30. Miyazawa, T., et al., An in vitro platform for engineering and harnessing modular polyketide synthases. Nat Commun, 2020.11 (1): p. 80.
31. Yuzawa, S., et al., Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synth Biol, 2017.6 (1): p. 139-147.
32. Brignole, E.J., S. Smith, and F.J. Asturias, Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat Struct Mol Biol, 2009. 16 (2): p. 190-7.
33. Leibundgut, M., et al., Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase.Science, 2007. 316 (5822): p. 288-90.