References
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H.,
Landhäusser, S.M., Tissue, D.T., Huxman, T.E., Hudson, P.J., Franz,
T.E., Allen, C.D., Anderegg, L.D.L., Barron-Gafford, G.A., Beerling,
D.J., Breshears, D.D., Brodribb, T.J., Bugmann, H., Cobb, R.C., Collins,
A.D., Dickman, L.T., Duan, H., Ewers, B.E., Galiano, L., Galvez, D.A.,
Garcia-Forner, N., Gaylord, M.L., Germino, M.J., Gessler, A., Hacke,
U.G., Hakamada, R., Hector, A., Jenkins, M.W., Kane, J.M., Kolb, T.E.,
Law, D.J., Lewis, J.D., Limousin, J.-M., Love, D.M., Macalady, A.K.,
Martínez-Vilalta, J., Mencuccini, M., Mitchell, P.J., Muss, J.D.,
O’Brien, M.J., O’Grady, A.P., Pangle, R.E., Pinkard, E.A., Piper, F.I.,
Plaut, J.A., Pockman, W.T., Quirk, J., Reinhardt, K., Ripullone, F.,
Ryan, M.G., Sala, A., Sevanto, S., Sperry, J.S., Vargas, R., Vennetier,
M., Way, D.A., Xu, C., Yepez, E.A., McDowell, N.G., 2017. A
multi-species synthesis of physiological mechanisms in drought-induced
tree mortality. Nat. Ecol. Evol. 1, 1285–1291.
https://doi.org/10.1038/s41559-017-0248-x
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H.
(Ted., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N.,
Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A
global overview of drought and heat-induced tree mortality reveals
emerging climate change risks for forests. For. Ecol. Manage. 259,
660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A.,
Choat, B., Jansen, S., 2016. Meta-analysis reveals that hydraulic traits
explain cross-species patterns of drought-induced tree mortality across
the globe. Proc. Natl. Acad. Sci. U. S. A. 113, 5024–5029.
https://doi.org/10.1073/pnas.1525678113
Barotto, A.J., Monteoliva, S., Gyenge, J., Martinez-Meier, A.,
Fernandez, M.E., 2018. Functional relationships between wood structure
and vulnerability to xylem cavitation in races of Eucalyptus globulus
differing in wood density. Tree Physiol. 38, 243–251.
https://doi.org/10.1093/treephys/tpx138
Bartletta, M.K., Klein, T., Jansen, S., Choat, B., Sack, L., Bartlett,
M.K., Klein, T., Jansen, S., Choat, B., Sack, L., 2016. The correlations
and sequence of plant stomatal, hydraulic, and wilting responses to
drought. Proc. Natl. Acad. Sci. U. S. A. 113, 13098–13103.
https://doi.org/10.1073/pnas.1604088113
Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear
Mixed-Effects Models Using lme4 67.
https://doi.org/10.18637/jss.v067.i01
Blackman, C.J., Aspinwall, M.J., Tissue, D.T., Rymer, P.D., 2017.
Genetic adaptation and phenotypic plasticity contribute to greater leaf
hydraulic tolerance in response to drought in warmer climates. Tree
Physiol. 37, 583–592. https://doi.org/10.1093/treephys/tpx005
Blackman, C.J., Gleason, S.M., Chang, Y., Cook, A.M., Laws, C., Westoby,
M., 2014. Leaf hydraulic vulnerability to drought is linked to site
water availability across a broad range of species and climates. Ann.
Bot. 114, 435–440. https://doi.org/10.1093/aob/mcu131
Bourne, A.E., Creek, D., Peters, J.M.R., Ellsworth, D.S., Choat, B.,
2017. Species climate range influences hydraulic and stomatal traits in
Eucalyptus species. Ann. Bot. 120, 123–133.
https://doi.org/10.1093/aob/mcx020
Brodribb, T., Hill, R.S., 1999. The importance of xylem constraints in
the distribution of conifer species. New Phytol. 143, 365–372.
https://doi.org/10.1046/j.1469-8137.1999.00446.x
Brodribb, T.J., Cochard, H., 2009. Hydraulic failure defines the
recovery and point of death in water-stressed conifers. Plant Physiol.
149, 575–584. https://doi.org/10.1104/pp.108.129783
Brodribb, T.J., Holbrook, N.M., 2004. Stomatal protection against
hydraulic failure: a comparison of coexisting ferns and angiosperms. New
Phytol. 162, 663–670. https://doi.org/10.1111/j.1469-8137.2004.01060.x
Brodribb, T.J., McAdam, S.A.M., Carins Murphy, M.R., 2017. Xylem and
stomata, coordinated through time and space. Plant Cell Environ. 40,
872–880. https://doi.org/10.1111/pce.12817
Carter, J.L., White, D.A., 2009. Plasticity in the Huber value
contributes to homeostasis in leaf water relations of a mallee Eucalypt
with variation to groundwater depth. Tree Physiol. 29, 1407–1418.
https://doi.org/10.1093/TREEPHYS/TPP076
Choat, B., Cobb, A.R., Jansen, S., 2008. Structure and function of
bordered pits: New discoveries and impacts on whole-plant hydraulic
function. New Phytol. 177, 608–626.
https://doi.org/10.1111/j.1469-8137.2007.02317.x
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar,
R., Bucci, S.J., Feild, T.S., Gleason, S.M., Hacke, U.G., Jacobsen,
A.L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S.,
Mencuccini, M., Mitchell, P.J., Nardini, A., Pittermann, J., Pratt,
R.B., Sperry, J.S., Westoby, M., Wright, I.J., Zanne, A.E., 2012. Global
convergence in the vulnerability of forests to drought. Nature 491,
752–755. https://doi.org/10.1038/nature11688
Choat, B., Sack, L., Holbrook, N.M., 2007. Diversity of hydraulic traits
in nine Cordia species growing in tropical forests with contrasting
precipitation. New Phytol. 175, 686–698.
https://doi.org/10.1111/j.1469-8137.2007.02137.x
Christman, M.A., Sperry, J.S., Adler, F.R., 2009. Testing the “rare
pit” hypothesis for xylem cavitation resistance in three species of
Acer. New Phytol. 182, 664–674.
https://doi.org/10.1111/j.1469-8137.2009.02776.x
Clarke, P.J., Lawes, M.J., Midgley, J.J., Lamont, B.B., Ojeda, F.,
Burrows, G.E., Enright, N.J., Knox, K.J.E., 2013. Resprouting as a key
functional trait: How buds, protection and resources drive persistence
after fire. New Phytol. https://doi.org/10.1111/nph.12001
Cochard, H., 2014. The basics of plant hydraulics. J. Plant Hydraul. 1,
001. https://doi.org/10.20870/jph.2014.e001
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., Jansen, S.,
2013. Methods for measuring plant vulnerability to cavitation: A
critical review, Journal of Experimental Botany.
https://doi.org/10.1093/jxb/ert193
Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., Améglio,
T., 2005. Evaluation of a new centrifuge technique for rapid generation
of xylem vulnerability curves. Physiol. Plant. 124, 410–418.
https://doi.org/10.1111/j.1399-3054.2005.00526.x
Delzon, S., Douthe, C., Sala, A., Cochard, H., 2010. Mechanism of
water-stress induced cavitation in conifers: Bordered pit structure and
function support the hypothesis of seal capillary-seeding. Plant, Cell
Environ. 33, 2101–2111.
https://doi.org/10.1111/j.1365-3040.2010.02208.x
Downes, G., Worledge, D., Schimleck, L., Harwood, C., French, J.,
Beadle, C., 2006. The effect of growth rate and irrigation on the basic
density and kraft pulp yield of Eucalyptus globulus and E. nitens. New
Zeal. J. For. 51, 13–22.
Eamus, D., Hatton, T., Colvin, P., C., C., 2006. Ecohydrology:
Vegetation Function, Water and Resource Management. CSIRO PUBLISHING,
Collingwood, Victoria, Australia.
Fitzpatrick, M.C.M.C., Gove, A.D., Sanders, N.J., Dunn, R.R., 2008.
Climate change, plant migration, and range collapse in a global
biodiversity hotspot: The Banksia (Proteaceae) of Western Australia.
Glob. Chang. Biol. https://doi.org/10.1111/j.1365-2486.2008.01559.x
Gleason, S.M., Butler, D.W., Ziemińska, K., Waryszak, P., Westoby, M.,
2012. Stem xylem conductivity is key to plant water balance across
Australian angiosperm species. Funct. Ecol. 26, 343–352.
https://doi.org/10.1111/j.1365-2435.2012.01962.x
Gotsch, S.G., Geiger, E.L., Franco, A.C., Goldstein, G., Meinzer, F.C.,
Hoffmann, W.A., 2010. Allocation to leaf area and sapwood area affects
water relations of co-occurring savanna and forest trees. Oecologia 163,
291–301. https://doi.org/10.1007/s00442-009-1543-2
Goulden, M.L., Bales, R.C., 2019. California forest die-off linked to
multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12,
632–637. https://doi.org/10.1038/s41561-019-0388-5
Groom, P.P.K., Lamont, B.B.B., 1996. Ecogeographical analysis of Hakea
(proteaceae) in south-western Australia, with special reference to leaf
morphology and life form, Australian Journal of Botany. CSIRO
PUBLISHING. https://doi.org/10.1071/BT9960527
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A.,
2001. Trends in wood density and structure are linked to prevention of
xylem implosion by negative pressure. Oecologia 126, 457–461.
https://doi.org/10.1007/s004420100628
Hernández, E.I., Pausas, J.G., Vilagrosa, A., 2011. Leaf physiological
traits in relation to resprouter ability in the Mediterranean Basin.
Plant Ecol. 212, 1959–1966. https://doi.org/10.1007/s11258-011-9976-1
Jacobsen, A.L., Agenbag, L., Esler, K.J., Pratt, R.B., Ewers, F.W.,
Davis, S.D., 2007. Xylem density, biomechanics and anatomical traits
correlate with water stress in 17 evergreen shrub species of the
Mediterranean-type climate region of South Africa. J. Ecol. 95,
171–183. https://doi.org/10.1111/j.1365-2745.2006.01186.x
Jacobsen, A.L., Ewers, F.W., Pratt, R.B., Paddock III, W.A., Davis,
S.D., 2005. Do xylem fibers affect vessel cavitation resistance? Plant
Physiol. 139, 546–556. https://doi.org/10.1104/pp.104.058404
Kursar, T.A., Engelbrecht, B.M.J., Burke, A., Tyree, M.T., El Omari, B.,
Giraldo, J.P., 2009. Tolerance to low leaf water status of tropical tree
seedlings is related to drought performance and distribution. Funct.
Ecol. 23, 93–102. https://doi.org/10.1111/j.1365-2435.2008.01483.x
Lamy, J.-B., Delzon, S., Bouche, P.S., Alia, R., Vendramin, G.G.,
Cochard, H., Plomion, C., 2014. Limited genetic variability and
phenotypic plasticity detected for cavitation resistance in a
Mediterranean pine. New Phytol. 201, 874–886.
https://doi.org/10.1111/nph.12556
Larter, M., Pfautsch, S., Domec, J.-C., Trueba, S., Nagalingum, N.,
Delzon, S., 2017. Aridity drove the evolution of extreme embolism
resistance and the radiation of conifer genus Callitris . New
Phytol. 215, 97–112. https://doi.org/10.1111/nph.14545
Lens, F., Endress, M.E., Baas, P., Jansen, S., Smets, E., 2009. Vessel
grouping patterns in subfamilies apocynoideae and periplocoideae confirm
phylogenetic value of wood structure within apocynaceae. Am. J. Bot. 96,
2168–2183. https://doi.org/10.3732/ajb.0900116
Lens, F., Sperry, J.S., Christman, M.A., Choat, B., Rabaey, D., Jansen,
S., 2011. Testing hypotheses that link wood anatomy to cavitation
resistance and hydraulic conductivity in the genus Acer. New Phytol.
190, 709–723. https://doi.org/10.1111/j.1469-8137.2010.03518.x
Lenth, R., 2020. emmeans: Estimated Marginal Means, aka Least-Squares
Means. R package version 1.4.5.
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H.J.,
Schmitt, M., Schuldt, B., Jansen, S., 2016. Intervessel Pit Membrane
Thickness as a Key Determinant of Embolism Resistance in Angiosperm
Xylem. IAWA J. 37, 152–171. https://doi.org/10.1163/22941932-20160128
Li, X., Blackman, C.J., Choat, B., Duursma, R.A., Rymer, P.D., Medlyn,
B.E., Tissue, D.T., 2018. Tree hydraulic traits are coordinated and
strongly linked to climate-of-origin across a rainfall gradient. Plant
Cell Environ. 41, 646–660. https://doi.org/10.1111/pce.13129
Li, X., Blackman, C.J., Choat, B., Rymer, P.D., Medlyn, B.E., Tissue,
D.T., 2019. Drought tolerance traits do not vary across sites differing
in water availability in Banksia serrata (Proteaceae). Funct. Plant
Biol. 46, 624. https://doi.org/10.1071/FP18238
López, R., Cano, F.J., Choat, B., Cochard, H., Gil, L., 2016. Plasticity
in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the
Driest End of an Aridity Gradient. Front. Plant Sci. 7.
https://doi.org/10.3389/fpls.2016.00769
López, R., Nolf, M., Duursma, R.A., Badel, E., Flavel, R.J., Cochard,
H., Choat, B., 2019. Mitigating the open vessel artefact in
centrifuge-based measurement of embolism resistance. Tree Physiol. 39,
143–155. https://doi.org/10.1093/treephys/tpy083
Lucani, C.J., Brodribb, T.J., Jordan, G., Mitchell, P.J., 2019.
Intraspecific variation in drought susceptibility in Eucalyptus globulus
is linked to differences in leaf vulnerability. Funct. Plant Biol. 46,
286. https://doi.org/10.1071/FP18077
Maherali, H., Pockman, W.T., Jackson, R.B., 2004. Adaptive variation in
the vulnerability of woody plants to xylem cavitation. Ecology 85,
2184–2199. https://doi.org/10.1890/02-0538
Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., 2011.
Ecological differentiation in xylem cavitation resistance is associated
with stem and leaf structural traits. Plant, Cell Environ. 34, 137–148.
https://doi.org/10.1111/j.1365-3040.2010.02231.x
Martin-StPaul, N., Delzon, S., Cochard, H., 2017. Plants resistance to
drought relies on early stomata closure. bioRxiv 99531.
Martorell, S., Diaz-Espejo, A., Medrano, H., Ball, M.C., Choat, B.,
2014. Rapid hydraulic recovery in Eucalyptus pauciflora after drought:
Linkages between stem hydraulics and leaf gas exchange. Plant, Cell
Environ. 37, 617–626. https://doi.org/10.1111/pce.12182
McCulloh, K.A., Domec, J., Johnson, D.M., Smith, D.D., Meinzer, F.C.,
2019. A dynamic yet vulnerable pipeline: Integration and coordination of
hydraulic traits across whole plants. Plant. Cell Environ. pce.13607.
https://doi.org/10.1111/pce.13607
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N.,
Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A.,
2008. Mechanisms of plant survival and mortality during drought: Why do
some plants survive while others succumb to drought? New Phytol. 178,
719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
Meinzer, F.C., Johnson, D.M., Lachenbruch, B., Mcculloh, K.A., Woodruff,
D.R., 2009. Xylem hydraulic safety margins in woody plants: Coordination
of stomatal control of xylem tension with hydraulic capacitance. Funct.
Ecol. 23, 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577.x
Nardini, A., Luglio, J., 2014. Leaf hydraulic capacity and drought
vulnerability: Possible trade-offs and correlations with climate across
three major biomes. Funct. Ecol. 28, 810–818.
https://doi.org/10.1111/1365-2435.12246
Onoda, Y., Richards, A.E., Westoby, M., 2010. The relationship between
stem biomechanics and wood density is modified by rainfall in 32
Australian woody plant species. New Phytol. 185, 493–501.
https://doi.org/10.1111/j.1469-8137.2009.03088.x
Padilla, F.M., Pugnaire, F.I., 2007. Rooting depth and soil moisture
control Mediterranean woody seedling survival during drought. Funct.
Ecol. 21, 489–495. https://doi.org/10.1111/j.1365-2435.2007.01267.x
Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H.,
Jaureguiberry, P., Bret-Harte, M.S.S., Cornwell, W.K.K., Craine, J.M.M.,
Gurvich, D.E.E., Urcelay, C., Veneklaas, E.J.J., Reich, P.B.B., Poorter,
L., Wright, I.J.J., Etc., Ray, P., Etc., Díaz, S., Lavorel, S., Poorter,
H., Jaureguiberry, P., Bret-Harte, M.S.S., Cornwell, W.K.K., Craine,
J.M.M., Gurvich, D.E.E., Urcelay, C., Veneklaas, E.J.J., Reich, P.B.B.,
Poorter, L., Wright, I.J.J., Ray, P., Enrico, L., Pausas, J.G., Vos,
A.C. de, Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson,
K., Morgan, H.D., Steege, H. ter, Heijden, M.G.A. van der, Sack, L.,
Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A.C.,
Aquino, S., Cornelissen, J.H.C., 2013. New Handbook for standardized
measurment of plant functional traits worldwide. Aust. J. Bot. 61,
167–234. https://doi.org/http://dx.doi.org/10.1071/BT12225
Pita, P., Gascó, A., Pardos, J.A., 2003. Xylem cavitation, leaf growth
and leaf water potential in Eucalyptus globulus clones under
well-watered and drought conditions. Funct. Plant Biol. 30, 891–899.
https://doi.org/10.1071/FP03055
Pockman, W.T., Sperry, J.S., 2000. Vulnerability to xylem cavitation and
the distribution of Sonoran desert vegetation. Am. J. Bot. 87,
1287–1299. https://doi.org/10.2307/2656722
Pockman, W.T., Sperry, J.S., O’leary, J.W., 1995. Sustained and
significant negative water pressure in xylem. Nature 378, 715–716.
https://doi.org/10.1038/378715a0
Powers, J.S., Vargas G., G., Brodribb, T.J., Schwartz, N.B.,
Pérez-Aviles, D., Smith-Martin, C.M., Becknell, J.M., Aureli, F.,
Blanco, R., Calderón-Morales, E., Calvo-Alvarado, J.C., Calvo-Obando,
A.J., Chavarría, M.M., Carvajal-Vanegas, D., Jiménez-Rodríguez, C.D.,
Murillo Chacon, E., Schaffner, C.M., Werden, L.K., Xu, X., Medvigy, D.,
2020. A catastrophic tropical drought kills hydraulically vulnerable
tree species. Glob. Chang. Biol. 26. https://doi.org/10.1111/gcb.15037
Pratt, R.B., Jacobsen, A.L., Golgotiu, K.A., Sperry, J.S., Ewers, F.W.,
Davis, S.D., 2007. Life history type and water stress tolerance in nine
California chaparral species (Rhamnaceae). Ecol. Monogr. 77, 239–253.
https://doi.org/10.1890/06-0780
Razgour, O., Forester, B., Taggart, J.B., Bekaert, M., Juste, J.,
Ibáñez, C., Puechmaille, S.J., Novella-Fernandez, R., Alberdi, A.,
Manel, S., 2019. Considering adaptive genetic variation in climate
change vulnerability assessment reduces species range loss projections.
Proc. Natl. Acad. Sci. U. S. A. 116, 10418–10423.
https://doi.org/10.1073/pnas.1820663116
RCoreTeam, 2020. R: A language and environment for statistical
computing.
Roderick, M.L., Berry, S.L., 2002. Linking wood density with tree growth
and environment: a theoretical analysis based on the motion of water.
New Phytol. 149, 473–485.
https://doi.org/10.1046/j.1469-8137.2001.00054.x
Schreiber, S.G., Hacke, U.G., Chamberland, S., Lowe, C.W., Kamelchuk,
D., Bräutigam, K., Campbell, M.M., Thomas, B.R., 2016. Leaf size serves
as a proxy for xylem vulnerability to cavitation in plantation trees.
Plant Cell Environ. 39, 272–281. https://doi.org/10.1111/pce.12611
Schumann, K., Leuschner, C., Schuldt, B., 2019. Xylem hydraulic safety
and efficiency in relation to leaf and wood traits in three temperate
Acer species differing in habitat preferences. Trees - Struct. Funct.
33, 1475–1490. https://doi.org/10.1007/s00468-019-01874-x
Searson, M.J., Thomas, D.S., Montagu, K.D., Conroy, J.P., 2004. Wood
density and anatomy of water-limited eucalypts. Tree Physiol. 24,
1295–1302. https://doi.org/10.1093/TREEPHYS/24.11.1295
Skelton, R.P., Anderegg, L.D.L., Papper, P., Reich, E., Dawson, T.E.,
Kling, M., Thompson, S.E., Diaz, J., Ackerly, D.D., 2019. No local
adaptation in leaf or stem xylem vulnerability to embolism, but
consistent vulnerability segmentation in a North American oak. New
Phytol. 223, 1296–1306. https://doi.org/10.1111/nph.15886
Skelton, R.P., Dawson, T.E., Thompson, S.E., Shen, Y., Weitz, A.P.,
Ackerly, D., 2018. Low vulnerability to xylem embolism in leaves and
stems of north american oaks. Plant Physiol. 177, 1066–1077.
https://doi.org/10.1104/pp.18.00103
Skelton, R.P., West, A.G., Dawson, T.E., 2015. Predicting plant
vulnerability to drought in biodiverse regions using functional traits.
Proc. Natl. Acad. Sci. U. S. A. 112.
https://doi.org/10.1073/pnas.1503376112
Sperry, J.S., Hacke, U.G., Pittermann, J., 2006. Size and function in
conifer tracheids and angiosperm vessels. Am. J. Bot. 93, 1490–1500.
https://doi.org/10.3732/ajb.93.10.1490
Sperry, J.S., Meinzer, F.C., McCulloh, K.A., 2008. Safety and efficiency
conflicts in hydraulic architecture: Scaling from tissues to trees.
Plant, Cell Environ. 31, 632–645.
https://doi.org/10.1111/j.1365-3040.2007.01765.x
Trueba, S., Pouteau, R., Lens, F., Feild, T.S., Isnard, S., Olson, M.E.,
Delzon, S., 2017. Vulnerability to xylem embolism as a major correlate
of the environmental distribution of rain forest species on a tropical
island. Plant Cell Environ. 40, 277–289.
https://doi.org/10.1111/pce.12859
UNEP, 1997. World atlas of desertification, Second edi. ed. London.
Urban, M.C., 2015. Accelerating extinction risk from climate change.
Science 348, 571–3. https://doi.org/10.1126/science.aaa4984
Urli, M., Porté, A.J., Cochard, H., Guengant, Y., Burlett, R., Delzon,
S., 2013. Xylem embolism threshold for catastrophic hydraulic failure in
angiosperm trees. Tree Physiol. 33, 672–683.
https://doi.org/10.1093/treephys/tpt030
Vilagrosa, A., Hernández, E.I., Luis, V.C., Cochard, H., Pausas, J.G.,
2014. Physiological differences explain the co-existence of different
regeneration strategies in Mediterranean ecosystems. New Phytol. 201,
1277–1288. https://doi.org/10.1111/nph.12584
Villagra, M., Campanello, P.I., Bucci, S.J., Goldstein, G., 2013.
Functional relationships between leaf hydraulics and leaf economic
traits in response to nutrient addition in subtropical tree species.
Tree Physiol. 33, 1308–1318. https://doi.org/10.1093/treephys/tpt098
Weston, P.H., 1995. Proteaceae, Flora of Australia. Australian
Biological Resources Study/CSIRO Publishing.
Wheeler, E.A., Baas, P., Rodgers, S., 2007. Variations in dicot wood
anatomy: A global analysis based on the insidewood database. IAWA J. 28,
229–258. https://doi.org/10.1163/22941932-90001638
Wimmer, R., Downes, G.M., Evans, R., Rasmussen, G., French, J., 2002.
Direct effects of wood characteristics on pulp and handsheet properties
of Eucalyptus globulus. Holzforschung 56, 244–252.
https://doi.org/10.1515/HF.2002.040
Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz,
S., Gallagher, R. V., Jacobs, B.F., Kooyman, R., Law, E.A., Leishman,
M.R., Niinemets, Ü., Reich, P.B., Sack, L., Villar, R., Wang, H., Wilf,
P., 2017. Global climatic drivers of leaf size. Science (80-. ). 357,
917–921. https://doi.org/10.1126/science.aal4760
Zeppel, M.J.B., Harrison, S.P., Adams, H.D., Kelley, D.I., Li, G.,
Tissue, D.T., Dawson, T.E., Fensham, R., Medlyn, B.E., Palmer, A., West,
A.G., McDowell, N.G., 2015. Drought and resprouting plants. New Phytol.
206, 583–589. https://doi.org/10.1111/nph.13205
Zhang, S.-B., Zhang, J.-L., Cao, K.-F., 2017. Divergent hydraulic safety
strategies in three Co-occurring anacardiaceae tree species in a Chinese
savanna. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.02075
Table 1: Hakea species investigated showing the life-histories
(resprouting ability, leaf form), dominant vegetation type (WWF), biome,
mean annual temperature (MAT, °C), mean annual precipitation (MAP, mm),
and mean aridity index (AI).