References
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhäusser, S.M., Tissue, D.T., Huxman, T.E., Hudson, P.J., Franz, T.E., Allen, C.D., Anderegg, L.D.L., Barron-Gafford, G.A., Beerling, D.J., Breshears, D.D., Brodribb, T.J., Bugmann, H., Cobb, R.C., Collins, A.D., Dickman, L.T., Duan, H., Ewers, B.E., Galiano, L., Galvez, D.A., Garcia-Forner, N., Gaylord, M.L., Germino, M.J., Gessler, A., Hacke, U.G., Hakamada, R., Hector, A., Jenkins, M.W., Kane, J.M., Kolb, T.E., Law, D.J., Lewis, J.D., Limousin, J.-M., Love, D.M., Macalady, A.K., Martínez-Vilalta, J., Mencuccini, M., Mitchell, P.J., Muss, J.D., O’Brien, M.J., O’Grady, A.P., Pangle, R.E., Pinkard, E.A., Piper, F.I., Plaut, J.A., Pockman, W.T., Quirk, J., Reinhardt, K., Ripullone, F., Ryan, M.G., Sala, A., Sevanto, S., Sperry, J.S., Vargas, R., Vennetier, M., Way, D.A., Xu, C., Yepez, E.A., McDowell, N.G., 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291. https://doi.org/10.1038/s41559-017-0248-x
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. U. S. A. 113, 5024–5029. https://doi.org/10.1073/pnas.1525678113
Barotto, A.J., Monteoliva, S., Gyenge, J., Martinez-Meier, A., Fernandez, M.E., 2018. Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density. Tree Physiol. 38, 243–251. https://doi.org/10.1093/treephys/tpx138
Bartletta, M.K., Klein, T., Jansen, S., Choat, B., Sack, L., Bartlett, M.K., Klein, T., Jansen, S., Choat, B., Sack, L., 2016. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl. Acad. Sci. U. S. A. 113, 13098–13103. https://doi.org/10.1073/pnas.1604088113
Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting Linear Mixed-Effects Models Using lme4 67. https://doi.org/10.18637/jss.v067.i01
Blackman, C.J., Aspinwall, M.J., Tissue, D.T., Rymer, P.D., 2017. Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates. Tree Physiol. 37, 583–592. https://doi.org/10.1093/treephys/tpx005
Blackman, C.J., Gleason, S.M., Chang, Y., Cook, A.M., Laws, C., Westoby, M., 2014. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates. Ann. Bot. 114, 435–440. https://doi.org/10.1093/aob/mcu131
Bourne, A.E., Creek, D., Peters, J.M.R., Ellsworth, D.S., Choat, B., 2017. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Ann. Bot. 120, 123–133. https://doi.org/10.1093/aob/mcx020
Brodribb, T., Hill, R.S., 1999. The importance of xylem constraints in the distribution of conifer species. New Phytol. 143, 365–372. https://doi.org/10.1046/j.1469-8137.1999.00446.x
Brodribb, T.J., Cochard, H., 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584. https://doi.org/10.1104/pp.108.129783
Brodribb, T.J., Holbrook, N.M., 2004. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol. 162, 663–670. https://doi.org/10.1111/j.1469-8137.2004.01060.x
Brodribb, T.J., McAdam, S.A.M., Carins Murphy, M.R., 2017. Xylem and stomata, coordinated through time and space. Plant Cell Environ. 40, 872–880. https://doi.org/10.1111/pce.12817
Carter, J.L., White, D.A., 2009. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 29, 1407–1418. https://doi.org/10.1093/TREEPHYS/TPP076
Choat, B., Cobb, A.R., Jansen, S., 2008. Structure and function of bordered pits: New discoveries and impacts on whole-plant hydraulic function. New Phytol. 177, 608–626. https://doi.org/10.1111/j.1469-8137.2007.02317.x
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild, T.S., Gleason, S.M., Hacke, U.G., Jacobsen, A.L., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P.J., Nardini, A., Pittermann, J., Pratt, R.B., Sperry, J.S., Westoby, M., Wright, I.J., Zanne, A.E., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. https://doi.org/10.1038/nature11688
Choat, B., Sack, L., Holbrook, N.M., 2007. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x
Christman, M.A., Sperry, J.S., Adler, F.R., 2009. Testing the “rare pit” hypothesis for xylem cavitation resistance in three species of Acer. New Phytol. 182, 664–674. https://doi.org/10.1111/j.1469-8137.2009.02776.x
Clarke, P.J., Lawes, M.J., Midgley, J.J., Lamont, B.B., Ojeda, F., Burrows, G.E., Enright, N.J., Knox, K.J.E., 2013. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. https://doi.org/10.1111/nph.12001
Cochard, H., 2014. The basics of plant hydraulics. J. Plant Hydraul. 1, 001. https://doi.org/10.20870/jph.2014.e001
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., Jansen, S., 2013. Methods for measuring plant vulnerability to cavitation: A critical review, Journal of Experimental Botany. https://doi.org/10.1093/jxb/ert193
Cochard, H., Damour, G., Bodet, C., Tharwat, I., Poirier, M., Améglio, T., 2005. Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol. Plant. 124, 410–418. https://doi.org/10.1111/j.1399-3054.2005.00526.x
Delzon, S., Douthe, C., Sala, A., Cochard, H., 2010. Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell Environ. 33, 2101–2111. https://doi.org/10.1111/j.1365-3040.2010.02208.x
Downes, G., Worledge, D., Schimleck, L., Harwood, C., French, J., Beadle, C., 2006. The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens. New Zeal. J. For. 51, 13–22.
Eamus, D., Hatton, T., Colvin, P., C., C., 2006. Ecohydrology: Vegetation Function, Water and Resource Management. CSIRO PUBLISHING, Collingwood, Victoria, Australia.
Fitzpatrick, M.C.M.C., Gove, A.D., Sanders, N.J., Dunn, R.R., 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia. Glob. Chang. Biol. https://doi.org/10.1111/j.1365-2486.2008.01559.x
Gleason, S.M., Butler, D.W., Ziemińska, K., Waryszak, P., Westoby, M., 2012. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 26, 343–352. https://doi.org/10.1111/j.1365-2435.2012.01962.x
Gotsch, S.G., Geiger, E.L., Franco, A.C., Goldstein, G., Meinzer, F.C., Hoffmann, W.A., 2010. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia 163, 291–301. https://doi.org/10.1007/s00442-009-1543-2
Goulden, M.L., Bales, R.C., 2019. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637. https://doi.org/10.1038/s41561-019-0388-5
Groom, P.P.K., Lamont, B.B.B., 1996. Ecogeographical analysis of Hakea (proteaceae) in south-western Australia, with special reference to leaf morphology and life form, Australian Journal of Botany. CSIRO PUBLISHING. https://doi.org/10.1071/BT9960527
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461. https://doi.org/10.1007/s004420100628
Hernández, E.I., Pausas, J.G., Vilagrosa, A., 2011. Leaf physiological traits in relation to resprouter ability in the Mediterranean Basin. Plant Ecol. 212, 1959–1966. https://doi.org/10.1007/s11258-011-9976-1
Jacobsen, A.L., Agenbag, L., Esler, K.J., Pratt, R.B., Ewers, F.W., Davis, S.D., 2007. Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. J. Ecol. 95, 171–183. https://doi.org/10.1111/j.1365-2745.2006.01186.x
Jacobsen, A.L., Ewers, F.W., Pratt, R.B., Paddock III, W.A., Davis, S.D., 2005. Do xylem fibers affect vessel cavitation resistance? Plant Physiol. 139, 546–556. https://doi.org/10.1104/pp.104.058404
Kursar, T.A., Engelbrecht, B.M.J., Burke, A., Tyree, M.T., El Omari, B., Giraldo, J.P., 2009. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102. https://doi.org/10.1111/j.1365-2435.2008.01483.x
Lamy, J.-B., Delzon, S., Bouche, P.S., Alia, R., Vendramin, G.G., Cochard, H., Plomion, C., 2014. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol. 201, 874–886. https://doi.org/10.1111/nph.12556
Larter, M., Pfautsch, S., Domec, J.-C., Trueba, S., Nagalingum, N., Delzon, S., 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris . New Phytol. 215, 97–112. https://doi.org/10.1111/nph.14545
Lens, F., Endress, M.E., Baas, P., Jansen, S., Smets, E., 2009. Vessel grouping patterns in subfamilies apocynoideae and periplocoideae confirm phylogenetic value of wood structure within apocynaceae. Am. J. Bot. 96, 2168–2183. https://doi.org/10.3732/ajb.0900116
Lens, F., Sperry, J.S., Christman, M.A., Choat, B., Rabaey, D., Jansen, S., 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723. https://doi.org/10.1111/j.1469-8137.2010.03518.x
Lenth, R., 2020. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.5.
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H.J., Schmitt, M., Schuldt, B., Jansen, S., 2016. Intervessel Pit Membrane Thickness as a Key Determinant of Embolism Resistance in Angiosperm Xylem. IAWA J. 37, 152–171. https://doi.org/10.1163/22941932-20160128
Li, X., Blackman, C.J., Choat, B., Duursma, R.A., Rymer, P.D., Medlyn, B.E., Tissue, D.T., 2018. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 41, 646–660. https://doi.org/10.1111/pce.13129
Li, X., Blackman, C.J., Choat, B., Rymer, P.D., Medlyn, B.E., Tissue, D.T., 2019. Drought tolerance traits do not vary across sites differing in water availability in Banksia serrata (Proteaceae). Funct. Plant Biol. 46, 624. https://doi.org/10.1071/FP18238
López, R., Cano, F.J., Choat, B., Cochard, H., Gil, L., 2016. Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00769
López, R., Nolf, M., Duursma, R.A., Badel, E., Flavel, R.J., Cochard, H., Choat, B., 2019. Mitigating the open vessel artefact in centrifuge-based measurement of embolism resistance. Tree Physiol. 39, 143–155. https://doi.org/10.1093/treephys/tpy083
Lucani, C.J., Brodribb, T.J., Jordan, G., Mitchell, P.J., 2019. Intraspecific variation in drought susceptibility in Eucalyptus globulus is linked to differences in leaf vulnerability. Funct. Plant Biol. 46, 286. https://doi.org/10.1071/FP18077
Maherali, H., Pockman, W.T., Jackson, R.B., 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199. https://doi.org/10.1890/02-0538
Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., 2011. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x
Martin-StPaul, N., Delzon, S., Cochard, H., 2017. Plants resistance to drought relies on early stomata closure. bioRxiv 99531.
Martorell, S., Diaz-Espejo, A., Medrano, H., Ball, M.C., Choat, B., 2014. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: Linkages between stem hydraulics and leaf gas exchange. Plant, Cell Environ. 37, 617–626. https://doi.org/10.1111/pce.12182
McCulloh, K.A., Domec, J., Johnson, D.M., Smith, D.D., Meinzer, F.C., 2019. A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. Plant. Cell Environ. pce.13607. https://doi.org/10.1111/pce.13607
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
Meinzer, F.C., Johnson, D.M., Lachenbruch, B., Mcculloh, K.A., Woodruff, D.R., 2009. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930. https://doi.org/10.1111/j.1365-2435.2009.01577.x
Nardini, A., Luglio, J., 2014. Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes. Funct. Ecol. 28, 810–818. https://doi.org/10.1111/1365-2435.12246
Onoda, Y., Richards, A.E., Westoby, M., 2010. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493–501. https://doi.org/10.1111/j.1469-8137.2009.03088.x
Padilla, F.M., Pugnaire, F.I., 2007. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct. Ecol. 21, 489–495. https://doi.org/10.1111/j.1365-2435.2007.01267.x
Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S.S., Cornwell, W.K.K., Craine, J.M.M., Gurvich, D.E.E., Urcelay, C., Veneklaas, E.J.J., Reich, P.B.B., Poorter, L., Wright, I.J.J., Etc., Ray, P., Etc., Díaz, S., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S.S., Cornwell, W.K.K., Craine, J.M.M., Gurvich, D.E.E., Urcelay, C., Veneklaas, E.J.J., Reich, P.B.B., Poorter, L., Wright, I.J.J., Ray, P., Enrico, L., Pausas, J.G., Vos, A.C. de, Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., Steege, H. ter, Heijden, M.G.A. van der, Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A.C., Aquino, S., Cornelissen, J.H.C., 2013. New Handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 61, 167–234. https://doi.org/http://dx.doi.org/10.1071/BT12225
Pita, P., Gascó, A., Pardos, J.A., 2003. Xylem cavitation, leaf growth and leaf water potential in Eucalyptus globulus clones under well-watered and drought conditions. Funct. Plant Biol. 30, 891–899. https://doi.org/10.1071/FP03055
Pockman, W.T., Sperry, J.S., 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am. J. Bot. 87, 1287–1299. https://doi.org/10.2307/2656722
Pockman, W.T., Sperry, J.S., O’leary, J.W., 1995. Sustained and significant negative water pressure in xylem. Nature 378, 715–716. https://doi.org/10.1038/378715a0
Powers, J.S., Vargas G., G., Brodribb, T.J., Schwartz, N.B., Pérez-Aviles, D., Smith-Martin, C.M., Becknell, J.M., Aureli, F., Blanco, R., Calderón-Morales, E., Calvo-Alvarado, J.C., Calvo-Obando, A.J., Chavarría, M.M., Carvajal-Vanegas, D., Jiménez-Rodríguez, C.D., Murillo Chacon, E., Schaffner, C.M., Werden, L.K., Xu, X., Medvigy, D., 2020. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol. 26. https://doi.org/10.1111/gcb.15037
Pratt, R.B., Jacobsen, A.L., Golgotiu, K.A., Sperry, J.S., Ewers, F.W., Davis, S.D., 2007. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecol. Monogr. 77, 239–253. https://doi.org/10.1890/06-0780
Razgour, O., Forester, B., Taggart, J.B., Bekaert, M., Juste, J., Ibáñez, C., Puechmaille, S.J., Novella-Fernandez, R., Alberdi, A., Manel, S., 2019. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. U. S. A. 116, 10418–10423. https://doi.org/10.1073/pnas.1820663116
RCoreTeam, 2020. R: A language and environment for statistical computing.
Roderick, M.L., Berry, S.L., 2002. Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol. 149, 473–485. https://doi.org/10.1046/j.1469-8137.2001.00054.x
Schreiber, S.G., Hacke, U.G., Chamberland, S., Lowe, C.W., Kamelchuk, D., Bräutigam, K., Campbell, M.M., Thomas, B.R., 2016. Leaf size serves as a proxy for xylem vulnerability to cavitation in plantation trees. Plant Cell Environ. 39, 272–281. https://doi.org/10.1111/pce.12611
Schumann, K., Leuschner, C., Schuldt, B., 2019. Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees - Struct. Funct. 33, 1475–1490. https://doi.org/10.1007/s00468-019-01874-x
Searson, M.J., Thomas, D.S., Montagu, K.D., Conroy, J.P., 2004. Wood density and anatomy of water-limited eucalypts. Tree Physiol. 24, 1295–1302. https://doi.org/10.1093/TREEPHYS/24.11.1295
Skelton, R.P., Anderegg, L.D.L., Papper, P., Reich, E., Dawson, T.E., Kling, M., Thompson, S.E., Diaz, J., Ackerly, D.D., 2019. No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak. New Phytol. 223, 1296–1306. https://doi.org/10.1111/nph.15886
Skelton, R.P., Dawson, T.E., Thompson, S.E., Shen, Y., Weitz, A.P., Ackerly, D., 2018. Low vulnerability to xylem embolism in leaves and stems of north american oaks. Plant Physiol. 177, 1066–1077. https://doi.org/10.1104/pp.18.00103
Skelton, R.P., West, A.G., Dawson, T.E., 2015. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl. Acad. Sci. U. S. A. 112. https://doi.org/10.1073/pnas.1503376112
Sperry, J.S., Hacke, U.G., Pittermann, J., 2006. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot. 93, 1490–1500. https://doi.org/10.3732/ajb.93.10.1490
Sperry, J.S., Meinzer, F.C., McCulloh, K.A., 2008. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant, Cell Environ. 31, 632–645. https://doi.org/10.1111/j.1365-3040.2007.01765.x
Trueba, S., Pouteau, R., Lens, F., Feild, T.S., Isnard, S., Olson, M.E., Delzon, S., 2017. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant Cell Environ. 40, 277–289. https://doi.org/10.1111/pce.12859
UNEP, 1997. World atlas of desertification, Second edi. ed. London.
Urban, M.C., 2015. Accelerating extinction risk from climate change. Science 348, 571–3. https://doi.org/10.1126/science.aaa4984
Urli, M., Porté, A.J., Cochard, H., Guengant, Y., Burlett, R., Delzon, S., 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol. 33, 672–683. https://doi.org/10.1093/treephys/tpt030
Vilagrosa, A., Hernández, E.I., Luis, V.C., Cochard, H., Pausas, J.G., 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol. 201, 1277–1288. https://doi.org/10.1111/nph.12584
Villagra, M., Campanello, P.I., Bucci, S.J., Goldstein, G., 2013. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiol. 33, 1308–1318. https://doi.org/10.1093/treephys/tpt098
Weston, P.H., 1995. Proteaceae, Flora of Australia. Australian Biological Resources Study/CSIRO Publishing.
Wheeler, E.A., Baas, P., Rodgers, S., 2007. Variations in dicot wood anatomy: A global analysis based on the insidewood database. IAWA J. 28, 229–258. https://doi.org/10.1163/22941932-90001638
Wimmer, R., Downes, G.M., Evans, R., Rasmussen, G., French, J., 2002. Direct effects of wood characteristics on pulp and handsheet properties of Eucalyptus globulus. Holzforschung 56, 244–252. https://doi.org/10.1515/HF.2002.040
Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., Gallagher, R. V., Jacobs, B.F., Kooyman, R., Law, E.A., Leishman, M.R., Niinemets, Ü., Reich, P.B., Sack, L., Villar, R., Wang, H., Wilf, P., 2017. Global climatic drivers of leaf size. Science (80-. ). 357, 917–921. https://doi.org/10.1126/science.aal4760
Zeppel, M.J.B., Harrison, S.P., Adams, H.D., Kelley, D.I., Li, G., Tissue, D.T., Dawson, T.E., Fensham, R., Medlyn, B.E., Palmer, A., West, A.G., McDowell, N.G., 2015. Drought and resprouting plants. New Phytol. 206, 583–589. https://doi.org/10.1111/nph.13205
Zhang, S.-B., Zhang, J.-L., Cao, K.-F., 2017. Divergent hydraulic safety strategies in three Co-occurring anacardiaceae tree species in a Chinese savanna. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.02075
Table 1: Hakea species investigated showing the life-histories (resprouting ability, leaf form), dominant vegetation type (WWF), biome, mean annual temperature (MAT, °C), mean annual precipitation (MAP, mm), and mean aridity index (AI).