References
[1] Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel
coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob
Agents. 2020;55:105948.
[2] Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An
overview. J Chin Med Assoc. 2020;83:217-220.
[3] Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based
on current evidence. J Med Virol. 2020;92:548-551.
[4] Aggarwal S, Garcia-Telles N, Aggarwal G, Lavie C, Lippi G, Henry
BM. Clinical features, laboratory characteristics, and outcomes of
patients hospitalized with coronavirus disease 2019 (COVID-19): Early
report from the United States. Diagnosis (Berl). 2020;7:91-96.
[5] Huang X, Wei F, Hu L, Wen L, Chen K. Epidemiology and Clinical
Characteristics of COVID-19. Arch Iran Med. 2020;23:268-271.
[6] Schijns V, Lavelle EC. Prevention and treatment of COVID-19
disease by controlled modulation of innate immunity. Eur J Immunol.
2020;50:932-938.
[7] Abd El-Aziz TM, Stockand JD. Recent progress and challenges in
drug development against COVID-19 coronavirus (SARS-CoV-2)-an update on
the status. Infect Genet Evol. 2020;83:104327.
[8] Yang L, Chen J, Lu H, Lai J, He Y, Liu S, Guo X.
Pueraria lobata for Diabetes Mellitus: Past, Present and Future. Am J
Chin Med. 2019;47:1419-1444.
[9] Zhou YX, Zhang H, Peng C. Puerarin: a review of pharmacological
effects. Phytother Res. 2014;28:961-975.
[10] Li R, Xu L, Liang T, Li Y, Zhang S, Duan X. Puerarin mediates
hepatoprotection against CCl4-induced hepatic fibrosis rats through
attenuation of inflammation response and amelioration of metabolic
function. Food Chem Toxicol. 2013;52:69-75.
[11] Li R, Zheng N, Liang T, He Q, Xu L. Puerarin attenuates
neuronal degeneration and blocks oxidative stress to elicit a
neuroprotective effect on substantia nigra injury in 6-OHDA-lesioned
rats. Brain Res. 2013;1517:28-35.
[12] Li R, Liang T, Xu L, Zheng N, Zhang K, Duan X.
Puerarin attenuates neuronal degeneration in the substantia nigra of
6-OHDA-lesioned rats through regulating BDNF expression and activating
the Nrf2/ARE signaling pathway. Brain Res. 2013;1523:1-9.
[13] Li R, Song J, Wu W, Wu X, Su M. Puerarin exerts the protective
effect against chemical induced dysmetabolism in rats.
Gene. 2016;595:168-174.
[14] Derda M, Hadaś E, Thiem B. Plant extracts as natural
amoebicidal agents. Parasitol Res. 2009;104:705-708.
[15] Wang X, Yan J, Xu X, Duan C, Xie Z, Su Z, Ma H, Ma H, Wei X, Du
X. Puerarin prevents LPS-induced acute lung injury via inhibiting
inflammatory response. Microb Pathog. 2018;118:170-176.
[16] Wang C, Yan M, Jiang H, Wang Q, Guan X, Chen J, Wang C.
Protective effects of puerarin on acute lung and cerebrum injury induced
by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB
signaling pathway. Int Immunopharmacol. 2016;40:300-309.
[17] Su M, Guo C, Liu M, Liang X, Yang B. Therapeutic targets of
vitamin C on liver injury and associated biological mechanisms: A study
of network pharmacology. Int Immunopharmacol. 2019;66:383-387.
[18] Wu K, Wei P, Liu M, Liang X, Su M. To reveal pharmacological
targets and molecular mechanisms of curcumol against interstitial
cystitis. J Adv Res. 2019;20:43-50.
[19] Zhou R, Wu K, Su M, Li R. Bioinformatic and experimental data
decipher the pharmacological targets and mechanisms of plumbagin against
hepatocellular carcinoma. Environ Toxicol Pharmacol. 2019;70:103200.
[20] Li R, Guo C, Li Y, Liang X, Yang L, Huang W. Therapeutic target
and molecular mechanism of vitamin C-treated pneumonia: a systematic
study of network pharmacology. Food Funct. 2020;11:4765-4772.
[21] Wu K, Wei P, Liu M, Liang X, Su M. To reveal pharmacological
targets and molecular mechanisms of curcumol against interstitial
cystitis. J Adv Res. 2019;20:43-50.
[22] Li R, Ma X, Song Y, Zhang Y, Xiong W, Li L, Zhou L.
Anti-colorectal cancer targets of resveratrol and biological molecular
mechanism: Analyses of network pharmacology, human and experimental
data. J Cell Biochem. 2019;120:11265-11273.
[23] Su M, Guo C, Liu M, Liang X, Yang B. Therapeutic targets of
vitamin C on liver injury and associated biological mechanisms: A study
of network pharmacology. Int Immunopharmacol. 2019;66:383-387.
[24] Liang Y, Zhou R, Liang X, Kong X, Yang B. Pharmacological
Targets and Molecular Mechanisms of Plumbagin to Treat Colorectal
Cancer: A Systematic Pharmacology Study. Eur J
Pharmacol. 2020;881:173227.
[25] Li R, Guo C, Li Y, Liang X, Yang L, Huang W. Therapeutic Target
and Molecular Mechanism of Vitamin C-treated Pneumonia: A Systematic
Study of Network Pharmacology. Food Funct. 2020;11:4765-4772.
[26] Li R, Guo C, Li Y, Qin Z, Huang W. Therapeutic Targets and
Signaling Mechanisms of Vitamin C Activity Against Sepsis: A
Bioinformatics Study. Brief Bioinform. 2020;bbaa079. doi:
10.1093/bib/bbaa079.
[27] Li R, Wu K, Li Y, Liang X, Lai KP, Chen J. Integrative
pharmacological mechanism of vitamin C combined with glycyrrhizic acid
against COVID-19: findings of bioinformatics analyses. Brief Bioinform.
2020;bbaa141.
[28] Milde-Langosch K. The Fos family of transcription factors and
their role in tumourigenesis. Eur J Cancer. 2005;41:2449-2461.
[29] Seo MJ, Oh DK. Prostaglandin synthases: Molecular
characterization and involvement in prostaglandin biosynthesis. Prog
Lipid Res. 2017;66:50-68.
[30] Dolan JM, Weinberg JB, O’Brien E, et al. Increased lethality
and defective pulmonary clearance of Streptococcus pneumoniae in
microsomal prostaglandin E synthase-1-knockout mice. Am J Physiol Lung
Cell Mol Physiol. 2016;310:1111-1120.
[31] Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor
promotion and tumor suppression. Semin Cancer Biol. 2018;48:36-52.
[32] Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1
(PKD1) in Cellular Proliferation. Mol Cancer Res. 2019;17:1961-1974.
[33] Keilhoff G. nNOS deficiency-induced cell proliferation depletes
the neurogenic reserve. Neurosci Lett. 2011;505:248-253.
[34] Bougaki M, Searles RJ, Kida K, Yu J, Buys ES, Ichinose F. Nos3
protects against systemic inflammation and myocardial dysfunction in
murine polymicrobial sepsis. Shock. 2010;34:281-290.