REFERENCES
[1] M. S. Whittingham, “Electrical energy storage and intercalation chemistry,” Science, vol. 192, no. 4244, pp. 1126-1127, 1976. DOI: https://doi.org/10.1126/science.192.4244.1126.
[2] D. Lin, Y. Liu and Y. Cui, “Reviving the lithium metal anode for high-energy batteries,” Nature Nanotechnology, vol. 12, no. 3, pp. 194-206, 2017. DOI: https://doi.org/ 10.1038/nnano.2017.16.
[3] K. Brandt, “Historical development of secondary lithium batteries,” Solid State Ionics, vol. 69, no. 3-4, pp. 173-183, 1994. DOI: https://doi.org/10.1016/0167-2738(94)90408-1.
[4] Y. Guo, H. Li and T. Zhai, “Reviving lithium-metal anodes for next-generation high-energy batteries,” Advanced Materials, vol. 29, no. 29, 1700007, 2017. DOI: https://doi.org/10.1002/adma.201700007.
[5] X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu and Q. Zhang, “Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes,” Chem, vol. 5, no. 1, pp. 74-96, 2019. DOI: https://doi.org/10.1016/j.chempr.2018.12.002.
[6] Y. Ji, S. Weng, X. Li, Q. Zhang, L. Gu, “Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review, ” Rare Metals, vol.29, no. 3, pp. 205–217. DOI: https://doi.org/10.1007/s12598-020-01369-6
[7] X. Gu, T. Tang, X. Liu and Y. Hou, “Rechargeable metal batteries based on selenium cathodes: Progress, challenges and perspectives,” Journal of Materials Chemistry A, vol. 7, no. 19, pp. 11566-11583, 2019. DOI: https://doi.org/10.1039/C8TA12537F.
[8] H. Yuan, H.-J. Peng, J.-Q. Huang and Q. Zhang, “Sulfur redox reactions at working interfaces in lithium-sulfur batteries: A perspective,” Advanced Materials Interfaces, vol. 6, no. 4, 1802046, 2019. DOI: https://doi.org/10.1002/admi.201802046.
[9] H. Yuan, H.-J. Peng, J.-Q. Huang and Q. Zhang, “Sulfur redox reactions at working interfaces in lithium-sulfur batteries: A perspective,” Advanced Materials Interfaces, vol. 6, no. 4, 1802046, 2019. DOI: https://doi.org/10.1002/admi.201802046.
[10] X.-B. Cheng, C. Yan, X.-Q. Zhang, H. Liu and Q. Zhang, “Electronic and ionic channels in working interfaces of lithium metal anodes,” ACS Energy Letters, vol. 3, no. 7, pp. 1564-1570, 2018. DOI: https://doi.org/10.1021/acsenergylett.8b00526.
[11] M.-T. F. Rodrigues, G. Babu, H. Gullapalli, K. Kalaga, F. N. Sayed, K. Kato, J. Joyner and P. M. Ajayan, “A materials perspective on Li-ion batteries at extreme temperatures,” Nature Energy, vol. 2, no. 8, pp. 1-14, 2017. DOI: https://doi.org/10.1038/nenergy.2017.108.
[12] K. Zhang, G.-H. Lee, M. Park, W. Li and Y.-M. Kang, “Recent developments of the lithium metal anode for rechargeable non-aqueous batteries,” Advanced Energy Materials, vol. 6, no. 20, 1600811, 2016. DOI: https://doi.org/10.1002/aenm.201600811.
[13] X.-B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang and Q. Zhang, “A review of solid electrolyte interphases on lithium metal anode,” Advanced Science , vol. 3, no. 3, 1500213, 2016. DOI: https://doi.org/10.1002/advs.201500213.
[14] F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu and J. G. Zhang, “Dendrite-free lithium deposition via self-healing electrostatic shield mechanism,” Journal of the American Chemical Society, vol. 135, no. 11, pp. 4450-4456, 2013. DOI: https://doi.org/10.1021/ja312241y.
[15] X. Gu and C. Lai, “One dimensional nanostructures contribute better Li-S and Li-Se batteries: Progress, challenges and perspectives,”Energy Storage Materials, vol. 23, pp. 190-224, 2019. DOI: https://doi.org/10.1016/j.ensm.2019.05.013.
[16] K. Pu, X. Zhang, Xi. Qu, J. Hu, H. Li, M. Gao, H. Pan, Y. Liu, “Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries,” Rare Metal s, vol. 39, no. 6, pp. 616-635, 2020. DOI: https://doi.org/10.1007/s12598-020-01432-2
[17] B. Li, Y. Wang and S. Yang, “A material perspective of rechargeable metallic lithium anodes,” Advanced Energy Materials, vol. 8, no. 13, 1702296, 2018. DOI: https://doi.org/10.1002/aenm.201702296.
[18] X. Gu, Z. Yang, S. Qiao, C. Shao X. Ren and J. Y, “Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries”, Rare Metals , 2020. DOI: http://doi.org/10.1007/s12598-020-01409-1
[19] X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan and Q. Zhang, “Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries,” Advanced Functional Materials, vol. 27, no. 10, 1605989, 2017. DOI: https://doi.org/10.1002/adfm.201605989.
[20] H. Yu, J. Zhao, L. Ben, Y. Zhan, Y. Wu and X. Huang, “Dendrite-free lithium deposition with self-aligned columnar structure in a carbonate-ether mixed electrolyte,” ACS Energy Letters,vol. 2, no. 6, pp. 1296-1302, 2017. DOI: https://doi.org/10.1021/acsenergylett.7b00273.
[21] H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X. Shang, Y. Takeda, O. Yamamoto and N. Imanishi, “A reversible dendrite-free high-areal-capacity lithium metal electrode,” Nature Communications, vol. 8, no. 1, pp. 1-9, 2017. DOI: https://doi.org/10.1038/ncomms15106.
[22] E. Markevich, G. Salitra, F. Chesneau, M. Schmidt and D. Aurbach, “Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution,” ACS Energy Letters, vol. 2, no. 6, pp. 1321-1326, 2017. DOI: https://doi.org/10.1021/acsenergylett.7b00300.
[23] H. Dai, X. Gu, J. Dong, C. Wang, C. Lai and S. Sun, “Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation,” Nature Communications, vol. 11, no. 1, pp. 1-11, 2020. DOI: https://doi.org/10.1038/s41467-020-14505-8.
[24] J. J. Xu, Q. C. Liu, Y. Yu, J. Wang, J. M. Yan and X. B. Zhang, “In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries,” Advanced Materials, vol. 29, no. 24, 1606552, 2017. DOI: https://doi.org/10.1002/adma.201606552.
[25] M. Ye, X. Jin, X. Nan, J. Gao and L. Qu, “Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode,” Energy Storage Materials, vol. 24, pp. 153-159, 2020. DOI: https://doi.org/10.1016/j.ensm.2019.08.024.
[26] K. R. Adair, M. Iqbal, C. Wang, Y. Zhao, M. N. Banis, R. Li, L. Zhang, R. Yang, S. Lu and X. Sun, “Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes,” Nano Energy, vol. 54, pp. 375-382, 2018. DOI: https://doi.org/10.1016/j.nanoen.2018.10.002.
[27] R. Mukherjee, A. V. Thomas, D. Datta, E. Singh, J. Li, O. Eksik, V. B. Shenoy and N. Koratkar, “Defect-induced plating of lithium metal within porous graphene networks,” Nature Communications,vol. 5, no. 1, pp. 1-10, 2014. DOI: https://doi.org/10.1038/ncomms4710.
[28] R. Zhang, N. W. Li, X. B. Cheng, Y. X. Yin, Q. Zhang and Y. G. Guo, “Advanced micro/nanostructures for lithium metal anodes,”Advanced Science, vol. 4, no. 3, 1600445, 2017. DOI: https://doi.org/10.1002/advs.201600445.
[29] B. Liu, J.-G. Zhang and W. Xu, “Advancing lithium metal batteries,” Joule , vol. 2, no. 5, pp. 833-845, 2018. DOI: https://doi.org/10.1016/j.joule.2018.03.008.
[30] H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli and J. Wang, “Recent progress and perspective on lithium metal anode protection,” Energy Storage Materials, vol. 14, pp. 199-221, 2018. DOI: https://doi.org/10.1016/j.ensm.2018.03.001.
[31] F. Wu, Y.-X. Yuan, X.-B. Cheng, Y. Bai, Y. Li, C. Wu and Q. Zhang, “Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes,” Energy Storage Materials,vol. 15, pp. 148-170, 2018. DOI: https://doi.org/10.1016/j.ensm.2018.03.024.
[32] C. Yang, K. Fu, Y. Zhang, E. Hitz and L. Hu, “Protected lithium-metal anodes in batteries: From liquid to solid,”Advanced Materials, vol. 29, no. 36, 1701169, 2017. DOI: https://doi.org/10.1002/adma.201701169.
[33] L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang and S. X. Dou, “Engineering of lithium-metal anodes towards a safe and stable battery,” Energy Storage Materials, vol. 14, pp. 22-48, 2018. DOI: https://doi.org/10.1016/j.ensm.2018.02.014.
[34] C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, “Li-alloy based anode materials for Li secondary batteries,” Chemical Society Reviews, vol. 39, no. 8, pp. 3115-3141, 2010. DOI: https://doi.org/10.1039/B919877F.
[35] R. A. Huggins, “Alloy negative electrodes for lithium batteries formed in-situ from oxides,” Ionics, vol. 3, no. 3-4, pp. 245-255, 1997. DOI: https://doi.org/10.1007/BF02375624.
[36] S. Matsuno, M. Noji, T. Kashiwagi, M. Nakayama and M. Wakihara, “Construction of the ternary phase diagram for the Li-Cu-Sb system as the anode material for a lithium ion battery,” Journal of Physical Chemistry C, vol. 111, no. 20, pp. 7548-7553, 2007. DOI: https://doi.org/10.1021/jp070397u.
[37] L. M. L. Fransson, J. T. Vaughey, R. Benedek, K. Edström, J. O. Thomas and M. M. Thackeray, “Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study,” Electrochemistry Communications, vol. 3, no. 7, pp. 317-323, 2001. DOI: https://doi.org/10.1016/S1388-2481(01)00140-0.
[38] X.-B. Cheng, H.-J. Peng, J.-Q. Huang, F. Wei and Q. Zhang, “Dendrite-free nanostructured anode: Entrapment of lithium in a 3d fibrous matrix for ultra-stable lithium-sulfur batteries,”Small, vol. 10, no. 21, pp. 4257-4263, 2014. DOI: https://doi.org/10.1002/smll.201401837.
[39] H. Liu, X.-B. Cheng, J.-Q. Huang, S. Kaskel, S. Chou, H. S. Park and Q. Zhang, “Alloy anodes for rechargeable alkali-metal batteries: Progress and challenge,” ACS Materials Letters, vol. 1, no. 22, pp. 217-229, 2019. DOI: https://doi.org/10.1021/acsmaterialslett.9b00118.
[40] J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P. C. Hsu, J. Wang, H. M. Cheng and Y. Cui, “Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes,” Nature Nanotechnology, vol. 12, no. 10, pp. 993-999, 2017. DOI: https://doi.org/10.1038/nnano.2017.129.
[41] A. N. Dey, “Electrochemical alloying of lithium in organic electrolytes,” Journal of the Electrochemical Society, vol. 118, no. 10, pp. 1547-1549, 1971. DOI: https://doi.org/10.1149/1.2407783.
[42] J. Yang, M. Winter and J. O. Besenhard, “Small particle size multiphase Li-alloy anodes for lithium-ion batteries,” Solid State Ionics, vol. 90, no. 1-4, pp. 281-287, 1996. DOI: https://doi.org/10.1016/S0167-2738(96)00389-X.
[43] H. J. Bang, S. Kim and J. Prakash, “Electrochemical investigations of lithium-aluminum alloy anode in Li/polymer cells,”Journal of Power Sources, vol. 92, no. 1-2, pp. 45-49, 2001. DOI: https://doi.org/10.1016/S0378-7753(00)00522-X.
[44] T. Chen, W. Kong, P. Zhao, H. Lin, Y. Hu, R. Chen, W. Yan and Z. Jin, “Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase,” Chemistry of Materials,2019, vol. 31, no. 18, pp. 7565-7573. DOI: https://doi.org/10.1021/acs.chemmater.9b02356.
[45] D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo and Q. Zhang, “Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy,” Advanced Science, vol. 4, no. 1, 1600168, 2017. DOI: https://doi.org/10.1002/advs.201600168.
[46] J. Zhao, Z. Lu, N. Liu, H. W. Lee, M. T. McDowell and Y. Cui, “Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents,” Nature Communications,vol. 5, 5088, 2014. DOI: https://doi.org/10.1038/ncomms6088.
[47] W.-J. Kwak, H.-J. Shin, J. Reiter, N. Tsiouvaras, J. Hassoun, S. Passerini, B. Scrosati and Y.-K. Sun, “Understanding problems of lithiated anodes in lithium oxygen full-cells,” Journal of Materials Chemistry A, vol. 4, no. 27, pp. 10467-10471, 2016. DOI: https://doi.org/10.1039/C6TA03013K.
[48] T. Zhang, M. Hong, J. Yang, Z. Xu, J. Wang, Y. Guo and C. Liang, “A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode,”Chemical Science, vol. 9, no. 47, pp. 8829-8835, 2018. DOI: https://doi.org/ 10.1039/C8SC02897D.
[49] Y. Gao, R. Yi, Y. C. Li, J. Song, S. Chen, Q. Huang, T. E. Mallouk and D. Wang, “General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes,” Journal of the American Chemical Society, vol. 139, no. 48, pp. 17359-17367, 2017. DOI: https://doi.org/10.1021/jacs.7b07584.
[50] J. E. Cloud, Y. Wang, X. Li, T. S. Yoder, Y. Yang and Y. Yang, “Lithium silicide nanocrystals: Synthesis, chemical stability, thermal stability, and carbon encapsulation,” Inorganic Chemistry, vol. 53, no. 20, pp. 11289-11297, 2014. DOI: https://doi.org/10.1021/ic501923s.
[51] H. Deng, F. Qiu, X. Li, H. Qin, S. Zhao, P. He and H. Zhou, “A Li-ion oxygen battery with Li-Si alloy anode prepared by a mechanical method,” Electrochemistry Communications, vol. 78, pp. 11-15, 2017. DOI: https://doi.org/10.1016/j.elecom.2017.03.010.
[52] S. Iwamura, H. Nishihara, Y. Ono, H. Morito, H. Yamane, H. Nara, T. Osaka and T. Kyotani, “Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries,” Scientific Reports, vol. 5, 8085, 2015. DOI: https://doi.org/10.1038/srep08085.
[53] M. Wu, J. Jin and Z. Wen, “Influence of a surface modified Li anode on the electrochemical performance of Li-S batteries,” RSC Advances, vol. 6, no. 46, pp. 40270-40276, 2016. DOI: https://doi.org/10.1039/C6RA05316E.
[54] M. Wan, S. Kang, L. Wang, H. W. Lee, G. W. Zheng, Y. Cui and Y. Sun, “Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode,”Nature Communications, vol. 11, no. 1, pp. 829, 2020. DOI: https://doi.org/10.1038/s41467-020-14550-3.
[55] Q. Xu, Y. Yang and H. Shao, “Enhanced cycleability and dendrite-free lithium deposition by addition of sodium ion in electrolyte for lithium metal batteries,” Electrochimica Acta,vol. 271, pp. 617-623, 2018. DOI: https://doi.org/10.1016/j.electacta.2018.03.182.
[56] Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis and L. A. Archer, “Fast ion transport at solid-solid interfaces in hybrid battery anodes,” Nature Energy, vol. 3, no. 4, pp. 310-316, 2018. DOI: https://doi.org/10.1038/s41560-018-0096-1.
[57] Q. Xu, Y. Yang and H. Shao, “Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries,” Electrochimica Acta,vol. 212, pp. 758-766, 2016. DOI: https://doi.org/10.1016/j.electacta.2016.07.080.
[58] X. Fan, J. Shao, X. Xiao, X. Wang, S. Li, H. Ge and L. Chen, “SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries,” Nano Energy, vol. 9, pp. 196-203, 2014. DOI: https://doi.org/10.1016/j.nanoen.2014.07.020.
[59] A. H. Whitehead, J. M. Elliott and J. R. Owen, “Nanostructured tin for use as a negative electrode material in Li-ion batteries,”Journal of Power Sources, vol. 81-82, pp. 33-38, 1999. DOI: https://doi.org/10.1016/S0378-7753(99)00126-3.
[60] H. Qiu, T. Tang, M. Asif, W. Li, T. Zhang and Y. Hou, “Stable lithium metal anode enabled by lithium metal partial alloying,”Nano Energy, vol. 65, 103989, 2019. DOI: https://doi.org/10.1016/j.nanoen.2019.103989.
[61] S. Qu, W. Jia, Y. Wang, C. Li, Z. Yao, K. Li, Y. Liu, W. Zou, F. Zhou, Z. Wang and J. Li, “Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance,”Electrochimica Acta, vol. 317, pp. 120-127, 2019. DOI: https://doi.org/10.1016/j.electacta.2019.05.138.
[62] H. Kim, J. T. Lee, D.-C. Lee, M. Oschatz, W. I. Cho, S. Kaskel and G. Yushin, “Enhancing performance of Li-S cells using a Li-Al alloy anode coating,” Electrochemistry Communications, vol. 36, pp. 38-41, 2013. DOI: https://doi.org/10.1016/j.elecom.2013.09.002.
[63] J. Sun, Q. Zeng, R. Lv, W. Lv, Q.-H. Yang, R. Amal and D.-W. Wang, “A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode,” Energy Storage Materials, vol. 15, pp. 209-217, 2018. DOI: https://doi.org/10.1016/j.ensm.2018.04.003.
[64] N. Kumagai, Y. Kikuchi and K. Tanno, “Electrochemical investigation of the diffusion of lithium in β -LiAl alloy at room temperature,” Journal of Applied Electrochemistry, vol. 22, no. 8, pp. 728-732, 1992. DOI: https://doi.org/10.1007/BF01027501.
[65] B. Duan, W. Wang, H. Zhao, A. Wang, M. Wang, K. Yuan, Z. Yu and Y. Yang, “Li-B Alloy as Anode Material for Lithium/Sulfur Battery,”ECS Electrochemistry Letters, vol. 2, no. 6, pp. A47-A51, 2013. DOI: https://doi.org/10.1149/2.005306eel.
[66] X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu and Y. Yang, “Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery,” Journal of Materials Chemistry A, vol. 2, no. 30, pp. 11660-11665, 2014. DOI: https://doi.org/10.1039/C4TA01709A.
[67] S. Choudhury, Z. Tu, S. Stalin, D. Vu, K. Fawole, D. Gunceler, R. Sundararaman and L. A. Archer, “Electroless formation of hybrid lithium anodes for fast interfacial ion transport,” Angewandte Chemie International Edition, vol. 56, no. 42, pp. 13070-13077, 2017. DOI: https://doi.org/10.1002/anie.201707754.
[68] A. L. Santhosha, L. Medenbach, J. R. Buchheim and P. Adelhelm, “The indium-lithium electrode in solid-state lithium-ion batteries: Phase formation, redox potentials, and interface stability,”Batteries & Supercaps, vol. 2, no. 6, pp. 524-529, 2019. DOI: https://doi.org/10.1002/batt.201800149.
[69] W. Weppner and R. A. Huggin, “Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth,”Journal of the Electrochemical Society, vol. 125, no. 1, pp. 7-14, 1978. DOI: https://doi.org/10.1149/1.2131401.
[70] J. O. Besenhard and H. P. Fritz, “Reversibles elektrochemisches legieren von metallen der V. hauptgruppe in organischen Li+-Lösungen,” Electrochimica Acta, vol. 20, no. 6-7, pp. 513-517, 1975. DOI: https://doi.org/10.1016/0013-4686(75)90042-0.
[71] W. Xianming, T. Nishina and I. Uchida, “Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte,” Journal of Power Sources, vol. 104, no. 1, pp. 90-96, 2002. DOI: https://doi.org/10.1016/S0378-7753(01)00876-X.
[72] A. G. Morachevskii, “Lithium-antimony alloys: Phase diagram, thermodynamic properties, electrochemical behavior in molten and nonaqueous electrolytes, and use in lithium-ion batteries,”Russian Journal of Applied Chemistry, vol. 88, no. 11, pp. 1737-1749, 2016. DOI: https://doi.org/10.1134/S10704272150110014.
[73] R. A. Huggins, “Lithium alloy negative electrodes,”Journal of Power Sources, vol. 81-82, pp. 13-19, 1999. DOI: https://doi.org/10.1016/S0378-7753(99)00124-X.
[74] J. K. Stark, Y. Ding and P. A. Kohl, “Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery,” Journal of the Electrochemical Society,vol. 158, no. 10, pp. A1100-A1105, 2011. DOI: https://doi.org/10.1149/1.3622348.
[75] K. P. Doyle, C. M. Lang, K. Kim and P. A. Kohl, “Dentrite-free electrochemical deposition of Li-Na alloys from an ionic liquid electrolyte,” Journal of the Electrochemical Society, vol. 153, no. 7, pp. A1353-A1357, 2006. DOI: https://doi.org/10.1149/1.2199444.
[76] T. Krauskopf, B. Mogwitz, C. Rosenbach, W. G. Zeier and J. Janek, “Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure,” Advances Energy Materials, vol. 9, no. 44, 1902568, 2019. DOI: https://doi.org/10.1002/aenm.201902568.
[77] L. L. Kong, L. Wang, Z. C. Ni, S. Liu, G. R. Li and X. P. Gao, “Lithium-magnesium alloy as a stable anode for lithium-sulfur battery,” Advances Functional Materials, vol. 29, no. 13, 1808756, 2019. DOI: https://doi.org/10.1002/adfm.201808756.
[78] Y. Zhang, K. S. R. Chandran, M. Jagannathan, H. Z. Bilheux and J. C. Bilheux, “The nature of electrochemical delithiation of Li-Mg alloy electrodes: neutron computed tomography and analytical modelling of Li diffusion and delithiation phenomenon,” Journal of The Electrochemical Society, vol. 164, no. 2, pp. A28-A38, 2017. DOI: https://doi.org/10.1149/2.0051702jes.
[79] T. J. Richardson and G. Chen, “Solid solution lithium alloy cermet anodes,” Journal of Power Sources, vol. 174, no. 2, pp. 810-812, 2007. DOI: https://doi.org/10.1016/j.jpowsour.2007.06.106.
[80] Z. Shi, M. Liu, D. Naik and J. L. Gole, “Electrochemical properties of Li-Mg alloy electrodes for lithium batteries,”Journal Power Sources, vol. 92, no. 1-2, pp. 70-80, 2001. DOI: https://doi.org/10.1016/S0378-7753(00)00521-8.
[81] M. Jagannathan and K. S. R. Chandran, “Electrochemical charge/discharge behavior and phase transitions during cell cycling of Li (Mg) alloy anodes for high capacity Li ion batteries,” Journal of The Electrochemical Society, vol. 160, no. 10, pp. A1922-A1926, 2013. DOI: https://doi.org/10.1149/2.006311jes.
[82] J. Wang, P. King and R. A. Huggins, “Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte,” Solid State Ionics, vol. 20, no. 3, pp. 185-189, 1986. DOI: https://doi.org/10.1016/0167-2738(86)90212-2.
[83] C. Chen, Y. Yang and H. Shao, “Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries,” Electrochimica Acta, vol. 137, pp. 476-483, 2014. DOI: https://doi.org/10.1016/j.electacta.2014.06.006.
[84] “Inward-growth plating of lithium driven by solid-solution based alloy phase for highly reversible lithium metal anode,” ArXiv Preprint ArXiv, October 2019. [Online]. Available: https://arxiv.org/abs/1910.13159.
[85] K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu and Y. Cui, “Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth,” Nature Energy,vol. 1, no. 3, pp. 1-8, 2016. DOI: https://doi.org/10.1038/nenergy.2016.10.
[86] J. L. Ma, F. L. Meng, Y. Yu, D. P. Liu, J. M. Yan, Y. Zhang, X. B. Zhang and Q. Jiang, “Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries,” Nature chemistry, vol. 11, no. 1, pp. 64-70, 2019. DOI: https://doi.org/10.1038/s41557-018-0166-9.
[87] Y. Xu, S. Zhao, G. Zhou, W. Chen, F. Zhou, Z. Rong, Y. Wu, J. Li, J. Guo and Y. Zhang, “Solubility-dependent protective effects of binary alloys for lithium anode,” ACS Applied Energy Materials,vol. 3, no. 3, pp. 2278-2284, 2020. DOI: https://doi.org/10.1021/acsaem.9b02125.
[88] Y. Hashimoto, “Preparation of Li4.4Gex Si1-xalloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries,” Solid State Ionics, vol. 175, no. 1-4, pp. 177-180, 2004. DOI: https://doi.org/10.1016/j.ssi.2004.08.022.
[89] S. Liu, J. Yang, L. Yin, Z. Li, J. Wang and Y. Nuli, “Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries,” Electrochimica Acta, vol. 56, no. 24, pp. 8900-8905, 2011. DOI: https://doi.org/10.1016/j.electacta.2011.07.109.
[90] Y. Liu, R. Ma, Y. He, M. Gao and H. Pan, “Synthesis, structure transformation, and electrochemical properties of Li2MgSi as a novel anode for Li-ion batteries,”Advanced Functional Materials, vol. 24, no. 25, pp. 3944-3952, 2014. DOI: https://doi.org/10.1002/adfm.201304287.
[91] K. D. Kepler, J. T. Vaughey and M. M. Thackeray, “Lix Cu6Sn5(0<x <13): An intermetallic insertion electrode for rechargeable lithium batteries,” Electrochemical and Solid-State Letters, vol. 2, no. 7, pp. 307-309, 1999. DOI: https://doi.org/10.1149/1.1390819.
[92] H. Li, L. Shi, Q. Wang, L. Chen and X. Huang, “Nano-alloy anode for lithium ion batteries,” Solid State Ionics, vol. 148, no. 3-4, pp. 247-258, 2002. DOI: https://doi.org/10.1016/S0167-2738(02)00061-9.
[93] Y. Gui, Z. Liu, L. Chen, H. Huang and H. Ning, “Effect of Mg on the skeleton structure and properties of Li-B alloy for lithium secondary battery,” Journal of Functional Materials, vol. 50, no. 9, pp. 09027-09032, 2019. DOI: https://doi.org/10.3969/j.issn.1001-9731.2019.09.005.
[94] S. Liu, X. Zhang, R. Li, L. Gao and J. Luo, “Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating,” Energy Storage Materials,vol. 14, pp. 143-148, 2018. DOI: https://doi.org/10.1016/j.ensm.2018.03.004.
[95] I. Chumak, G. Dmytriv, V. Pavlyuk, S. Oswald, J. Eckert, H. Trill, H. Eckert, H. Pauly and H. Ehrenberg, “β-Li2Zn5: a low symmetric polar intermetallic compound,” Journal of Materials Research, vol. 25, no. 19, pp. 1492-1499, 2011. DOI: https://doi.org/10.1021/acs.inorgchem.9b01266.
[96] O. Crosnier, C. Mounsey, P. S. Herle, N. Taylor and L. F. Nazar, “Crystal structure and electrochemical behavior of Li2CuP:  A surprising reversible crystalline-amorphous transformation,” Chemistry of Materials, vol. 15, no. 26, pp. 4890-4892, 2003. DOI: https://doi.org/10.1021/cm034619m.
[97] J. T. Vaughey, J. O. Hara and M. M. Thackeray, “Intermetallic insertion electrodes with a zinc blende-type structure for Li batteries: A study of Lix InSb (0≤x ≤3),”Electrochemical and Solid-State Letters, vol. 3, no. 1, pp. 13-16, 2000. DOI: https://doi.org/10.1149/1.1390944.
[98] M. Zhu, B. Li, S. Li, Z. Du, Y. Gong and S. Yang, “Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks,” Advanced Energy Materials, vol. 8, no. 18, 1703505, 2018. DOI: https://doi.org/10.1002/aenm.201703505.
[99] P. Xue, S. Liu, X. Shi, C. Sun, C. Lai, Y. Zhou, D. Sui, Y. Chen and J. Liang, “A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes,” Advanced Materials, vol. 30, no. 44, 1804165, 2018. DOI: https://doi.org/10.1002/adma.201804165.
[100] Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan and Y. Cui, “Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode,” Nature Communications, vol. 7, 10992, 2016. DOI: https://doi.org/10.1038/ncomms10992.
[101] Z. Luo, C. Liu, Y. Tian, Y. Zhang, Y. Jiang, J. Hu, H. Hou, G. Zou and X. Ji, “Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation,”Energy Storage Materials, vol. 27, pp. 124-132, 2020. DOI: https://doi.org/10.1016/j.ensm.2020.01.025.
[102] C. Wu, H. Huang, W. Lu, Z. Wei, X. Ni, F. Sun, P. Qing, Z. Liu, J. Ma, W. Wei, L. Chen, C. Yan and L. Mai, “Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries,” Advanced Science, vol. 7, 1902643, 2020. DOI: https://doi.org/10.1002/advs.201902643.
[103] X. Wang, Z. Pan, Y. Wu, X. Ding, X. Hong, G. Xu, M. Liu, Y. Zhang and W. Li, “Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode,” Nano Research, vol. 12, no. 3, pp. 525-529, 2018. DOI: https://doi.org/10.1007/s12274-018-2245-z.
[104] H. Ye, Z. J. Zheng, H. R. Yao, S. C. Liu, T. T. Zuo, X. W. Wu, Y. X. Yin, N. W. Li, J. J. Gu, F. F. Cao and Y. G. Guo, “Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries,” Angewandte Chemie International Edition, vol. 58, no. 4, pp. 1094-1099, 2019. DOI: https://doi.org/10.1002/ange.201811955.
[105] N. Zhang, S.-H. Yu and H. D. Abruña, “Regulating lithium nucleation and growth by zinc modified current collectors,” Nano Research, vol. 13, no. 1, pp. 45-51, 2019. DOI: https://doi.org/10.1007/s12274-019-2567-7.
[106] C. Wei, H. Fei, Y. An, Y. Tao, J. Feng and Y. Qian, “Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li-metal anode,” Journal of Materials Chemistry A, vol. 7, no. 32, pp. 18861-18870, 2019. DOI: https://doi.org/10.1039/C9TA06663B.
[107] J. Zhao, Z. Lu, H. Wang, W. Liu, H. W. Lee, K. Yan, D. Zhuo, D. Lin, N. Liu and Y. Cui, “Artificial solid electrolyte interphase-protected Lix Si nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries,”Journal of the American Chemical Society, vol. 137, no. 26, pp. 8372-8375, 2015. DOI: https://doi.org/10.1021/jacs.5b04526.
[108] J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao and Y. Cui, “Surface fluorination of reactive battery anode materials for enhanced stability,” Journal of the American Chemical Society, vol. 139, no. 33, pp. 11550-11558, 2017. DOI: https://doi.org/10.1021/jacs.7b05251.
[109] H. Guo, G. Hou, D. Li, Q. Sun, Q. Ai, P. Si, G. Min, J. Lou, J. Feng and L. Ci, “High current enabled stable lithium anode for ultralong cycling life of lithium-oxygen batteries,” ACS Applied Materials & Interfaces, vol. 11, no. 34, pp. 30793-30800, 2019. DOI: https://doi.org/10.1021/acsami.9b08153.
[110] X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Sun and L. F. Nazar, “A facile surface chemistry route to a stabilized lithium metal anode,” Nature Energy , vol. 2, no. 9, 17119, 2017. DOI: https://doi.org/10.1038/nenergy.2017.119.
[111] Y. X. Ren, L. Zeng, H. R. Jiang, W. Q. Ruan, Q. Chen and T. S. Zhao, “Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries,” Nature Communications, vol. 10, no. 1, pp. 1-10, 2019. DOI: https://doi.org/10.1038/s41467-019-11168-y.
[112] F. Li, Y. H. Tan, Y. C. Yin, T. W. Zhang, L. L. Lu, Y. H. Song, T. Tian, B. Shen, Z. X. Zhu and H. B. Yao, “A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes,” Chemical Science,vol. 10, no. 42, pp. 9735-9739, 2019. DOI: https://doi.org/10.1039/C9SC01845J.
[113] Y. Liu, X. Xu, X. Jiao, L. Guo, Z. Song, S. Xiong and J. Song, “LixGe containing ion-conductive hybrid skin for high rate lithium metal anode,” Chemical Engineering Journal, vol. 371, pp. 294-300, 2019. DOI: https://doi.org/10.1016/j.cej.2019.04.068.
[114] B. Xu, Z. Liu, J. Li, X. Huang, B. Qie, T. Gong, L. Tan, X. Yang, D. Paley, M. Dontigny, K. Zaghib, X. Liao, Q. Cheng, H. Zhai, X. Chen, L.-Q. Chen, C.-W. Nan, Y.-H. Lin and Y. Yang, “Engineering interfacial adhesion for high-performance lithium metal anode,”Nano Energy, vol. 67, 104242, 2020. DOI: https://doi.org/10.1016/j.nanoen.2019.104242.
[115] G. Hou, C. Ci, D. Salpekar, Q. Ai, Q. Chen, H. Guo, L. Chen, X. Zhang, J. Cheng, K. Kato, R. Vajtai, P. Si, G. Babu, L. Ci and P. M. Ajayan, “Stable lithium metal anode enabled by an artificial multi-phase composite protective film,” Journal of Power Sources, vol. 448, 227547, 2020. DOI: https://doi.org/10.1016/j.jpowsour.2019.227547.
[116] K. Liao, S. Wu, X. Mu, Q. Lu, M. Han, P. He, Z. Shao and H. Zhou, “Developing a “wate-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4pretreatment method,” Advanced Materials, vol. 30, no. 36, 1705711, 2018. DOI: https://doi.org/10.1002/adma.201705711.
[117] F. Guo, C. Wu, H. Chen, F. Zhong, X. Ai, H. Yang and J. Qian, “Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode,” Energy Storage Materials, vol. 24, pp. 635-643, 2020. DOI: https://doi.org/10.1016/j.ensm.2019.06.010.
[118] L. Ma, M. S. Kim and L. A. Archer, “Stable artificial solid electrolyte interphases for lithium batteries,” Chemistry of Materials, vol. 29, no. 10, pp. 4181-4189, 2017. DOI: https://doi.org/10.1021/acs.chemmater.6b03687.
[119] Z. Jiang, L. Jin, Z. Han, W. Hu, Z. Zeng, Y. Sun and J. Xie, “Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability,”Angewandte Chemie International Edition, vol. 58, no. 33, pp. 11374-11378, 2019. DOI: https://doi.org/10.1002/anie.201905712.
[120] “Facile construction of a hybrid artificial protective layer for stable lithium metal anode,” Chemical Engineering Journal , pp. 123542 2019. DOI: https://doi.org/10.1016/j.cej.2019.123542.
[121] H. Zhong, L. Sang, F. Ding, J. Song and Y. Mai, “Conformation of lithium-aluminium alloy interphase-layer on lithium metal anode used for solid state batteries,” Electrochimica Acta, vol. 277, pp. 268-275, 2018. DOI: https://doi.org/10.1016/j.electacta.2018.04.191.
[122] H. Zhong, Y. Wu, F. Ding, L. Sang and Y. Mai, “An artificial Li-Al interphase layer on Li-B alloy for stable lithium-metal anode,”Electrochimica Acta, vol. 304, pp. 255-262, 2019. DOI: https://doi.org/10.1016/j.electacta.2019.03.009.
[123] C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E. D. Wachsman and L. Hu, “Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes,” Nano Letters, vol. 17, no. 1, pp. 565-571, 2017. DOI: https://doi.org/10.1021/acs.nanolett.6b04695.
[124] C. Yang, H. Xie, W. Ping, K. Fu, B. Liu, J. Rao, J. Dai, C. Wang, G. Pastel and L. Hu, “An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries,” Advanced Materials, vol. 31, no. 3, 1804815, 2019. DOI: https://doi.org/10.1002/adma.201804815.
[125] C. Wang, H. Xie, L. Zhang, Y. Gong, G. Pastel, J. Dai, B. Liu, E. D. Wachsman and L. Hu, “Universal soldering of lithium and sodium alloys on various substrates for batteries,” Advanced Energy Materials, vol. 8, no. 6, 1701963, 2018. DOI: https://doi.org/10.1002/aenm.201701963.
[126] W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. K. Fu, G. Pastel, C. F. Lin, Y. Mo, E. D. Wachsman and L. Hu, “Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer,” Advanced Materials,vol. 29, no. 22, 1606042, 2017. DOI: https://doi.org/10.1002/adma.201606042.
[127] H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M.-H. Ryou, H. S. Jin, H.-T. Kim, J. Liu, W. Xu and J.-G. Zhang, “Suppressing lithium dendrite growth by metallic coating on a separator,”Advanced Functional Materials, vol. 27, no. 45, 1704391, 2017. DOI: https://doi.org/10.1002/adfm.201704391.
[128] Z. Hu, F. Liu, J. Gao, W. Zhou, H. Huo, J. Zhou and L. Li, “Dendrite-free lithium plating induced by in situ transferring protection layer from separator,” Advanced Functional Materials,vol. 30, no. 5, 1907020, 2019. DOI: https://doi.org/10.1002/adfm.201907020.
[129] J. O. Besenhard, P. Komenda, A. Paxinos and E. Wudy, “Binary and ternary Li-alloys as anode materials in rechargeable organic electrolyte Li-batteries,” Solid State lonics, vol. 18-19, pp. 823-827, 1986. DOI: https://doi.org/10.1016/0167-2738(86)90270-5.
[130] F. Sun, D. Zhou, X. He, M. Osenberg, K. Dong, L. Chen, S. Mei, A. Hilger, H. Markötter, Y. Lu, S. Dong, S. Marathe, C. Rau, X. Hou, J. Li, M. C. Stan, M. Winter, R. Dominko and I. Manke, “The morphological reversibility of modified-Li based anode for next generation batteries,” ACS Energy Letters, vol. 5, no. 1, pp. 152-161, 2019. DOI: https://doi.org/10.1021/acsenergylett.9b02424.
[131] S. Jiang, Y. Lu, Y. Lu, M. Han, H. Li, Z. Tao, Z. Niu and J. Chen, “Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries,” Chemistry-An Asian Journal, vol. 13, no. 10, pp. 1379-1385, 2018. DOI: https://doi.org/10.1002/asia.201800326.
[132] S. Matsuda, Y. Kubo, K. Uosaki and S. Nakanishi, “Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode,”Carbon, vol. 119, pp. 119-123, 2017. DOI: https://doi.org/10.1016/j.carbon.2017.04.032.
[133] M. S. Kim, Deepika, S. H. Lee, M.-S. Kim, J.-H. Ryu, K.-R. Lee, L. A. Archer and W. I. Cho, “Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes,” Science Advances, vol. 5, no. 10, eaax5587, 2019. DOI: https://doi.org/10.1126/sciadv.aax5587.
[134] D. Lin, Y. Liu, A. Pei and Y. Cui, “Nanoscale perspective: Materials designs and understandings in lithium metal anodes,”Nano Research, vol. 10, no. 12, pp. 4003-4026, 2017. DOI: https://doi.org/10.1007/s12274-017-1596-1.
[135] W.-Y. Tsai, R. Lin, S. Murali, L. Li Zhang, J. K. McDonough, R. S. Ruoff, P.-L. Taberna, Y. Gogotsi and P. Simon, “Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from -50 to 80 °C,” Nano Energy, vol. 2, no. 3, pp. 403-411, 2013. DOI: https://doi.org/10.1016/j.nanoen.2012.11.006.
[136] R. Younesi, G. M. Veith, P. Johansson, K. Edström and T. Vegge, “Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S,” Energy & Environmental Science, vol. 8, no. 7, pp. 1905-1922, 2015. DOI: https://doi.org/10.1039/C5EE01215E.