References
Afkhami,
M.E., McIntyre, P.J. & Strauss, S.Y. (2014). Mutualist-mediated effects
on species’ range limits across large geographic scales. Ecol.
Lett. , 17, 1265–1273.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., et al. (2010). A global overview of drought and
heat-induced tree mortality reveals emerging climate change risks for
forests. For. Ecol. Manage. , 259, 660–684.
Barry, K.E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A.J., Bai,
Y., et al. (2019). The Future of Complementarity: Disentangling
Causes from Consequences. Trends Ecol. Evol. , 34, 167–180.
Belluau, M., Vitali, V., Parker, W.C., Paquette, A. & Messier, C.
(2021). Overyielding in young tree communities does not support the
stress-gradient hypothesis and is favoured by functional diversity and
higher water availability. J. Ecol. , 109, 1790–1803.
Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J.,
Moora, M., et al. (2010). Rooting theories of plant community
ecology in microbial interactions. Trends Ecol. Evol. , 25,
468–478.
Blumenthal, D., Mitchell, C.E., Pyšek, P. & Jarošík, V. (2009). Synergy
between pathogen release and resource availability in plant invasion.Proc. Natl. Acad. Sci. , 106, 7899–7904.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A.
& Holmes, S.P. (2016). DADA2: High-resolution sample inference from
Illumina amplicon data. Nat. Methods 2016 137 , 13, 581–583.
Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades,
S., Alfaro, F.D., et al. (2020). Multiple elements of soil
biodiversity drive ecosystem functions across biomes. Nat. Ecol.
Evol. 2020 42 , 4, 210–220.
Desprez-Loustau, M.L., Marçais, B., Nageleisen, L.M., Piou, D. &
Vannini, A. (2006). Interactive effects of drought and pathogens in
forest trees. Ann. For. Sci. , 63, 597–612.
Eisenhauer, N. (2011). Aboveground–belowground interactions as a source
of complementarity effects in biodiversity experiments. Plant Soil
2011 3511 , 351, 1–22.
Felton, A.J., Knapp, A.K. & Smith, M.D. (2021).
Precipitation–productivity relationships and the duration of
precipitation anomalies: An underappreciated dimension of climate
change. Glob. Chang. Biol. , 27, 1127–1140.
Franklin, O., Näsholm, T., Högberg, P. & Högberg, M.N. (2014). Forests
trapped in nitrogen limitation – an ecological market perspective on
ectomycorrhizal symbiosis. New Phytol. , 203, 657–666.
Gehring, C.A., Sthultz, C.M., Flores-Rentería, L., Whipple, A. V. &
Whitham, T.G. (2017). Tree genetics defines fungal partner communities
that may confer drought tolerance. Proc. Natl. Acad. Sci. U. S.
A. , 114, 11169–11174.
Grossman, J.J., Butterfield, A.J., Cavender-Bares, J., Hobbie, S.E.,
Reich, P.B., Gutknecht, J., et al. (2019). Non-symbiotic soil
microbes are more strongly influenced by altered tree biodiversity than
arbuscular mycorrhizal fungi during initial forest establishment.FEMS Microbiol. Ecol. , 95.
Hart, M.M., Reader, R.J. & Klironomos, J.N. (2003). Plant coexistence
mediated by arbuscular mycorrhizal fungi. Trends Ecol. Evol. , 18,
418–423.
Hautier, Y., Tilman, D., Isbell, F., Seabloom, E.W., Borer, E.T. &
Reich, P.B. (2015). Anthropogenic environmental changes affect ecosystem
stability via biodiversity. Science (80-. ). , 348, 336–340.
Van Der Heijden, M.G.A. & Horton, T.R. (2009). Socialism in soil? The
importance of mycorrhizal fungal networks for facilitation in natural
ecosystems. J. Ecol. , 97, 1139–1150.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P.,
Lavorel, S., et al. (2005). Effects of biodiversity on ecosystem
functioning: A consensus of current knowledge. Ecol. Monogr. , 75,
3–35.
Jonsson, L.M., Nilsson, M.C., Wardle, D.A. & Zackrisson, O. (2001).
Context dependent effects of ectomycorrhizal species richness on tree
seedling productivity. Oikos , 93, 353–364.
Kazenel, M.R., Debban, C.L., Ranelli, L., Hendricks, W.Q., Chung, Y.A.,
Pendergast, T.H., et al. (2015). A mutualistic endophyte alters
the niche dimensions of its host plant. AoB Plants , 7.
Khlifa, R., Paquette, A., Messier, C., Reich, P.B. & Munson, A.D.
(2017). Do temperate tree species diversity and identity influence soil
microbial community function and composition? Ecol. Evol. , 7,
7965–7974.
Koide, R.T. (2000). Functional complementarity in the arbuscular
mycorrhizal symbiosis. New Phytol. , 147, 233–235.
Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S.,
Bahram, M., et al. (2013). Towards a unified paradigm for
sequence-based identification of fungi. Mol. Ecol. , 22,
5271–5277.
Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S.W. (2017).
Leaf bacterial diversity mediates plant diversity and ecosystem function
relationships. Nature .
Laliberté, E. & Legendre, P. (2010). A distance-based framework for
measuring functional diversity from multiple traits. Ecology , 91,
299–305.
Laliberté, E., Legendre, P. & Maintainer, B.S. (2014). Package “FD”
Type Package Title Measuring functional diversity (FD) from multiple
traits, and other tools for functional ecology.
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D.,
Dorrough, J., et al. (2008). Assessing functional diversity in
the field – methodology matters! Funct. Ecol. , 22, 134–147.
Lê, S., Josse, J. & Husson, F. (2008). FactoMineR: An R Package for
Multivariate Analysis. J. Stat. Softw. , 25, 1–18.
Lefcheck, J.S. (2016). piecewiseSEM: Piecewise structural equation
modelling in R for ecology, evolution, and systematics. Methods
Ecol. Evol. , 7, 573–579.
Lehto, T. & Zwiazek, J.J. (2011). Ectomycorrhizas and water relations
of trees: A review. Mycorrhiza , 21, 71–90.
Liu, L., Zhu, K., Wurzburger, N. & Zhang, J. (2020). Relationships
between plant diversity and soil microbial diversity vary across
taxonomic groups and spatial scales. Ecosphere , 11, e02999.
Livne-Luzon, S., Ovadia, O., Weber, G., Avidan, Y., Migael, H.,
Glassman, S.I., et al. (2017). Small-scale spatial variability in
the distribution of ectomycorrhizal fungi affects plant performance and
fungal diversity. Ecol. Lett. , 20, 1192–1202.
Loreau, M. & Hector, A. (2001). Partitioning selection and
complementarity in biodiversity experiments. Nat. 2001 4126842 ,
412, 72–76.
Luo, S., Schmid, B., De Deyn, G.B. & Yu, S. (2018). Soil microbes
promote complementarity effects among co-existing trees through soil
nitrogen partitioning. Funct. Ecol. , 32, 1879–1889.
Maestre, F.T., Callaway, R.M., Valladares, F. & Lortie, C.J. (2009).
Refining the stress-gradient hypothesis for competition and facilitation
in plant communities. J. Ecol. , 97, 199–205.
Maron, J.L., Marler, M., Klironomos, J.N. & Cleveland, C.C. (2011).
Soil fungal pathogens and the relationship between plant diversity and
productivity. Ecol. Lett. , 14, 36–41.
Maron, J.L., Smith, A.L., Ortega, Y.K., Pearson, D.E. & Callaway, R.M.
(2016). Negative plant-soil feedbacks increase with plant abundance, and
are unchanged by competition. Ecology , 97, 2055–2063.
Martin, M. (2011). Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.journal , 17, 10–12.
Mommer, L., Cotton, T.E.A., Raaijmakers, J.M., Termorshuizen, A.J., van
Ruijven, J., Hendriks, M., et al. (2018). Lost in diversity: the
interactions between soil-borne fungi, biodiversity and plant
productivity. New Phytol. , 218, 542–553.
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke,
J., et al. (2016). FUNGuild: An open annotation tool for parsing
fungal community datasets by ecological guild. Fungal Ecol. , 20,
241–248.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R.,
O’Hara, R.B., et al. (2016). vegan: Community Ecology Package.R Packag. version 2.4-1 .
Parker, I.M. & Gilbert, G.S. (2018). Density-dependent disease,
life-history trade-offs, and the effect of leaf pathogens on a suite of
co-occurring close relatives. J. Ecol.
Pauvert, C., Buée, M., Laval, V., Edel-Hermann, V., Fauchery, L.,
Gautier, A., et al. (2019). Bioinformatics matters: The accuracy
of plant and soil fungal community data is highly dependent on the
metabarcoding pipeline. Fungal Ecol. , 41, 23–33.
Prada-Salcedo, L.D., Goldmann, K., Heintz-Buschart, A., Reitz, T.,
Wambsganss, J., Bauhus, J., et al. (2021). Fungal guilds and soil
functionality respond to tree community traits rather than to tree
diversity in European forests. Mol. Ecol. , 30, 572–591.
R Core Team. (2020). R: A language and environment for statistical
computing. R Found. Stat. Comput. , Vienna, Au.
Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. (2014). Higher plant
diversity promotes higher diversity of fungal pathogens, while it
decreases pathogen infection per plant. Ecology , 95, 1907–1917.
van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. (2020). Do
soil-borne fungal pathogens mediate plant diversity–productivity
relationships? Evidence and future opportunities. J. Ecol. , 108,
1810–1821.
Scheibe, A., Steffens, C., Seven, J., Jacob, A., Hertel, D., Leuschner,
C., et al. (2015). Effects of tree identity dominate over tree
diversity on the soil microbial community structure. Soil Biol.
Biochem. , 81, 219–227.
Schnitzer, S.A., Klironomos, J.N., HilleRisLambers, J., Kinkel, L.L.,
Reich, P.B., Xiao, K., et al. (2011). Soil microbes drive the
classic plant diversity–productivity pattern. Ecology , 92,
296–303.
Shen, C., Wang, J., He, J.Z., Yu, F.H. & Ge, Y. (2021). Plant diversity
enhances soil fungal diversity and microbial resistance to plant
invasion. Appl. Environ. Microbiol. , 87, 1–15.
Strukelj, M., Parker, W., Corcket, E., Augusto, L., Khlifa, R., Jactel,
H., et al. (2021). Tree species richness and water availability
interact to affect soil microbial processes. Soil Biol. Biochem. ,
155, 108180.
Taylor, D.L., Walters, W.A., Lennon, N.J., Bochicchio, J., Krohn, A.,
Caporaso, J.G., et al. (2016). Accurate estimation of fungal
diversity and abundance through improved lineage-specific primers
optimized for Illumina amplicon sequencing. Appl. Environ.
Microbiol. , 82, 7217–7226.
Tobner, C.M., Paquette, A., Gravel, D., Reich, P.B., Williams, L.J. &
Messier, C. (2016). Functional identity is the main driver of diversity
effects in young tree communities. Ecol. Lett.
Tobner, C.M., Paquette, A., Reich, P.B., Gravel, D. & Messier, C.
(2014). Advancing biodiversity-ecosystem functioning science using
high-density tree-based experiments over functional diversity gradients.Oecologia , 1, 609–621.
Urgoiti, J., Messier, C., Keeton, W.S., Reich, P.B., Gravel, D. &
Paquette, A. (2022). No complementarity no gain—Net diversity effects
on tree productivity occur once complementarity emerges during early
stand development. Ecol. Lett.
Verheyen, K., Hugo, A.E., Ae, B., Palmborg, C., Bert, A.E., Ae, O.,et al. (2008). Can complementarity in water use help to explain
diversity-productivity relationships in experimental grassland plots?Oecologia , 156, 351–361.
Wang, J., Zhang, C.B., Chen, T. & Li, W.H. (2013). From selection to
complementarity: The shift along the abiotic stress gradient in a
controlled biodiversity experiment. Oecologia , 171, 227–235.
Whipps, J.M. (2004). Prospects and limitations for mycorrhizas in
biocontrol of root pathogens. Can. J. Bot. , 82, 1198–1227.
Williams, L.J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich,
P.B. (2017). Spatial complementarity in tree crowns explains
overyielding in species mixtures. Nat. Ecol. Evol.
Yang, B., Liang, Y., Schmid, B., Baruffol, M., Li, Y., He, L., et
al. (2021). Soil fungi promote biodiversity–productivity relationships
in experimental communities of young trees. Ecosystems , 1–14.
Yang, Y., Cheng, H., Dou, Y. & An, S. (2020). Plant and soil traits
driving soil fungal community due to tree plantation on the Loess
Plateau. Sci. Total Environ. , 708, 134560.