References
Afkhami, M.E., McIntyre, P.J. & Strauss, S.Y. (2014). Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol. Lett. , 17, 1265–1273.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. , 259, 660–684.
Barry, K.E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A.J., Bai, Y., et al. (2019). The Future of Complementarity: Disentangling Causes from Consequences. Trends Ecol. Evol. , 34, 167–180.
Belluau, M., Vitali, V., Parker, W.C., Paquette, A. & Messier, C. (2021). Overyielding in young tree communities does not support the stress-gradient hypothesis and is favoured by functional diversity and higher water availability. J. Ecol. , 109, 1790–1803.
Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., et al. (2010). Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. , 25, 468–478.
Blumenthal, D., Mitchell, C.E., Pyšek, P. & Jarošík, V. (2009). Synergy between pathogen release and resource availability in plant invasion.Proc. Natl. Acad. Sci. , 106, 7899–7904.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016 137 , 13, 581–583.
Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., et al. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020 42 , 4, 210–220.
Desprez-Loustau, M.L., Marçais, B., Nageleisen, L.M., Piou, D. & Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. , 63, 597–612.
Eisenhauer, N. (2011). Aboveground–belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil 2011 3511 , 351, 1–22.
Felton, A.J., Knapp, A.K. & Smith, M.D. (2021). Precipitation–productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change. Glob. Chang. Biol. , 27, 1127–1140.
Franklin, O., Näsholm, T., Högberg, P. & Högberg, M.N. (2014). Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. , 203, 657–666.
Gehring, C.A., Sthultz, C.M., Flores-Rentería, L., Whipple, A. V. & Whitham, T.G. (2017). Tree genetics defines fungal partner communities that may confer drought tolerance. Proc. Natl. Acad. Sci. U. S. A. , 114, 11169–11174.
Grossman, J.J., Butterfield, A.J., Cavender-Bares, J., Hobbie, S.E., Reich, P.B., Gutknecht, J., et al. (2019). Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment.FEMS Microbiol. Ecol. , 95.
Hart, M.M., Reader, R.J. & Klironomos, J.N. (2003). Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol. Evol. , 18, 418–423.
Hautier, Y., Tilman, D., Isbell, F., Seabloom, E.W., Borer, E.T. & Reich, P.B. (2015). Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science (80-. ). , 348, 336–340.
Van Der Heijden, M.G.A. & Horton, T.R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. , 97, 1139–1150.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. , 75, 3–35.
Jonsson, L.M., Nilsson, M.C., Wardle, D.A. & Zackrisson, O. (2001). Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos , 93, 353–364.
Kazenel, M.R., Debban, C.L., Ranelli, L., Hendricks, W.Q., Chung, Y.A., Pendergast, T.H., et al. (2015). A mutualistic endophyte alters the niche dimensions of its host plant. AoB Plants , 7.
Khlifa, R., Paquette, A., Messier, C., Reich, P.B. & Munson, A.D. (2017). Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol. Evol. , 7, 7965–7974.
Koide, R.T. (2000). Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol. , 147, 233–235.
Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., et al. (2013). Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. , 22, 5271–5277.
Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S.W. (2017). Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature .
Laliberté, E. & Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology , 91, 299–305.
Laliberté, E., Legendre, P. & Maintainer, B.S. (2014). Package “FD” Type Package Title Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology.
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., et al. (2008). Assessing functional diversity in the field – methodology matters! Funct. Ecol. , 22, 134–147.
Lê, S., Josse, J. & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. , 25, 1–18.
Lefcheck, J.S. (2016). piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. , 7, 573–579.
Lehto, T. & Zwiazek, J.J. (2011). Ectomycorrhizas and water relations of trees: A review. Mycorrhiza , 21, 71–90.
Liu, L., Zhu, K., Wurzburger, N. & Zhang, J. (2020). Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere , 11, e02999.
Livne-Luzon, S., Ovadia, O., Weber, G., Avidan, Y., Migael, H., Glassman, S.I., et al. (2017). Small-scale spatial variability in the distribution of ectomycorrhizal fungi affects plant performance and fungal diversity. Ecol. Lett. , 20, 1192–1202.
Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nat. 2001 4126842 , 412, 72–76.
Luo, S., Schmid, B., De Deyn, G.B. & Yu, S. (2018). Soil microbes promote complementarity effects among co-existing trees through soil nitrogen partitioning. Funct. Ecol. , 32, 1879–1889.
Maestre, F.T., Callaway, R.M., Valladares, F. & Lortie, C.J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. , 97, 199–205.
Maron, J.L., Marler, M., Klironomos, J.N. & Cleveland, C.C. (2011). Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. , 14, 36–41.
Maron, J.L., Smith, A.L., Ortega, Y.K., Pearson, D.E. & Callaway, R.M. (2016). Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology , 97, 2055–2063.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal , 17, 10–12.
Mommer, L., Cotton, T.E.A., Raaijmakers, J.M., Termorshuizen, A.J., van Ruijven, J., Hendriks, M., et al. (2018). Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. , 218, 542–553.
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., et al. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. , 20, 241–248.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., et al. (2016). vegan: Community Ecology Package.R Packag. version 2.4-1 .
Parker, I.M. & Gilbert, G.S. (2018). Density-dependent disease, life-history trade-offs, and the effect of leaf pathogens on a suite of co-occurring close relatives. J. Ecol.
Pauvert, C., Buée, M., Laval, V., Edel-Hermann, V., Fauchery, L., Gautier, A., et al. (2019). Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. , 41, 23–33.
Prada-Salcedo, L.D., Goldmann, K., Heintz-Buschart, A., Reitz, T., Wambsganss, J., Bauhus, J., et al. (2021). Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Mol. Ecol. , 30, 572–591.
R Core Team. (2020). R: A language and environment for statistical computing. R Found. Stat. Comput. , Vienna, Au.
Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. (2014). Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology , 95, 1907–1917.
van Ruijven, J., Ampt, E., Francioli, D. & Mommer, L. (2020). Do soil-borne fungal pathogens mediate plant diversity–productivity relationships? Evidence and future opportunities. J. Ecol. , 108, 1810–1821.
Scheibe, A., Steffens, C., Seven, J., Jacob, A., Hertel, D., Leuschner, C., et al. (2015). Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biol. Biochem. , 81, 219–227.
Schnitzer, S.A., Klironomos, J.N., HilleRisLambers, J., Kinkel, L.L., Reich, P.B., Xiao, K., et al. (2011). Soil microbes drive the classic plant diversity–productivity pattern. Ecology , 92, 296–303.
Shen, C., Wang, J., He, J.Z., Yu, F.H. & Ge, Y. (2021). Plant diversity enhances soil fungal diversity and microbial resistance to plant invasion. Appl. Environ. Microbiol. , 87, 1–15.
Strukelj, M., Parker, W., Corcket, E., Augusto, L., Khlifa, R., Jactel, H., et al. (2021). Tree species richness and water availability interact to affect soil microbial processes. Soil Biol. Biochem. , 155, 108180.
Taylor, D.L., Walters, W.A., Lennon, N.J., Bochicchio, J., Krohn, A., Caporaso, J.G., et al. (2016). Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl. Environ. Microbiol. , 82, 7217–7226.
Tobner, C.M., Paquette, A., Gravel, D., Reich, P.B., Williams, L.J. & Messier, C. (2016). Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett.
Tobner, C.M., Paquette, A., Reich, P.B., Gravel, D. & Messier, C. (2014). Advancing biodiversity-ecosystem functioning science using high-density tree-based experiments over functional diversity gradients.Oecologia , 1, 609–621.
Urgoiti, J., Messier, C., Keeton, W.S., Reich, P.B., Gravel, D. & Paquette, A. (2022). No complementarity no gain—Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol. Lett.
Verheyen, K., Hugo, A.E., Ae, B., Palmborg, C., Bert, A.E., Ae, O.,et al. (2008). Can complementarity in water use help to explain diversity-productivity relationships in experimental grassland plots?Oecologia , 156, 351–361.
Wang, J., Zhang, C.B., Chen, T. & Li, W.H. (2013). From selection to complementarity: The shift along the abiotic stress gradient in a controlled biodiversity experiment. Oecologia , 171, 227–235.
Whipps, J.M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot. , 82, 1198–1227.
Williams, L.J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P.B. (2017). Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol.
Yang, B., Liang, Y., Schmid, B., Baruffol, M., Li, Y., He, L., et al. (2021). Soil fungi promote biodiversity–productivity relationships in experimental communities of young trees. Ecosystems , 1–14.
Yang, Y., Cheng, H., Dou, Y. & An, S. (2020). Plant and soil traits driving soil fungal community due to tree plantation on the Loess Plateau. Sci. Total Environ. , 708, 134560.