References
[1]
Peng
X, Guo Q, Liang X, Deng Y, Gu Y, Xu G, Yin Z. Mechanical properties,
corrosion behavior and microstructures of a non-isothermal ageing
treated Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 688 (2017)
146~154.
[2] Jiang J T, Xiao W Q, Yang L, Shao W Z, Yuan S J, Zhen L. Ageing
behavior and stress corrosion cracking resistance of a non-isothermally
aged Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 605 (2014)
167~175.
[3] Wei L, Pan Q, Huang H, Feng L, Wang Y. Influence of grain
structure and crystallographic orientation on fatigue crack propagation
behavior of 7050 alloy thick plate. Int. J. Fatigue 66 (2014)
55~64.
[4]
Lin Z,
Sun G. Regression analysis of the influences of minor additions Cu and
Zr on weld cracking sensitivity in Al-Zn-Mg alloys. Journal of
Northeastern University 2 (1982) 93~102.
[5] Xu W F, Luo Y X, Fu M W. Microstructure evolution in the
conventional single side and bobbin tool friction stir welding of thick
rolled 7085-T7452 aluminum alloy. Mater. Charact. 138 (2018)
48~55.
[6]
Liu Z,
Zhang H, Feng H, Yan Z, Dong P. Effects of surface gradient
nanostructuring on the fatigue behavior of the friction stir welded
Al-Zn-Mg-Cu alloy. Mater. Lett. 252 (2019) 329~332.
[7]
Zhang
F, Su X, Chen Z, Nie Z. Effect of welding parameters on microstructure
and mechanical properties of friction stir welded joints of a super high
strength Al-Zn-Mg-Cu aluminum alloy. Materials & Design 67 (2015)
483~491.
[8]
Mao Y,
Ke L, Chen Y, Liu F, Xing L. Inhomogeneity of microstructure and
mechanical properties in the nugget of friction stir welded thick 7075
aluminum alloy joints. J. Mater. Sci. Technol. 34 (2018)
228~236.
[9] Zhao Y, Yang Z, Domblesky J P, Han J, Li Z, Liu X. Investigation
of through thickness microstructure and mechanical properties in
friction stir welded 7N01 aluminum alloy plate. Mater. Sci. Eng. A 760
(2019) 316~327.
[10] Xu W F, Wu X K, Ma J, Lu H J, Luo Y X. Abnormal fracture of
7085 high strength aluminum alloy thick plate joint via friction stir
welding. Journal of Materials Research and Technology 8 (2019)
6029~6040.
[11]
Khan N
Z, Siddiquee A N, Khan Z A, Mukhopadhyay A K. Mechanical and
microstructural behavior of friction stir welded similar and dissimilar
sheets of AA2219 and AA7475 aluminium alloys. J. Alloy. Compd. 695
(2017) 2902~2908.
[12] Mastanaiah P, Sharma A, Reddy G M. Role of hybrid tool pin
profile on enhancing welding speed and mechanical properties of
AA2219-T6 friction stir welds. J. Mater. Process. Tech. 257 (2018)
257~269.
[13] Mishra R S, Ma Z Y. Friction stir welding and processing.
Materials Science and Engineering: R: Reports 50 (2005)
1~78.
[14]
Sree
Sabari S, Malarvizhi S, Balasubramanian V. Characteristics of FSW and
UWFSW joints of AA2519-T87 aluminium alloy: Effect of tool rotation
speed. Journal of Manufacturing Processes 22 (2016)
278~289.
[15] Jiang J, Jiang F, Zhang M, Tang Z, Tong M. Recrystallization
behavior of Al-Mg-Mn-Sc-Zr alloy based on two different deformation
ways. Mater. Lett. 265 (2020) 127455.
[16] Huang H, Jiang F, Zhou J, Wei L, Zhong M, Liu X. Hot
deformation behavior and microstructural evolution of as-homogenized
Al-6Mg-0.4Mn-0.25Sc-0.1Zr alloy during compression at elevated
temperature. J. Alloy. Compd. 644 (2015) 862~872.
[17] Chen Y, Liu C Y, Zhang B, Ma Z Y, Zhou W B, Jiang H J, Huang H
F, Wei L L. Effects of friction stir processing and minor Sc addition on
the microstructure, mechanical properties, and damping capacity of 7055
Al alloy. Mater. Charact. 135 (2018) 25~31.
[18]
Mo Y
F, Liu C Y, Teng G B, Jiang H J, Chen Y, Yang Z X, Chen Y, Han S C.
Fabrication of 7075-0.25Sc-0.15Zr Alloy with Excellent Damping and
Mechanical Properties by FSP and T6 Treatment. J. Mater. Eng. Perform.
27 (2018) 4162~4167.
[19]
Zou Y,
Cao L, Wu X, Wang Y, Sun X, Song H, Couper M J. Effect of ageing
temperature on microstructure, mechanical property and corrosion
behavior of aluminum alloy 7085. J. Alloy. Compd. 823 (2020) 153792.
[20]
Wang
Y, Cao L, Wu X, Tong X, Liao B, Huang G, Wang Z. Effect of retrogression
treatments on microstructure, hardness and corrosion behaviors of
aluminum alloy 7085. J. Alloy. Compd. 814 (2020) 152264.
[21]
Nie B,
Liu P, Zhou T. Effect of compositions on the quenching sensitivity of
7050 and 7085 alloys. Mater. Sci. Eng. A 667 (2016)
106~114.
[22]
Xu W,
Luo Y, Zhang W, Fu M. Comparative study on local and global mechanical
properties of bobbin tool and conventional friction stir welded
7085-T7452 aluminum thick plate. J. Mater. Sci. Technol. 34 (2018)
173~184.
[23]
Xu W,
Wang H, Luo Y, Li W, Fu M W. Mechanical behavior of 7085-T7452 aluminum
alloy thick plate joint produced by double-sided friction stir welding:
Effect of welding parameters and strain rates. Journal of Manufacturing
Processes 35 (2018) 261~270.
[24] Xu W, Zhang W, Wu X. Corrosion Behavior of Top and Bottom
Surfaces for Single-Side and Double-Side Friction Stir Welded 7085-T7651
Aluminum Alloy Thick Plate Joints. Metallurgical and Materials
Transactions A 48 (2017) 1078~1091.
[25] Wen K, Xiong B, Zhang Y, Li Z, Li X, Huang S, Yan L, Yan H, Liu
H. Over-aging influenced matrix precipitate characteristics improve
fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy.
Mater. Sci. Eng. A 716 (2018) 42~54.
[26]
Yang
W, Ji S, Wang M, Li Z. Precipitation behaviour of Al-Zn-Mg-Cu alloy and
diffraction analysis from η′ precipitates in four variants. J. Alloy.
Compd. 610 (2014) 623~629.
[27] Chung T, Yang Y, Huang B, Shi Z, Lin J, Ohmura T, Yang J.
Transmission electron microscopy investigation of separated nucleation
and in-situ nucleation in AA7050 aluminium alloy. Acta Mater. 149 (2018)
377~387.
[28] Liu J Z, Chen J H, Yang X B, Ren S, Wu C L, Xu H Y, Zou J.
Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by
high-resolution transmission electron microscopy. Scripta Mater. 63
(2010) 1061~1064.
[29]
Jiang
H J, Liu C Y, Chen Y, Yang Z X, Huang H F, Wei L L, Li Y B, Qi H Q.
Evaluation of microstructure, damping capacity and mechanical properties
of Al-35Zn and Al-35Zn-0.5Sc alloys. J. Alloy. Compd. 739 (2018)
114~121.
[30]
Chen
S, Chen K, Peng G, Jia L, Dong P. Effect of heat treatment on strength,
exfoliation corrosion and electrochemical behavior of 7085 aluminum
alloy. Materials & Design 35 (2012) 93~98.
[31] Yadav V K, Gaur V, Singh I V. Effect of post-weld heat
treatment on mechanical properties and fatigue crack growth rate in
welded AA-2024. Mater. Sci. Eng. A 779 (2020) 139116.
[32]
Ahmed
M M Z, Ataya S, El-Sayed Seleman M M, Ammar H R, Ahmed E. Friction stir
welding of similar and dissimilar AA7075 and AA5083. J. Mater. Process.
Tech. 242 (2017) 77~91.
[33] Carlone P, Citarella R, Sonne M R, Hattel J H. Multiple crack
growth prediction in AA2024-T3 friction stir welded joints, including
manufacturing effects. Int. J. Fatigue 90 (2016) 69~77.
[34]
XU W,
LIU J. Microstructure evolution along thickness in double-side friction
stir welded 7085 Al alloy. T. Nonferr. Metal. Soc. 25 (2015)
3212~3222.
[35] Liu S, Zhong Q, Zhang Y, Liu W, Zhang X, Deng Y. Investigation
of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by
time-temperature-properties diagrams. Materials & Design 31 (2010)
3116~3120.
[36] Zhao H, Chen Y, Gault B, Makineni S K, Ponge D, Raabe D. (Al,
Zn)3Zr dispersoids assisted η′ precipitation in anAl-Zn-Mg-Cu-Zr alloy.
Materialia 10 (2020) 100641.
[37]
Chiu
Y, Du K, Bor H, Liu G, Lee S. The effects of Cu, Zn and Zr on the
solution temperature and quenching sensitivity of Al-Zn-Mg-Cu alloys.
Mater. Chem. Phys. 247 (2020) 122853.
[38]
Zhao
J, Liu Z, Bai S, Zeng D, Luo L, Wang J. Effects of natural aging on the
formation and strengthening effect of G.P. zones in a retrogression and
re-aged Al-Zn-Mg-Cu alloy. J. Alloy. Compd. 829 (2020) 154469.
[39] Wei L, Pan Q, Huang H, Feng L, Wang Y. Influence of grain
structure and crystallographic orientation on fatigue crack propagation
behavior of 7050 alloy thick plate. Int. J. Fatigue 66 (2014)
55~64.
[40]
Zhang
L, Zhong H, Li S, Zhao H, Chen J, Qi L. Microstructure, mechanical
properties and fatigue crack growth behavior of friction stir welded
joint of 6061-T6 aluminum alloy. Int. J. Fatigue 135 (2020) 105556.
[41] Bray G H, Glazov M, Rioja R J, Li D, Gangloff R P. Effect of
artificial aging on the fatigue crack propagation resistance of 2000
series aluminum alloys. Int. J. Fatigue 23 (2001)
265~276.
[42] Liu M, Liu Z, Bai S, Xia P, Ying P, Zeng S. Solute cluster size
effect on the fatigue crack propagation resistance of an underaged
Al-Cu-Mg alloy. Int. J. Fatigue 84 (2016) 104~112.
[43] Kamp N, Gao N, Starink M J, Sinclair I. Influence of grain
structure and slip planarity on fatigue crack growth in low alloying
artificially aged 2xxx aluminium alloys. Int. J. Fatigue 29 (2007)
869~878.
[44]
Liu Z,
Li F, Xia P, Bai S, Gu Y, Yu D, Zeng S. Mechanisms for Goss-grains
induced crack deflection and enhanced fatigue crack propagation
resistance in fatigue stage II of an AA2524 alloy. Mater. Sci. Eng. A
625 (2015) 271~277.
[45]
Hornbogen
E, Gahr K Z. Microstructure and fatigue crack growth in a γ-Fe-Ni-Al
alloy. Acta Metallurgica 24 (1976) 581~592.