References
[1] Peng X, Guo Q, Liang X, Deng Y, Gu Y, Xu G, Yin Z. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 688 (2017) 146~154.
[2] Jiang J T, Xiao W Q, Yang L, Shao W Z, Yuan S J, Zhen L. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 605 (2014) 167~175.
[3] Wei L, Pan Q, Huang H, Feng L, Wang Y. Influence of grain structure and crystallographic orientation on fatigue crack propagation behavior of 7050 alloy thick plate. Int. J. Fatigue 66 (2014) 55~64.
[4] Lin Z, Sun G. Regression analysis of the influences of minor additions Cu and Zr on weld cracking sensitivity in Al-Zn-Mg alloys. Journal of Northeastern University 2 (1982) 93~102.
[5] Xu W F, Luo Y X, Fu M W. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy. Mater. Charact. 138 (2018) 48~55.
[6] Liu Z, Zhang H, Feng H, Yan Z, Dong P. Effects of surface gradient nanostructuring on the fatigue behavior of the friction stir welded Al-Zn-Mg-Cu alloy. Mater. Lett. 252 (2019) 329~332.
[7] Zhang F, Su X, Chen Z, Nie Z. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al-Zn-Mg-Cu aluminum alloy. Materials & Design 67 (2015) 483~491.
[8] Mao Y, Ke L, Chen Y, Liu F, Xing L. Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints. J. Mater. Sci. Technol. 34 (2018) 228~236.
[9] Zhao Y, Yang Z, Domblesky J P, Han J, Li Z, Liu X. Investigation of through thickness microstructure and mechanical properties in friction stir welded 7N01 aluminum alloy plate. Mater. Sci. Eng. A 760 (2019) 316~327.
[10] Xu W F, Wu X K, Ma J, Lu H J, Luo Y X. Abnormal fracture of 7085 high strength aluminum alloy thick plate joint via friction stir welding. Journal of Materials Research and Technology 8 (2019) 6029~6040.
[11] Khan N Z, Siddiquee A N, Khan Z A, Mukhopadhyay A K. Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J. Alloy. Compd. 695 (2017) 2902~2908.
[12] Mastanaiah P, Sharma A, Reddy G M. Role of hybrid tool pin profile on enhancing welding speed and mechanical properties of AA2219-T6 friction stir welds. J. Mater. Process. Tech. 257 (2018) 257~269.
[13] Mishra R S, Ma Z Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports 50 (2005) 1~78.
[14] Sree Sabari S, Malarvizhi S, Balasubramanian V. Characteristics of FSW and UWFSW joints of AA2519-T87 aluminium alloy: Effect of tool rotation speed. Journal of Manufacturing Processes 22 (2016) 278~289.
[15] Jiang J, Jiang F, Zhang M, Tang Z, Tong M. Recrystallization behavior of Al-Mg-Mn-Sc-Zr alloy based on two different deformation ways. Mater. Lett. 265 (2020) 127455.
[16] Huang H, Jiang F, Zhou J, Wei L, Zhong M, Liu X. Hot deformation behavior and microstructural evolution of as-homogenized Al-6Mg-0.4Mn-0.25Sc-0.1Zr alloy during compression at elevated temperature. J. Alloy. Compd. 644 (2015) 862~872.
[17] Chen Y, Liu C Y, Zhang B, Ma Z Y, Zhou W B, Jiang H J, Huang H F, Wei L L. Effects of friction stir processing and minor Sc addition on the microstructure, mechanical properties, and damping capacity of 7055 Al alloy. Mater. Charact. 135 (2018) 25~31.
[18] Mo Y F, Liu C Y, Teng G B, Jiang H J, Chen Y, Yang Z X, Chen Y, Han S C. Fabrication of 7075-0.25Sc-0.15Zr Alloy with Excellent Damping and Mechanical Properties by FSP and T6 Treatment. J. Mater. Eng. Perform. 27 (2018) 4162~4167.
[19] Zou Y, Cao L, Wu X, Wang Y, Sun X, Song H, Couper M J. Effect of ageing temperature on microstructure, mechanical property and corrosion behavior of aluminum alloy 7085. J. Alloy. Compd. 823 (2020) 153792.
[20] Wang Y, Cao L, Wu X, Tong X, Liao B, Huang G, Wang Z. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085. J. Alloy. Compd. 814 (2020) 152264.
[21] Nie B, Liu P, Zhou T. Effect of compositions on the quenching sensitivity of 7050 and 7085 alloys. Mater. Sci. Eng. A 667 (2016) 106~114.
[22] Xu W, Luo Y, Zhang W, Fu M. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate. J. Mater. Sci. Technol. 34 (2018) 173~184.
[23] Xu W, Wang H, Luo Y, Li W, Fu M W. Mechanical behavior of 7085-T7452 aluminum alloy thick plate joint produced by double-sided friction stir welding: Effect of welding parameters and strain rates. Journal of Manufacturing Processes 35 (2018) 261~270.
[24] Xu W, Zhang W, Wu X. Corrosion Behavior of Top and Bottom Surfaces for Single-Side and Double-Side Friction Stir Welded 7085-T7651 Aluminum Alloy Thick Plate Joints. Metallurgical and Materials Transactions A 48 (2017) 1078~1091.
[25] Wen K, Xiong B, Zhang Y, Li Z, Li X, Huang S, Yan L, Yan H, Liu H. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 716 (2018) 42~54.
[26] Yang W, Ji S, Wang M, Li Z. Precipitation behaviour of Al-Zn-Mg-Cu alloy and diffraction analysis from η′ precipitates in four variants. J. Alloy. Compd. 610 (2014) 623~629.
[27] Chung T, Yang Y, Huang B, Shi Z, Lin J, Ohmura T, Yang J. Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Mater. 149 (2018) 377~387.
[28] Liu J Z, Chen J H, Yang X B, Ren S, Wu C L, Xu H Y, Zou J. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy. Scripta Mater. 63 (2010) 1061~1064.
[29] Jiang H J, Liu C Y, Chen Y, Yang Z X, Huang H F, Wei L L, Li Y B, Qi H Q. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys. J. Alloy. Compd. 739 (2018) 114~121.
[30] Chen S, Chen K, Peng G, Jia L, Dong P. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy. Materials & Design 35 (2012) 93~98.
[31] Yadav V K, Gaur V, Singh I V. Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded AA-2024. Mater. Sci. Eng. A 779 (2020) 139116.
[32] Ahmed M M Z, Ataya S, El-Sayed Seleman M M, Ammar H R, Ahmed E. Friction stir welding of similar and dissimilar AA7075 and AA5083. J. Mater. Process. Tech. 242 (2017) 77~91.
[33] Carlone P, Citarella R, Sonne M R, Hattel J H. Multiple crack growth prediction in AA2024-T3 friction stir welded joints, including manufacturing effects. Int. J. Fatigue 90 (2016) 69~77.
[34] XU W, LIU J. Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy. T. Nonferr. Metal. Soc. 25 (2015) 3212~3222.
[35] Liu S, Zhong Q, Zhang Y, Liu W, Zhang X, Deng Y. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperature-properties diagrams. Materials & Design 31 (2010) 3116~3120.
[36] Zhao H, Chen Y, Gault B, Makineni S K, Ponge D, Raabe D. (Al, Zn)3Zr dispersoids assisted η′ precipitation in anAl-Zn-Mg-Cu-Zr alloy. Materialia 10 (2020) 100641.
[37] Chiu Y, Du K, Bor H, Liu G, Lee S. The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al-Zn-Mg-Cu alloys. Mater. Chem. Phys. 247 (2020) 122853.
[38] Zhao J, Liu Z, Bai S, Zeng D, Luo L, Wang J. Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al-Zn-Mg-Cu alloy. J. Alloy. Compd. 829 (2020) 154469.
[39] Wei L, Pan Q, Huang H, Feng L, Wang Y. Influence of grain structure and crystallographic orientation on fatigue crack propagation behavior of 7050 alloy thick plate. Int. J. Fatigue 66 (2014) 55~64.
[40] Zhang L, Zhong H, Li S, Zhao H, Chen J, Qi L. Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061-T6 aluminum alloy. Int. J. Fatigue 135 (2020) 105556.
[41] Bray G H, Glazov M, Rioja R J, Li D, Gangloff R P. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys. Int. J. Fatigue 23 (2001) 265~276.
[42] Liu M, Liu Z, Bai S, Xia P, Ying P, Zeng S. Solute cluster size effect on the fatigue crack propagation resistance of an underaged Al-Cu-Mg alloy. Int. J. Fatigue 84 (2016) 104~112.
[43] Kamp N, Gao N, Starink M J, Sinclair I. Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys. Int. J. Fatigue 29 (2007) 869~878.
[44] Liu Z, Li F, Xia P, Bai S, Gu Y, Yu D, Zeng S. Mechanisms for Goss-grains induced crack deflection and enhanced fatigue crack propagation resistance in fatigue stage II of an AA2524 alloy. Mater. Sci. Eng. A 625 (2015) 271~277.
[45] Hornbogen E, Gahr K Z. Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy. Acta Metallurgica 24 (1976) 581~592.