REFERENCES
Abdelrahman, M., Ishii, T., El-Sayed, M., & Tran, L. P. (2020). Heat sensing and lipid reprogramming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol .
Adams, S., Cockshull, K. E., & Cave, C. R. J. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88 (5), 869-877.
Ahammed, G. J., Xu, W., Liu, A., & Chen, S. (2018). COMT1 Silencing Aggravates Heat Stress-Induced Reduction in Photosynthesis by Decreasing Chlorophyll Content, Photosystem II Activity, and Electron Transport Efficiency in Tomato. Front Plant Sci, 9 , 998.
Ainsworth, E. A., & Ort, D. R. (2010). How do we improve crop production in a warming world? Plant Physiol, 154 (2), 526-530.
Aiqing, S., Somayanda, I., Sebastian, S. V., Singh, K., Gill, K., Prasad, P. V. V., & Jagadish, S. V. K. (2018). Heat Stress during Flowering Affects Time of Day of Flowering, Seed Set, and Grain Quality in Spring Wheat. Crop Science, 58 (1), 380-392.
Alghabari, F., Lukac, M., Jones, H. E., & Gooding, M. J. (2014). Effect ofRhtAlleles on the Tolerance of Wheat Grain Set to High Temperature and Drought Stress During Booting and Anthesis. Journal of Agronomy and Crop Science, 200 (1), 36-45.
Ali Tahir, I. S., Nakata, N., Yamaguchi, T., Nakano, J., & Mukhtar Ali, A. (2015). Physiological Response of Three Wheat Cultivars to High Shoot and Root Temperatures during Early Growth Stages. Plant Production Science, 12 (4), 409-419.
Alsajri, Singh, B., Wijewardana, C., Irby, J. T., Gao, W., & Reddy, K. R. (2019). Evaluating Soybean Cultivars for Low- and High-Temperature Tolerance During the Seedling Growth Stage. Agronomy, 9 (1).
Anfoka, G., Moshe, A., Fridman, L., Amrani, L., Rotem, O., Kolot, M., . . . Gorovits, R. (2016). Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures.Sci Rep, 6 , 19715.
Arai-Sanoh, Y., Ishimaru, T., Ohsumi, A., & Kondo, M. (2010). Effects of Soil Temperature on Growth and Root Function in Rice. Plant Production Science - PLANT PROD SCI, 13 , 235-242.
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., . . . Zhu, Y. (2014). Rising temperatures reduce global wheat production. Nature Climate Change, 5 (2), 143-147.
Aydin, M., Sisman, A., Gültekin, A., & Dehghan B, B. (2015).Experimental and computational performance comparison between different shallow ground heat exchangers .
Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9 (11).
Bahuguna, R. N., Kumar, V., Singh, Y. P., Kumar, N., Raju, Nishant, & Agarwal, D. (2014). Effect of phyllochron on leaf emergence stage in barley, wheat and rye. International Journal of Basic and Applied Biology, 2 (1), 121-126.
Bahuguna, R. N., Solis, C. A., Shi, W., & Jagadish, K. S. (2017). Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiol Plant, 159 (1), 59-73.
Balasubramanian, S., Sureshkumar, S., Lempe, J., & Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet, 2 (7), e106.
Bari, R., & Jones, J. D. G. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69 (4), 473-488.
Barlow, K. M., Christy, B. P., O’Leary, G. J., Riffkin, P. A., & Nuttall, J. G. (2015). Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171 , 109-119.
Barpete, S., Oğuz, M., Ozcan, S., Anayol, E., Ahmed, H. A., Khawar, K. M., & Ozcan, S. (2015). Effect of temperature on germination, seed vigor index and seedling growth of five Turkish Cotton (Gossypium hirsutum L) cultivars. Fresenius Environmental Bulletin, 24 , 2561-2566.
Bebber, D. P., Ramotowski, M. A. T., & Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3 (11), 985-988.
Begcy, K., Nosenko, T., Zhou, L. Z., Fragner, L., Weckwerth, W., & Dresselhaus, T. (2019). Male Sterility in Maize after Transient Heat Stress during the Tetrad Stage of Pollen Development. Plant Physiol, 181 (2), 683-700.
Bell, J. E., Palecki, M. A., Baker, C. B., Collins, W. G., Lawrimore, J. H., Leeper, R. D., . . . Diamond, H. J. (2013). U.S. Climate Reference Network Soil Moisture and Temperature Observations. Journal of Hydrometeorology, 14 (3), 977-988.
Bell, K., & Bliss, L. (1978). Root growth in a polar semidesert environment. Canadian Journal of Botany, 56 , 2470-2490.
Bellasio, C., & Farquhar, G. D. (2019). A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. New Phytol, 223 (1), 150-166.
Bellstaedt, J., Trenner, J., Lippmann, R., Poeschl, Y., Zhang, X., Friml, J., . . . Delker, C. (2019). A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls.Plant Physiol, 180 (2), 757-766.
Benech-Arnold, R. L., Rodriguez, M. V., & Batlla, D. (2013). Seed Dormancy and Agriculture, Physiology. In P. Christou, R. Savin, B. A. Costa-Pierce, I. Misztal, & C. B. A. Whitelaw (Eds.), Sustainable Food Production (pp. 1425-1435). New York, NY: Springer New York.
Bentsink, L., Jowett, J., Hanhart, C. J., & Koornneef, M. (2006). Cloning of <em>DOG1</em>, a quantitative trait locus controlling seed dormancy in <em>Arabidopsis</em&gt.Proceedings of the National Academy of Sciences, 103 (45), 17042.
Bentsink, L., & Koornneef, M. (2008). Seed dormancy and germination.The arabidopsis book, 6 , e0119-e0119.
Berjak, P., & Pammenter, N. (2013). Implications of the lack of desiccation tolerance in recalcitrant seeds. Frontiers in plant science, 4 , 478.
Bewley, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 9 (7), 1055-1066.
Bheemanahalli, Sathishraj, R., Manoharan, M., Sumanth, H. N., Muthurajan, R., Ishimaru, T., & Krishna, J. S. (2017). Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crops Res, 203 , 238-242.
Bheemanahalli, Sunoj, V. S. J., Saripalli, G., Prasad, P. V. V., Balyan, H. S., Gupta, P. K., . . . Jagadish, S. V. K. (2019). Quantifying the Impact of Heat Stress on Pollen Germination, Seed Set, and Grain Filling in Spring Wheat. Crop Science, 59 (2), 684-696.
Bianchetti, R., De Luca, B., de Haro, L. A., Rosado, D., Demarco, D., Conte, M., . . . Carrari, F. (2020). Phytochrome-Dependent Temperature Perception Modulates Isoprenoid Metabolism. Plant Physiol, 183 (3), 869-882.
Blacklow, W. M. (1972). Influence of Temperature on Germination and Elongation of the Radicle and Shoot of Corn (Zea mays L.)1. Crop Science, 12 (5), cropsci1972.0011183X001200050028x.
Boden, S. A., Kavanová, M., Finnegan, E. J., & Wigge, P. A. (2013). Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A. Z-nucleosomes. 14 , R65.
Borràs-Gelonch, G., Denti, M., B Thomas, W. T., & Romagosa, I. (2011). Genetic control of pre-heading phases in the Steptoe × Morex barley population under different conditions of photoperiod and temperature.Euphytica, 183 (3), 303-321.
Bracher, A., Whitney, S. M., Hartl, F. U., & Hayer-Hartl, M. (2017). Biogenesis and Metabolic Maintenance of Rubisco. Annu Rev Plant Biol, 68 , 29-60.
Buriro, M. S. A. U., Tandojam (Pakistan)), Oad, F. C. S. A. U., Tandojam (Pakistan)), Keerio, M. I. S. A. U., Tandojam (Pakistan)), Tunio, S. S. A. U., Tandojam (Pakistan)), Gandahi, A. W. S. A. U., Tandojam (Pakistan)), Waseem-ul-Hassan, S. A. R. I., Quetta (Pakistan)), & Oad, S. M. (2011). Wheat seed germination under the influence of temperature regimes. v. 27 .
Camejo, Jiménez, A., Alarcón, J. J., Torres, W., Gómez, J. M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants.Functional Plant Biology, 33 (2), 177-187.
Camejo, Rodriguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcon, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility.J Plant Physiol, 162 (3), 281-289.
Cannell, R. Q. (1969). The tillering pattern in barley varieties II. The effect of temperature, light intensity and daylength on the frequency of occurrence of the coleoptile node and second tillers in barley.The Journal of Agricultural Science, 72 (3), 423-435.
Capovilla, G., Schmid, M., & Posé, D. (2014). Control of flowering by ambient temperature. Journal of Experimental Botany, 66 (1), 59-69.
Casal, J. J., & Balasubramanian, S. (2019). Thermomorphogenesis.Annu Rev Plant Biol, 70 , 321-346.
Chakrabarti, B., Singh, S. D., Kumar, V., Harit, R. C., & Misra, S. (2013). Growth and yield response of wheat and chickpea crops under high temperature. Indian Journal of Plant Physiology, 18 (1), 7-14.
Chavan, S. G., Duursma, R. A., Tausz, M., & Ghannoum, O. (2019). Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J Exp Bot, 70 (21), 6447-6459.
Chen. (2013). High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. American Journal of Plant Sciences, 04 (03), 608-627.
Chen, Chen, S.-T., He, N.-Y., Wang, Q.-L., Zhao, Y., Gao, W., & Guo, F.-Q. (2020). Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants .
Chen, Zhang, H. W., Zhang, H. L., Ying, J. Z., Ma, L. Y., & Zhuang, J. Y. (2018). Natural variation at qHd1 affects heading date acceleration at high temperatures with pleiotropism for yield traits in rice.BMC Plant Biol, 18 (1), 112.
Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., & He, P. (2013). Plant immune response to pathogens differs with changing temperatures.Nature Communications, 4 (1), 2530.
Choi, D. H., Ban, H. Y., Seo, B. S., Lee, K. J., & Lee, B. W. (2016). Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region. PLoS One, 11 (11), e0165977.
Coast, O., Šebela, D., Quiñones, C., & Jagadish, S. V. K. (2020). Systematic determination of the reproductive growth stage most sensitive to high night temperature stress in rice (
Oryza sativa
). Crop Science, 60 (1), 391-403.
Cochrane, M. P., Paterson, L., & Gould, E. (2000). Changes in chalazal cell walls and in the peroxidase enzymes of the crease region during grain development in barley. J Exp Bot, 51 (344), 507-520.
Cohen, S. P., & Leach, J. E. (2020). High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr Opin Plant Biol .
Cohen, S. P., Liu, H., Argueso, C. T., Pereira, A., Vera Cruz, C., Verdier, V., & Leach, J. E. (2017). RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature. PLoS One, 12 (11), e0187625.
Commuri, P. D., & Jones, R. J. (2001). High Temperatures during Endosperm Cell Division in Maize: A Genotypic Comparison under In Vitro and Field Conditions. Crop Science, 41 (4), 1122-1130.
Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiol, 160 (4), 1710-1718.
Crafts-Brandner, S. J., & Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol, 129 (4), 1773-1780.
Crawford, A. J., McLachlan, D. H., Hetherington, A. M., & Franklin, K. A. (2012). High temperature exposure increases plant cooling capacity.Current Biology, 22 (10), R396-R397.
Davy, R., Esau, I., Chernokulsky, A., Outten, S., & Zilitinkevich, S. (2017). Diurnal asymmetry to the observed global warming.International Journal of Climatology, 37 (1), 79-93.
Del Olmo, I., Poza-Viejo, L., Piñeiro, M., Jarillo, J. A., & Crevillén, P. (2019). High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. Plant J, 100 (2), 343-356.
Dielen, V., Lecouvet, V., Dupont, S., & Kinet, J. M. (2001). In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. J Exp Bot, 52 (357), 715-723.
Dixon, L. E., Farre, A., Finnegan, E. J., Orford, S., Griffiths, S., & Boden, S. A. (2018). Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1. Plant Cell Environ, 41 (7), 1715-1725.
Dixon, L. E., Karsai, I., Kiss, T., Adamski, N. M., Liu, Z., Ding, Y., . . . Griffiths, S. (2019). VERNALIZATION1 controls developmental responses of winter wheat under high ambient temperatures.Development, 146 (3).
Djanaguiraman, M., Boyle, D. L., Welti, R., Jagadish, S. V. K., & Prasad, P. V. V. (2018). Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biol, 18 (1), 55.
Djanaguiraman, M., Prasad, P. V. V., Boyle, D. L., & Schapaugh, W. T. (2011). High-Temperature Stress and Soybean Leaves: Leaf Anatomy and Photosynthesis. Crop Science, 51 (5), 2125-2131.
Djanaguiraman, M., Prasad, P. V. V., Boyle, D. L., & Schapaugh, W. T. (2013). Soybean Pollen Anatomy, Viability and Pod Set under High Temperature Stress. Journal of Agronomy and Crop Science, 199 (3), 171-177.
Dossa, G. S., Quibod, I., Atienza-Grande, G., Oliva, R., Maiss, E., Vera Cruz, C., & Wydra, K. (2020). Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Sci Rep, 10 (1), 683.
Draeger, T., Martin, A. C., Alabdullah, A. K., Pendle, A., Rey, M. D., Shaw, P., & Moore, G. (2020). Dmc1 is a candidate for temperature tolerance during wheat meiosis. Theor Appl Genet, 133 (3), 809-828.
Draeger, T., & Moore, G. (2017). Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 130 (9), 1785-1800.
Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol, 221 (1), 32-49.
Eckardt, N. A. (2007). Two tales of chromatin remodeling converge on HUB1. Plant Cell, 19 (2), 391-393.
Ejaz, M., & von Korff, M. (2017). The Genetic Control of Reproductive Development under High Ambient Temperature. Plant Physiol, 173 (1), 294-306.
Ellis, R. H., Hong, T. D., & Jackson, M. T. (1993). Seed Production Environment, Time of Harvest, and the Potential Longevity of Seeds of Three Cultivars of Rice (Oryza sativa L.). Annals of Botany, 72 (6), 583-590.
Ellis, R. H., & Roberts, E. H. (1980a). Improved Equations for the Prediction of Seed Longevity. Annals of Botany, 45 (1), 13-30.
Ellis, R. H., & Roberts, E. H. (1980b). The Influence of Temperature and Moisture on Seed Viability Period in Barley (Hordeum distichum L.).Annals of Botany, 45 (1), 31-37.
Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., . . . Kawagishi-Kobayashi, M. (2009). High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol, 50 (11), 1911-1922.
Fal, K., Cortes, M., Liu, M., Collaudin, S., Das, P., Hamant, O., & Trehin, C. (2019). Paf1c defects challenge the robustness of flower meristem termination in Arabidopsis thaliana. Development, 146 (20).
Fang, J., & Chu, C. (2008). Abscisic acid and the pre-harvest sprouting in cereals. Plant signaling & behavior, 3 (12), 1046-1048.
Farias, P. d. S. d., Souza, L. d. S., Paiva, A. d. Q., Oliveira, Á. S. d., Souza, L. D., & Ledo, C. A. d. S. (2018). Hourly, Daily, and Monthly Soil Temperature Fluctuations in a Drought Tolerant Crop.Revista Brasileira de Ciência do Solo, 42 .
Feng, Wang, K., Li, Y., Tan, Y., Kong, J., Li, H., . . . Zhu, Y. (2007). Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep, 26 (9), 1635-1646.
Feng, Zhang, C., Chen, T., Zhang, X., Tao, L., & Fu, G. (2018). Salicylic acid reverses pollen abortion of rice caused by heat stress.BMC Plant Biol, 18 (1), 245.
Footitt, S., Douterelo-Soler, I., Clay, H., & Finch-Savage, W. E. (2011). Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences, 108 (50), 20236.
Ford, B., Deng, W., Clausen, J., Oliver, S., Boden, S., Hemming, M., & Trevaskis, B. (2016). Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner.J Exp Bot, 67 (18), 5517-5528.
Friend, D. J. C. (1965). TILLERING AND LEAF PRODUCTION IN WHEAT AS AFFECTED BY TEMPERATURE AND LIGHT INTENSITY. Canadian Journal of Botany, 43 (9), 1063-1076.
Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., . . . Dubcovsky, J. (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science, 323 (5919), 1357-1360.
Garmash, E. V. (2005). Temperature Controls a Dependence of Barley Plant Growth on Mineral Nutrition Level. Russian Journal of Plant Physiology, 52 , 338–344.
Garrett, T., Huynh, C.-V., & North, G. (2010). Root contraction helps protect the ”Living rock” cactus Ariocarpus fissuratus from lethal high temperatures when growing in rocky soil. American journal of botany, 97 , 1951-1960.
Gauley, A., & Boden, S. A. (2019). Genetic pathways controlling inflorescence architecture and development in wheat and barley. J Integr Plant Biol, 61 (3), 296-309.
Gladish, D. K., & Rost, T. L. (1993). The effects of temperature on primary root growth dynamics and lateral root distribution in garden pea (Pisum sativum L., cv. “Alaska”). Environmental and Experimental Botany, 33 (2), 243-258.
Global Climate Change. (2020). Global Temperature. Retrieved from https://climate.nasa.gov/vital-signs/global-temperature/
Gol, L., Tome, F., & von Korff, M. (2017). Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. J Exp Bot, 68 (7), 1399-1410.
Goldberg, R. B., Beals, T. P., & Sanders, P. M. (1993). Anther development: basic principles and practical applications. The Plant cell, 5 (10), 1217-1229.
Gonzalo, M. J., Li, Y. C., Chen, K. Y., Gil, D., Montoro, T., Najera, I., . . . Monforte, A. J. (2020). Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. Front Plant Sci, 11 , 326.
Gosselin, A., & Trudel, M. J. (1984). Interactions between root-zone temperature and light levels on growth, development and photosynthesis of Lycopersicon esculentum Mill. cultivar ‘Vendor’. Scientia Horticulturae, 23 (4), 313-321.
Gourdji, S. M., Sibley, A. M., & Lobell, D. B. (2013). Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters, 8 (2).
Graeber, K., Linkies, A., Steinbrecher, T., Mummenhoff, K., Tarkowská, D., Turečková, V., . . . Leubner-Metzger, G. (2014). DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination.Proceedings of the National Academy of Sciences, 111 (34), E3571.
Gray, & Brady, S. M. (2016). Plant developmental responses to climate change. Dev Biol, 419 (1), 64-77.
Gray, Ostin, A., Sandberg, G., Romano, C. P., & Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A, 95 (12), 7197-7202.
Greenup, A. G., Sasani, S., Oliver, S. N., Walford, S. A., Millar, A. A., & Trevaskis, B. (2011). Transcriptome analysis of the vernalization response in barley (Hordeum vulgare) seedlings. PLoS One, 6 (3), e17900.
Gregory, F. G., & Purvis, O. N. (1948). Reversal of vernalization by high temperature. Nature, 161 (4100), 859.
Grobbelaar, W. P. (1963). Responses of young maize plants to root temperatures. (internal PhD, WU), Veenman, Wageningen.
Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings.Acta Physiologiae Plantarum, 35 (6), 1837-1842.
Hakim, M. A., Hossain, A., Teixeira da Silva, J. A., Zvolinsky, V. P., & Khan, M. M. (2012). Yield, Protein and Starch Content of Twenty Wheat (Triticum aestivum L.) Genotypes Exposed to High Temperature under Late Sowing Conditions4 (2), 477-489. Journal of Scientific Research, 4 (2).
Hatfield, Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., . . . Wolfe, D. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103 (2), 351-370.
Havko, N. E., Das, M. R., McClain, A. M., Kapali, G., Sharkey, T. D., & Howe, G. A. (2020). Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. Proc Natl Acad Sci U S A, 117 (4), 2211-2217.
Hedhly. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74 , 9-16.
Hedhly, Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends Plant Sci, 14 (1), 30-36.
Hemming, M. N., Walford, S. A., Fieg, S., Dennis, E. S., & Trevaskis, B. (2012). Identification of high-temperature-responsive genes in cereals. Plant Physiol, 158 (3), 1439-1450.
Hendrick, R. L., & Pregitzer, K. S. (1996). Temporal and Depth-Related Patterns of Fine Root Dynamics in Northern Hardwood Forests.Journal of Ecology, 84 (2), 167-176.
Herrero, M. (2003). Male and female synchrony and the regulation of mating in flowering plants. Philos Trans R Soc Lond B Biol Sci, 358 (1434), 1019-1024.
Heschel, M. S., Selby, J., Butler, C., Whitelam, G. C., Sharrock, R. A., & Donohue, K. (2007). A new role for phytochromes in temperature-dependent germination. New Phytol, 174 (4), 735-741.
Howard, T. P., Fahy, B., Craggs, A., Mumford, R., Leigh, F., Howell, P., . . . Smith, A. M. (2012). Barley mutants with low rates of endosperm starch synthesis have low grain dormancy and high susceptibility to preharvest sprouting. New Phytol, 194 (1), 158-167.
Hu, Z., Liu, Y., Huang, L., Peng, S., Nie, L., Cui, K., . . . Wang, F. (2015). Premature heading and yield losses caused by prolonged seedling age in double cropping rice. Field Crops Research, 183 , 147-155.
Huan, Q., Mao, Z., Chong, K., & Zhang, J. (2018). Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. New Phytol, 219 (4), 1373-1387.
Impa, S. M., Sunoj, V. S. J., Krassovskaya, I., Bheemanahalli, R., Obata, T., & Jagadish, S. V. K. (2019). Carbon balance and source-sink metabolic changes in winter wheat exposed to high night-time temperature. Plant Cell Environ, 42 (4), 1233-1246.
Impa, S. M., Vennapusa, A. R., Bheemanahalli, R., Sabela, D., Boyle, D., Walia, H., & Jagadish, S. V. K. (2020). High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Plant Cell Environ, 43 (2), 431-447.
Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2018). Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. Adv Exp Med Biol, 1081 , 233-257.
Iversen, C., Sloan, V., Sullivan, P., Euskirchen, E., McGuire, A., Norby, R., . . . Wullschleger, S. (2014). The unseen iceberg: Plant roots in arctic tundra. New Phytologist, 205 .
Jacott, C. N., & Boden, S. A. (2020). Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. J Exp Bot .
Jagadish. (2020). Heat stress during flowering in cereals - effects and adaptation strategies. New Phytol, 226 (6), 1567-1572.
Jagadish, Craufurd, P. Q., & Wheeler, T. R. (2007). High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot, 58 (7), 1627-1635.
Jagadish, Murty, M. V., & Quick, W. P. (2015). Rice responses to rising temperatures–challenges, perspectives and future directions.Plant Cell Environ, 38 (9), 1686-1698.
Jagadish, Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S., Bennett, J., & Craufurd, P. Q. (2010). Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.).J Exp Bot, 61 (1), 143-156.
Janas, K., Cvikrová, M., Pałągiewicz, A., & Eder, J. (2000). Alterations in phenylpropanoid content in soybean roots during low temperature acclimation. Plant Physiology and Biochemistry, 38 , 587-593.
Jedmowski, C., & Bruggemann, W. (2015). Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress.J Photochem Photobiol B, 151 , 153-160.
Jumrani, K., & Bhatia, V. S. (2018). Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean.Physiol Mol Biol Plants, 24 (1), 37-50.
Karapanos, I. C., Akoumianakis, K. A., Olympios, C. M., & Passam, H. C. (2010). Tomato pollen respiration in relation to in vitro germination and pollen tube growth under favourable and stress-inducing temperatures. Sex Plant Reprod, 23 (3), 219-224.
Karsai, I., Igartua, E., Casas, A. M., Kiss, T., Soós, V., Balla, K., . . . Veisz, O. (2013). Developmental patterns of a large set of barley (Hordeum vulgare) cultivars in response to ambient temperature.Annals of Applied Biology, 162 (3), 309-323.
Kaur, R., Sinha, K., & Bhunia, R. K. (2019). Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Mol Biol Rep, 46 (2), 2577-2593.
Kawasaki, Y., Matsuo, S., Kanayama, Y., & Kanahama, K. (2014). Effect of Root-zone Heating on Root Growth and Activity, Nutrient Uptake, and Fruit Yield of Tomato at Low Air Temperatures. Journal of the Japanese Society for Horticultural Science, 83 (4), 295-301.
Keerberg, O., Parnik, T., Ivanova, H., Bassuner, B., & Bauwe, H. (2014). C2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3-C4 intermediate species Flaveria pubescens. J Exp Bot, 65 (13), 3649-3656.
Kennedy, R. A., & Laetsch, W. M. (1974). Plant species intermediate for c3, c4 photosynthesis. Science, 184 (4141), 1087-1089.
Khoshravesh, R., Stinson, C. R., Stata, M., Busch, F. A., Sage, R. F., Ludwig, M., & Sage, T. L. (2016). C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis. J Exp Bot, 67 (10), 3065-3078.
Kim, Doyle, M. R., Sung, S., & Amasino, R. M. (2009). Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol, 25 , 277-299.
Kim, S., Hwang, G., Kim, S., Thi, T. N., Kim, H., Jeong, J., . . . Oh, E. (2020). The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nature Communications, 11 (1), 1053.
Kino, R. I., Pellny, T. K., Mitchell, R. A. C., Gonzalez-Uriarte, A., & Tosi, P. (2020). High post-anthesis temperature effects on bread wheat (Triticum aestivum L.) grain transcriptome during early grain-filling.BMC Plant Biol, 20 (1), 170.
Kippes, N., Debernardi, J. M., Vasquez-Gross, H. A., Akpinar, B. A., Budak, H., Kato, K., . . . Dubcovsky, J. (2015). Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci U S A, 112 (39), E5401-5410.
Kiss, T., Dixon, L. E., Soltesz, A., Banyai, J., Mayer, M., Balla, K., . . . Karsai, I. (2017). Effects of ambient temperature in association with photoperiod on phenology and on the expressions of major plant developmental genes in wheat (Triticum aestivum L.). Plant Cell Environ, 40 (8), 1629-1642.
Klingenberg, C. P. (2019). Phenotypic Plasticity, Developmental Instability, and Robustness: The Concepts and How They Are Connected.Frontiers in Ecology and Evolution, 7 .
Koevoets, I. T., Venema, J. H., Elzenga, J. T., & Testerink, C. (2016). Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance.Front Plant Sci, 7 , 1335.
Koga, S., Bocker, U., Moldestad, A., Tosi, P., Shewry, P. R., Mosleth, E. F., & Uhlen, A. K. (2016). Influence of temperature during grain filling on gluten viscoelastic properties and gluten protein composition. J Sci Food Agric, 96 (1), 122-130.
Kohler, I. H., Ruiz-Vera, U. M., VanLoocke, A., Thomey, M. L., Clemente, T., Long, S. P., . . . Bernacchi, C. J. (2017). Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions. J Exp Bot, 68 (3), 715-726.
Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-Temperature Effects on Rice Growth, Yield, and Grain Quality. In (pp. 87-206).
Kumar, S. V., & Wigge, P. A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140 (1), 136-147.
Kume, A., Akitsu, T., & Nasahara, K. N. (2019). Correction to: Why is chlorophyll b only used in light-harvesting systems? J Plant Res, 132 (3), 457.
Lamichhane, J. R., Constantin, J., Schoving, C., Maury, P., Debaeke, P., Aubertot, J.-N., & Dürr, C. (2019). Analysis of soybean germination, emergence, and prediction of a possible northward expansion of the crop under climate change. bioRxiv , 632976.
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529 (7584), 84-87.
Li, Kennedy, A., Huybrechts, M., Dochy, N., & Geuten, K. (2019). The Effect of Ambient Temperature on Brachypodium distachyon Development.Front Plant Sci, 10 , 1011.
Li, P., Ni, H., Ying, S., Wei, J., & hu, X. (2019). Teaching an Old Dog a New Trick: Multifaceted Strategies to Control Primary Seed Germination by DELAY OF GERMINATION 1 (DOG1). Phyton, 88 , 1-12.
Lipova, L., Krchnak, P., Komenda, J., & Ilik, P. (2010). Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. Biochim Biophys Acta, 1797 (1), 63-70.
Lippmann, R., Babben, S., Menger, A., Delker, C., & Quint, M. (2019). Development of Wild and Cultivated Plants under Global Warming Conditions. Curr Biol, 29 (24), R1326-R1338.
Liu, Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, David B., . . . Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6 (12), 1130-1136.
Liu, Yan, P., Du, Q., Wang, Y., Guo, Y., Fu, Z., . . . Tang, J. (2020). Pre-rRNA processing and its response to temperature stress in maize.J Exp Bot, 71 (4), 1363-1374.
Liu, S., Sehgal, S. K., Lin, M., Li, J., Trick, H. N., Gill, B. S., & Bai, G. (2015). Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. New Phytol, 208 (3), 928-935.
Lobell, & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiol, 160 (4), 1686-1697.
Lobell, Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333 (6042), 616-620.
Lobell, Sibley, A., & Ivan Ortiz-Monasterio, J. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2 (3), 186-189.
Lohani, N., Singh, M. B., & Bhalla, P. L. (2019). High Temperature Susceptibility of Sexual Reproduction in Crop Plants. Journal of Experimental Botany .
Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta, 1666 (1-2), 142-157.
Lu, H., Xia, Z., Fu, Y., Wang, Q., Xue, J., & Chu, J. (2020). Response of Soil Temperature, Moisture, and Spring Maize (Zea mays L.) Root/Shoot Growth to Different Mulching Materials in Semi-Arid Areas of Northwest China. Agronomy, 10 (4).
Lu, T., Meng, Z., Zhang, G., Qi, M., Sun, Z., Liu, Y., & Li, T. (2017). Sub-high Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant (Solanum lycopersicum L.). Front Plant Sci, 8 , 365.
Lundgren, M. R. (2020). C2 photosynthesis: a promising route towards crop improvement? New Phytol .
Lundholm, J. T. (2009). Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science, 20 (3), 377-391.
Luo, H., Xu, H., Chu, C., He, F., & Fang, S. (2020). High Temperature can Change Root System Architecture and Intensify Root Interactions of Plant Seedlings. Front Plant Sci, 11 , 160.
Lurie, S., Handros, A., Fallik, E., & Shapira, R. (1996). Reversible Inhibition of Tomato Fruit Gene Expression at High Temperature (Effects on Tomato Fruit Ripening). Plant Physiology, 110 (4), 1207-1214.
Lyu, J., Cai, Z., Li, Y., Suo, H., Yi, R., Zhang, S., & Nian, H. (2020). The Floral Repressor GmFLC-like Is Involved in Regulating Flowering Time Mediated by Low Temperature in Soybean. Int J Mol Sci, 21 (4).
Marcelis, L. F. M., & Baan Hofman‐Eijer, L. R. (1993). Effect of temperature on the growth of individual cucumber fruits.Physiologia Plantarum, 87 , 321-328.
Martínez-Eixarch, M., & Ellis, R. H. (2015). Temporal Sensitivities of Rice Seed Development from Spikelet Fertility to Viable Mature Seed to Extreme-Temperature. Crop Science, 55 (1), 354-364.
Martre, P., North, G., Bobich, E., & Nobel, P. (2002). Root deployment and shoot growth for two desert species in reponse to soil rockiness.American journal of botany, 89 , 1933-1939.
Mathur, S., Sharma, M. P., & Jajoo, A. (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B, 180 , 149-154.
Matsui, T., & Hasegawa, T. (2019). Effect of long anther dehiscence on seed set at high temperatures during flowering in rice (Oryza sativa L.). Sci Rep, 9 (1), 20363.
McMichael, B. L., & Quisenberry, J. E. (1993). The impact of the soil environment on the growth of root systems. Environmental and Experimental Botany, 33 (1), 53-61.
Mergner, J., Frejno, M., List, M., Papacek, M., Chen, X., Chaudhary, A., . . . Kuster, B. (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. Nature .
Mozafar, A., & Oertli, J. J. (1992). Root-zone temperature and salinity: Interacting effects on tillering, growth and element concentration in barley. Plant and Soil, 139 (1), 31-38.
Mulholland, B. J., Edmondson, R. N., Fussell, M., Basham, J., & Ho, L. C. (2003). Effects of high temperature on tomato summer fruit quality.The Journal of Horticultural Science and Biotechnology, 78 (3), 365-374.
Nagar, S., Singh, V. P., Arora, A., Dhakar, R., & Ramakrishnan, S. (2015). Assessment of terminal heat tolerance ability of wheat genotypes based on physiological traits using multivariate analysis. Acta Physiologiae Plantarum, 37 (12).
Nagel, K. A., Kastenholz, B., Jahnke, S., van Dusschoten, D., Aach, T., Mühlich, M., . . . Schurr, U. (2009). Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Functional Plant Biology, 36 (11), 947-959.
Nakabayashi, K., Bartsch, M., Xiang, Y., Miatton, E., Pellengahr, S., Yano, R., . . . Soppe, W. J. J. (2012). The Time Required for Dormancy Release in <em>Arabidopsis</em> Is Determined by DELAY OF GERMINATION1 Protein Levels in Freshly Harvested Seeds. The Plant Cell, 24 (7), 2826.
Nakamura, S., Abe, F., Kawahigashi, H., Nakazono, K., Tagiri, A., Matsumoto, T., . . . Miura, H. (2011). A Wheat Homolog of MOTHER OF FT AND TFL1 Acts in the Regulation of Germination. The Plant Cell, 23 (9), 3215.
Nakata, M., Fukamatsu, Y., Miyashita, T., Hakata, M., Kimura, R., Nakata, Y., . . . Yamakawa, H. (2017). High Temperature-Induced Expression of Rice alpha-Amylases in Developing Endosperm Produces Chalky Grains. Front Plant Sci, 8 , 2089.
Nasreen, S. (1999). Effects of Storage Period and Temperature on Seed Viability of Wheat. Pakistan Journal of Biological Sciences, 2 , 1492-1493.
Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., . . . You, L. Z. (2010). Food Security, Farming, and Climate Change to 2050: Scenarios, Results, Policy Options.Internatinal Food Policy Research Institute (IFPRI) .
Nyachiro, J. M., Clarke, F. R., DePauw, R. M., Knox, R. E., & Armstrong, K. C. (2002). Temperature effects on seed germination and expression of seed dormancy in wheat. Euphytica, 126 (1), 123-127.
Ojolo, S. P., Cao, S., Priyadarshani, S., Li, W., Yan, M., Aslam, M., . . . Qin, Y. (2018). Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. Front Plant Sci, 9 , 1232.
Oliver, S. N., Finnegan, E. J., Dennis, E. S., Peacock, W. J., & Trevaskis, B. (2009). Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A, 106 (20), 8386-8391.
Onwuka, B. (2016). Effects of soil temperature on Some Soil properties and plant growth. Journal of Agricultural Science and Technology .
Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M., & Higashitani, A. (2007). Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics, 278 (1), 31-42.
Oshino, T., Miura, S., Kikuchi, S., Hamada, K., Yano, K., Watanabe, M., & Higashitani, A. (2011). Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ, 34 (2), 284-290.
Oukarroum, A., El Madidi, S., & Strasser, R. J. (2016). Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP. Plant Physiol Biochem, 105 , 102-108.
Owen, E. B., & Ashton, T. (1956). The storage of seeds for maintenance of viability : Commonwealth Agricultural Bureaux.
Parent, B., & Tardieu, F. (2012). Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol, 194 (3), 760-774.
Park, Y. J., Lee, H. J., Gil, K. E., Kim, J. Y., Lee, J. H., Lee, H., . . . Park, C. M. (2019). Developmental Programming of Thermonastic Leaf Movement. Plant Physiol, 180 (2), 1185-1197.
Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213 (6).
Pearce, B. D., Grange, R. I., & Hardwick, K. (1993). The growth of young tomato fruit. I. Effects of temperature and irradiance on fruit grown in controlled environments. Journal of Horticultural Science, 68 (1), 1-11.
Peet, M. M., Willits, D. H., & Gardner, R. (1997). Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. Journal of Experimental Botany, 48 (1), 101-111.
Pimentel, A. J. B., Rocha, J. R. d. A. S. d. C., Souza, M. A. d., Ribeiro, G., Silva, C. R., & Oliveira, I. C. M. (2015). Characterization of heat tolerance in wheat cultivars and effects on production components. Revista Ceres, 62 (2), 191-198.
Porter, J. R., & Gawith, M. (1999). Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 1, 10 , 23-26.
Portis Jr, A. R. (2003). Rubisco activase - Rubisco’s catalytic chaperone. Photosynth Res, 75 (1), 11-27.
Posch, B. C., Kariyawasam, B. C., Bramley, H., Coast, O., Richards, R. A., Reynolds, M. P., . . . Atkin, O. K. (2019). Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J Exp Bot, 70 (19), 5051-5069.
Pramanik, P., Chakrabarti, B., Bhatia, A., Singh, S. D., Maity, A., Aggarwal, P., & Krishnan, P. (2018). Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop. Environ Monit Assess, 190 (4), 217.
Prasad, P. V. V., & Djanaguiraman, M. (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration.Functional Plant Biology, 41 (12).
Qiu, Y., Li, M., Kim, R. J.-A., Moore, C. M., & Chen, M. (2019). Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nature Communications, 10 (1), 140.
Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J., & van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nat Plants, 2 , 15190.
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability.Nat Commun, 6 , 5989.
Rehman, A., Farooq, M., Asif, M., & Ozturk, L. (2019). Supra-optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. Journal of Plant Nutrition and Soil Science, 182 (4), 656-666.
Ren, X., Zhang, P., Liu, X., Ali, S., Chen, X., & Jia, Z. (2017). Impacts of different mulching patterns in rainfall-harvesting planting on soil water and spring corn growth development in semihumid regions of China. Soil Research, 55 (3), 285-295.
Roberts, E. H. (1972a). Dormancy: a Factor Affecting Seed Survival in the Soil. In E. H. Roberts (Ed.), Viability of Seeds (pp. 321-359). Dordrecht: Springer Netherlands.
Roberts, E. H. (1972b). Storage Environment and the Control of Viability. In E. H. Roberts (Ed.), Viability of Seeds (pp. 14-58). Dordrecht: Springer Netherlands.
Rodríguez, M. V., Barrero, J. M., Corbineau, F., Gubler, F., & Benech-Arnold, R. L. (2015). Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Science Research, 25 (2), 99-119.
Rosado, D., Trench, B., Bianchetti, R., Zuccarelli, R., Rodrigues Alves, F. R., Purgatto, E., . . . Rossi, M. (2019). Downregulation of PHYTOCHROME-INTERACTING FACTOR 4 Influences Plant Development and Fruit Production. Plant Physiol, 181 (3), 1360-1370.
Rotundo, J. L., Tang, T., & Messina, C. D. (2019). Response of maize photosynthesis to high temperature: Implications for modeling the impact of global warming. Plant Physiol Biochem, 141 , 202-205.
Ruiz-Vera, U. M., Siebers, M. H., Drag, D. W., Ort, D. R., & Bernacchi, C. J. (2015). Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].Glob Chang Biol, 21 (11), 4237-4249.
Sadok, W., & Jagadish, S. V. K. (2020). The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci, 25 (7), 644-651.
Sage, R. F. (2002). Variation in the k(cat) of Rubisco in C(3) and C(4) plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot, 53 (369), 609-620.
Saini, H., Sedgley, M., & Aspinall, D. (1983). Effect of Heat Stress During Floral Development on Pollen Tube Growth and Ovary Anatomy in Wheat (<I>Triticum aestivum</I> L.). Functional Plant Biology, 10 (2), 137-144.
Saini, H., Sedgley, M., & Aspinall, D. (1984). Development Anatomy in Wheat of Male Sterility Induced by Heat Stress, Water Deficit or Abscisic Acid. Functional Plant Biology, 11 (4), 243-253.
Sakata, Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., . . . Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences, 107 (19), 8569-8574.
Sakata, Takahashi, H., Nishiyama, l., & Higashitani, A. (2000). Effects of high temperature on the development of pollen mother cells and microspores in Barley Hordeum vu/gwe L. Journal of Plant Research, 113 , 395-402.
Sanchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Glob Chang Biol, 20 (2), 408-417.
Sánchez, B., Rasmussen, A., & Porter, J. R. (2014). Temperatures and the growth and development of maize and rice: a review. Global Change Biology, 20 (2), 408-417.
Sato, S., Peet, M. M., & Thomas, J. F. (2002). Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot, 53 (371), 1187-1195.
Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nat Ecol Evol, 3 (3), 430-439.
Scafaro, A. P., Atwell, B. J., Muylaert, S., Reusel, B. V., Ruiz, G. A., Rie, J. V., & Galle, A. (2018). A Thermotolerant Variant of Rubisco Activase From a Wild Relative Improves Growth and Seed Yield in Rice Under Heat Stress. Front Plant Sci, 9 , 1663.
Scafaro, A. P., Bautsoens, N., den Boer, B., Van Rie, J., & Galle, A. (2019). A Conserved Sequence from Heat-Adapted Species Improves Rubisco Activase Thermostability in Wheat. Plant Physiol, 181 (1), 43-54.
Schaarschmidt, S., Lawas, L. M. F., Glaubitz, U., Li, X., Erban, A., Kopka, J., . . . Zuther, E. (2020). Season Affects Yield and Metabolic Profiles of Rice (Oryza sativa) under High Night Temperature Stress in the Field. Int J Mol Sci, 21 (9).
Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., . . . Frieler, K. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 8 , 13931.
Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., . . . Nayyar, H. (2018). Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front Plant Sci, 9 , 1705.
Seiler, G. J. (1998). Influence of temperature on primary and lateral root growth of sunflower seedlings. Environmental and Experimental Botany, 40 (2), 135-146.
Sharma, D. K., Andersen, S. B., Ottosen, C. O., & Rosenqvist, E. (2015). Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant, 153 (2), 284-298.
Sharratt, B. S. (1991). Shoot Growth, Root Length Density, and Water Use of Barley Grown at Different Soil Temperatures. Agronomy Journal, 83 (1), 237-239.
Shen, McLaughlin, N., Zhang, X., Xu, M., & Liang, A. (2018). Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci Rep, 8 (1), 4500.
Shen, Wang, L. M., Lin, X. L., Yao, Z., Xu, H. W., Zhu, C. H., . . . Peng, X. X. (2019). Engineering a New Chloroplastic Photorespiratory Bypass to Increase Photosynthetic Efficiency and Productivity in Rice.Mol Plant, 12 (2), 199-214.
Shi, Cui, M., Yang, L., Kim, Y. J., & Zhang, D. (2015). Genetic and Biochemical Mechanisms of Pollen Wall Development. Trends Plant Sci, 20 (11), 741-753.
Shi, Li, X., Schmidt, R. C., Struik, P. C., Yin, X., & Jagadish, S. V. K. (2018). Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice. Plant Cell Environ, 41 (6), 1287-1297.
Shi, Yin, X., Struik, P. C., Solis, C., Xie, F., Schmidt, R. C., . . . Jagadish, S. V. K. (2017). High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. J Exp Bot, 68 (18), 5233-5245.
Shu, K., Liu, X.-d., Xie, Q., & He, Z.-h. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9 (1), 34-45.
Shu, K., Meng, Y. J., Shuai, H. W., Liu, W. G., Du, J. B., Liu, J., & Yang, W. Y. (2015). Dormancy and germination: How does the crop seed decide? Plant Biology, 17 (6), 1104-1112.
Siebers, M. H., Yendrek, C. R., Drag, D., Locke, A. M., Rios Acosta, L., Leakey, A. D., . . . Ort, D. R. (2015). Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob Chang Biol, 21 (8), 3114-3125.
Silva, W. R. (1998). Seed performance after exposure to high temperatures. Scientia Agricola, 55 , 102-109.
Singh, S. K., Reddy, K. R., Reddy, V. R., & Gao, W. (2014). Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction. Photosynthetica, 52 (2), 262-271.
Song, S., Wang, G., Wu, H., Fan, X., Liang, L., Zhao, H., . . . Xing, Y. (2020). OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice.The Plant Journal, n/a (n/a).
Soppe, W., & Bentsink, L. (2016). Dormancy in Plants. In (pp. 1-7).
South, P. F., Cavanagh, A. P., Liu, H. W., & Ort, D. R. (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 365 (6452).
Stratonovitch, P., & Semenov, M. A. (2015). Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J Exp Bot, 66 (12), 3599-3609.
Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-Gyamfi, J. J., Nguyen, N. T., . . . Fujita, K. (2010). High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiol Biochem, 48 (2-3), 124-130.
Suzuki, K., Takeda, H., Tsukaguchi, T., & Egawa, Y. (2001). Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sexual Plant Reproduction, 13 , pages293–299.
Syeda, N., Khan, B., & Mohmand, A. (2000). The effect of storage temperature storage period and seed moisture content on seed viability to soybean. Pakistan Journal of Biological Sciences, 3 .
Tack, J., Barkley, A., & Nalley, L. L. (2015). Effect of warming temperatures on US wheat yields. Proc Natl Acad Sci U S A, 112 (22), 6931-6936.
Tao, F., Hu, Y., Su, C., Li, J., Guo, L., Xu, X., . . . Bahn, Y.-S. (2020). Revealing Differentially Expressed Genes and Identifying Effector Proteins of Puccinia striiformis f. sp. tritici in Response to High-Temperature Seedling Plant Resistance of Wheat Based on Transcriptome Sequencing. mSphere, 5 (3).
The Intergovernmental Panel on Climate Change (IPCC). (2007). An integrated view of climate change.
Thomas, J. F., & Raper, C. D. (1978). Effect of Day and Night Temperatures During Floral Induction on Morphology of Soybeans.Agronomy Journal, 70 (6), 893.
Tsai, W. A., Weng, S. H., Chen, M. C., Lin, J. S., & Tsai, W. S. (2019). Priming of Plant Resistance to Heat Stress and Tomato Yellow Leaf Curl Thailand Virus With Plant-Derived Materials. Front Plant Sci, 10 , 906.
Tyagi, S. K., & Tripathi, R. P. (1983). Effect of temperature on soybean germination. Plant and Soil, 74 (2), 273-280.
Uauy, C., Brevis, J. C., Chen, X., Khan, I., Jackson, L., Chicaiza, O., . . . Dubcovsky, J. (2005). High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet, 112 (1), 97-105.
Ullrich, S. E., Han, F., & Jones, B. L. (1997). Genetic Complexity of the Malt Extract Trait in Barley Suggested by QTL Analysis.Journal of the American Society of Brewing Chemists, 55 (1), 1-4.
Ulrich, W., Soliveres, S., Maestre, F. T., Gotelli, N. J., Quero, J. L., Delgado-Baquerizo, M., . . . Zaady, E. (2014). Climate and soil attributes determine plant species turnover in global drylands.Journal of biogeography, 41 (12), 2307-2319.
USDA - Natural Resources Conservation Service. (2020). Soils. https://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home/
Vara Prasad, P. V., Boote, K. J., Hartwell Allen Jr, L., & Thomas, J. M. G. (2003). Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology, 9 , 1775–1787.
Vu, L. D., Xu, X., Gevaert, K., & De Smet, I. (2019). Developmental Plasticity at High Temperature. Plant Physiol, 181 (2), 399-411.
Walker, B. J., VanLoocke, A., Bernacchi, C. J., & Ort, D. R. (2016). The Costs of Photorespiration to Food Production Now and in the Future.Annu Rev Plant Biol, 67 , 107-129.
Walter, A., Silk, W. K., & Schurr, U. (2009). Environmental effects on spatial and temporal patterns of leaf and root growth. Annu Rev Plant Biol, 60 , 279-304.
Wang, Dinler, B. S., Vignjevic, M., Jacobsen, S., & Wollenweber, B. (2015). Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci, 230 , 33-50.
Wang, Shang, H., Chen, X., Xu, X., & Hu, X. (2019). TaXa21, a Leucine-Rich Repeat Receptor-Like Kinase Gene Associated with TaWRKY76 and TaWRKY62, Plays Positive Roles in Wheat High-Temperature Seedling Plant Resistance to Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact, 32 (11), 1526-1535.
Wang, Tao, Tian, B., Sheng, D., Xu, C., Zhou, H., . . . Wang, P. (2019). Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 158 , 80-88.
Wang, Tao, F., Tian, W., Guo, Z., Chen, X., Xu, X., . . . Hu, X. (2017). The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One, 12 (7), e0181963.
Wang, Tao, H., Zhang, P., Hou, X., Sheng, D., Tian, B., . . . Huang, S. (2020). Reduction in seed set upon exposure to high night temperature during flowering in maize. Physiol Plant, 169 (1), 73-82.
Wang, J., Tao, F., An, F., Zou, Y., Tian, W., Chen, X., . . . Hu, X. (2017). Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Mol Plant Pathol, 18 (5), 649-661.
Wang, J., Tian, W., Tao, F., Wang, J., Shang, H., Chen, X., . . . Hu, X. (2019). TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici.Front Plant Sci, 10 , 1679.
Wang, Y., Tao, H., Zhang, P., Hou, X., Sheng, D., Tian, B., . . . Huang, S. (2019). Reduction in seed set upon exposure to high night temperature during flowering in maize. Physiol Plant .
Wardlaw, I. F. (2002). Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment.Ann Bot, 90 (4), 469-476.
Way, D. A., & Yamori, W. (2014). Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res, 119 (1-2), 89-100.
Webb, K. M., Ona, I., Bai, J., Garrett, K. A., Mew, T., Vera Cruz, C. M., & Leach, J. E. (2010). A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene.New Phytol, 185 (2), 568-576.
Wei, J., Liu, X., Li, L., Zhao, H., Liu, S., Yu, X., . . . Ma, H. (2020). Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean.BMC Plant Biol, 20 (1), 127.
Weng, J. H., & Chen, C. Y. (1987). Differences between Indica and Japonica rice varieties in CO2 exchange rates in response to leaf nitrogen and temperature. Photosynth Res, 14 (2), 171-178.
Whitney, S. M., Birch, R., Kelso, C., Beck, J. L., & Kapralov, M. V. (2015). Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc Natl Acad Sci U S A, 112 (11), 3564-3569.
Wiebbecke, C. E., Graham, M. A., Cianzio, S. R., & Palmer, R. G. (2012). Day Temperature Influences the Male-Sterile Locus ms9 in Soybean. Crop Science, 52 (4), 1503-1510.
World Resources Institute. (2018). How to Sustainably Feed 10 Billion People by 2050, in 21 Charts.
Wu, T.-t., Li, J.-y., Wu, C.-x., Sun, S., Mao, T.-t., Jiang, B.-j., . . . Han, T.-f. (2015). Analysis of the independent- and interactive-photo-thermal effects on soybean flowering. Journal of Integrative Agriculture, 14 (4), 622-632.
Xi, W., Liu, C., Hou, X., & Yu, H. (2010). MOTHER OF FT AND TFL1 Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in Arabidopsis. The Plant Cell, 22 (6), 1733.
Xu, Li, X., Zhang, H., Wang, L., Zhu, Z., Gao, J., . . . Zhu, Y. (2020). High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice.Plant Cell Environ .
Xu, Wolters-Arts, M., Mariani, C., Huber, H., & Rieu, I. (2017). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213 (7).
Yamori, W., Masumoto, C., Fukayama, H., & Makino, A. (2012). Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J, 71 (6), 871-880.
Yan, & Chen, X. (2008). Identification of a quantitative trait locus for high-temperature adult-plant resistance against Puccinia striiformis f. sp. hordei in ’Bancroft’ barley. Phytopathology, 98 (1), 120-127.
Yan, Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., . . . Dubcovsky, J. (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A, 103 (51), 19581-19586.
Yan, Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., . . . Dubcovsky, J. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303 (5664), 1640-1644.
Yan, Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., & Dubcovsky, J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A, 100 (10), 6263-6268.
Yan, A., & Chen, Z. (2017). The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Reports, 36 (5), 689-703.
Yang, Sears, R. G., Gill, B. S., & Paulsen, G. M. (2002). Quantitative and molecular characterization of heat tolerance in hexaploid wheat.Euphytica, 126 , 275–282.
Yang, D.-L., Yang, Y., & He, Z. (2013). Roles of Plant Hormones and Their Interplay in Rice Immunity. Molecular Plant, 6 (3), 675-685.
Yildiz, M., Beyaz, R., Gürsoy, M., Aycan, M., Koç, Y., & Kayan, M. (2017). Seed Dormancy. In.
Yin, Feng, F., Zhao, C., Yu, A., Hu, F., Chai, Q., . . . Guo, Y. (2016). Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int J Biometeorol, 60 (9), 1423-1437.
Yin, Zhang, Z., Deng, D., Chao, M., Gao, Q., Wang, Y., . . . Xu, C. (2014). Characterization of Rubisco activase genes in maize: an alpha-isoform gene functions alongside a beta-isoform gene. Plant Physiol, 164 (4), 2096-2106.
Yoshida, S. (1973). Effects of temperature on growth of the rice plant (Oryza sativaL.) in a controlled environment. Soil Science and Plant Nutrition, 19 (4), 299-310.
Yu, J., Han, J., Kim, Y. J., Song, M., Yang, Z., He, Y., . . . Zhang, D. (2017). Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci U S A, 114 (46), 12327-12332.
Zhang, Duan, L., Dai, J. S., Zhang, C. Q., Li, J., Gu, M. H., . . . Zhu, Y. (2014). Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA. Theor Appl Genet, 127 (2), 273-282.
Zhang, Li, G., Chen, T., Feng, B., Fu, W., Yan, J., . . . Fu, G. (2018). Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice (N Y), 11 (1), 14.
Zhang, Wu, S., Zhang, Y., Xu, T., Guo, F., Tang, H., . . . Xue, Y. (2016). A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.). PLoS Genet, 12 (7), e1006152.
Zhang, Yang, S., Wang, J., Jia, Y., Huang, J., Tan, S., . . . Tian, D. (2015). A genome-wide survey reveals abundant rice blast R genes in resistant cultivars. Plant J, 84 (1), 20-28.
Zhao, Antoniou-Kourounioti, R. L., Calder, G., Dean, C., & Howard, M. (2020). Temperature-dependent growth contributes to long-term cold sensing. Nature, 583 (7818), 825-829.
Zhao, Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., . . . Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A, 114 (35), 9326-9331.
Zhao, Piao, S., Wang, X., Huang, Y., Ciais, P., Elliott, J., . . . Penuelas, J. (2016). Plausible rice yield losses under future climate warming. Nat Plants, 3 , 16202.
Zhou, X. L., Wang, M. N., Chen, X. M., Lu, Y., Kang, Z. S., & Jing, J. X. (2014). Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759.Theor Appl Genet, 127 (4), 935-945.
Züst, T., & Agrawal, A. A. (2017). Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis.Annual Review of Plant Biology, 68 (1), 513-534.