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Abstract. In this paper, we introduce a new explicit extragradient algorithm for solving Variational Inequality

Problem (VIP) in Banach spaces. The proposed algorithm uses a linesearch method whose inner iterations is
independent of any projection onto feasible sets. Under standard and mild assumption of pseudomonotonicity

and uniform continuity of the VIP associated operator, we establish the strong convergence of the scheme.

Further, we apply our algorithm to find an equilibrium point with minimal environmental cost for a model in
electricity production. Finally, a numerical result is presented to illustrate the given model. Our result extends,

improves and unifies other related results in the literature.

1. introduction

Let C be a nonempty, closed and convex subset of a real Banach space E with dual space E∗. Let T : C → C
be a nonlinear mapping, a point x ∈ C is called a fixed point of T if x = Tx. We denote the set of fixed points
of T by F (T ). Let A : C → E∗ be a continuous mapping. The Variational Inequality Problem (for short, VIP)
is defined as: find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀ y ∈ C.(1.1)

We denote by V I(C,A), the solution set of Problem (1.1). It is well known that x solves (1.1) if and only if
x is the fixed point of the mapping T, where T = PC(I − λA) or equivalently, x solves the residual equation
rλ(x) = 0, where

rλ(x) := x− PC(x− λAx),(1.2)

for an arbitrary positive λ, see [26], for details. Therefore, the knowledge of fixed point algorithm is handful in
obtaining the solutions of (1.1).

Variational inequality plays an important role in studying a wide class of unilateral, obstacle and equilibrium
problems arising in several branches of pure and applied sciences in a unified and general framework (see [2, 8])
and the references therein. There have been extensive studies of this problem by several authors. Several iterative
algorithms have been developed for solving variational inequalities and related optimization problems in Hilbert,
Banach, Hadamard and p-uniformly convex metric spaces, see ([5, 6, 7, 15, 21, 20, 29, 35, 46, 48]).

In 1976, Korpelevich [30] introduced the extragradient method which is given by
x0 ∈ C,
yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), n ≥ 1,

(1.3)

where λ ∈ (0,
1

L
), for approximating solutions of VIP in a finite-dimensional space, where C ⊂ Rn is nonempty,

closed and convex and A : C → Rn is monotone L-Lipschitz continuous. Several modifications and extensions of
the extragradient method have been proposed in infinite-dimensional spaces (see [5, 23, 34]). However, there are
some setbacks that come with the use of the extragradient method, this include having prior knowledge of the
Lipschitz constant or some estimate of it at the least, also the projection onto the nonempty, closed and convex
subset C. It is well known that the projection onto C is computationally expensive if the feasible set C is not
simple. These reasons affect the effective usage and the efficiency of the extragradient method.
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In an attempt to overcome the difficulty resulting from the projection onto the set C, Bello and Iusem [9],
replaced the feasible set C by a finite sequence of projections onto suitable halfspaces with explicit formula. The
projection onto a suitably constructed halfspace can be calculated using an explicit formula given in [17].

Furthermore, overcoming the difficulty of having prior knowledge of the Lipschitz constant A or at least its
estimation, is found in some prediction of a stepsize with its further correction (see [2, 22, 25, 39]) or in a usage
of an Armijo linesearch rule along a feasible direction. Usually the Armijo linesearch rule has been found more
effective since the former approach preserves the disadvantage brought about by projecting onto feasible set
per iteration. Using the Armijo linesearch procedure and projected reflected gradient method (a modification
of extragradient method), weak convergences results have been recently obtained in infinite dimensional real
Hilbert spaces.

In some of those results, the monotonicity of A is required by the Lipschitz constant L of A may not necessarily
be needed for input parameters see (Theroem 3.1 [31] and Theorem 4.4 [32]).

Very recently, Kanzow and Shehu [28] prove strong convergence of a double projection method for monotone
variational inequality problem in a real Hilbert space. The method employed in [28] involves a stepsize rule
which might need some evaluations of A in the inner iteration without additional projections. To be precise,
they prove the strong convergence of the following porojection method:

Algorithm 1.1. Projection-type method

Step I: Choose the sequences {αn} and {βn} and take γ, σ ∈ (0, 1), s > 0. Let x1 be a given starting point. Set
n := 1

Step II: Set
wn := (1− αn)xn + αnx1.

If r(wn) := 0. STOP.
Step III: Let yn(η) := (1 − η)wn + ηPC(wn − Awn) for η ∈ R. Compute ηn as the maximum of the numbers

s, sγ, sγ2 . . . such that

〈Ayn(ηn), r(wn)〉 ≥ η

2
||r(wn)||2

and define yn := yn(ηn).
Step IV: Compute

λn :=
〈Ayn, wn − yn〉
||Ayn||2

,

xn+1 = ((1− βn)wn + βnPC(wn − λnAyn)).

Step V: Set n := n+ 1 and go to step II.

The sequences {αn} and {βn} are chosen such that

(i) lim
n→∞

αn = 0 and
∑∞
n=1 αn =∞;

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

The residual function rλ(x) = r1(x) := x− PC(x−Ax) from (1.2) with λ = 1.

In the infinite-dimensional case, many of the extragradient-like method schemes work for the larger class of mono-
tone mappings A. However, this methods may fail to work for pseudomonotone mappings when the underlining
space is infinite dimensional.

In this paper, motivated by the explicit method of Bello and Iusem [9] and the projection-type method of [28],
we propose an explicit extragradient method for obtaining a solution of a VIP. Using this proposed method, we
prove a strong convergence theorem for approximating a solution of VIP for a pseudomonotone operator A in
the framework of 2-uniformly convex and smooth Banach space. The following are the advantages the current
work have over some other works in this direction in the literature.

(i) Our method like the one in [28] employs the Armijo linesearch rule which only requires inner iteration
without employing additional projections.

(ii) Our strong convergence algorithm solves the VIP where the underlining operator is pseudomonotone.
(iii) Our result is obtained in a real Banach space which is more general than the real Hilbert space that

posses simple geometry.
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The rest of the paper will be organized as follows: In Section 2, we recall some basic definitions and give some
important results. We give some important discussions on the explicit extragradient method used in this paper
in Section 3. The convergence analysis of our proposed method is given in Section 4. Some applications of our
result, useful remarks and comments are given in Section 5.

2. preliminaries

We denote the weak and the strong convergence of a sequence {xn} to a point x by xn ⇀ x and xn → x
respectively.

Let E be a real Banach space, given a function g : E → R,

• g is called Gâteaux differentiable at x ∈ E, if there exists an element of E, denoted by g′(x) or Og(x)
such that

lim
t→0

g(x+ ty)− g(x)

t
= 〈y, g′(x)〉, y ∈ E,

where g′(x) or Og(x) is called Gâteaux differential or gradient of g at x. We say g is Gâteaux on E if
for each x ∈ E, g is Gâteaux differentiable at x;

• g is called weakly lower semicontinuous at x ∈ E, if xn ⇀ x implies g(x) ≤ lim inf
n→∞

g(xn). We say that g

is weakly lower semicontinuous on E, if for each x ∈ E, g is weakly lower semicontinuous at x;
• if g is a convex function, then it is said to be differentiable at a point x ∈ E if the following set

∂g(x) = {f ∈ E : g(y)− g(x) ≥ 〈f, y − x〉, y ∈ E}(2.1)

is nonempty. Each element ∂g(x) is called a subgradient of g at x or the subdifferential of g and the
inequality (2.1) is said to be the subdifferential inequality of g at x.
The function g is subdifferentiable at x, if g is subdifferntiable at every x ∈ E. It is well known that if g
is Gâteaux differentiable at x, then g is subdifferentiable at x and ∂g(x) = {g′(x)}, that is, ∂g(x) is just
a singleton set. For more details on Gâteaux differentiable functions and other geometric properties of
Banach space see [3, 38, 45, 47].

Let C be a nonempty, closed and convex subset of a real Banach space E with norm || · || and let J : E → 2E
∗

be the normalized duality mapping defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2, ∀x ∈ E},

where E∗ denotes the dual space of E and 〈·, ·〉 the duality pairing between the elements of E and E∗. Alber
[4], introduced a generalized projection operator ΠC which is an analogue of the metric projection PC : H → C
in the Hilbert space H. The generalized projection ΠC : E → C is defined by

ΠC(x) = inf
y∈C
{φ(y, x), ∀x ∈ E},

where φ is the Lyapunov functional φ : E × E → R+ defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2, ∀x, y ∈ E.

In the real Hilbert space, PC(x) ≡ ΠC(x) and φ(x, y) = ||x − y||2. It is obvious from the definition of the
functional φ that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2.

The functional φ also satisfy the following important properties:

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉(2.2)

and

2〈x− y, Jz − Jw〉 = φ(x,w) + φ(y, z)− φ(x, z)− φ(y, w).(2.3)

Note: If E is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0 if and only
if x = y, see [13, 51].

We also define the functional V : E × E∗ → R by

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2(2.4)
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for all x ∈ E and x∗ ∈ E∗. That is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. It is well known that if
E is a reflexive, strictly convex and smooth Banach space, then

V (x, x∗) ≤ V (x, x∗ + y∗)− 2〈J−1x∗ − x, y∗〉(2.5)

for all x ∈ E and all x∗, y∗ ∈ E∗, see [41].

Let C be a closed and convex subset of E and T : C → C be a mapping. A point p ∈ C is called an asymptotic
fixed point of T (see [40]) if C contains a sequence {xn} such that xn ⇀ p and ||xn − Txn|| → 0 as n → ∞.
We denote by F̂ (T ) the set of asymptotic fixed points of T. A mapping T : C → C is said to be relatively

nonexpansive if F̂ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ) (see [10, 11, 12]). T is
said to be φ-nonexpansive if φ(Tx, Ty) ≤ φ(x, y) for all x, y ∈ C and quasi-φ-nonexpansive if F (T ) 6= ∅ and
φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ).

It is known that the class of quasi-φ-nonexpansive mappings is more general than the class of relatively nonex-
pansive mapping which requires the strict condition F (T ) = F̂ (T ), see ([10, 11, 12]).

Let E be a real Banach space. The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) = inf{1− 1

2
||x+ y|| : ||x|| = ||y|| = 1, ||x− y|| ≥ ε}.(2.6)

Recall that E is said to be uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]. E is said to be strictly convex if
||x+ y||

2
< 1 for all x, y ∈ E with ||x|| = ||y|| = 1 and x 6= y. Also, E is p-uniformly convex if there exists a

constant cp > 0 such that δE(ε) > cpε
p for any ε ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ → R+ defined by

ρE(t) = sup{1

2
(||x+ ty|| − ||x− ty||)− 1 : ||x|| = ||y|| = 1}.(2.7)

E is said to be uniformly smooth if lim
t→0

ρE(t)

t
= 0. Let 1 < q ≤ 2, then E is q-uniformly smooth if there exists

cq > 0 such that ρE(t) ≤ cqtq for t > 0. It is known that E is p-uniformly convex if and only if E∗ is q-uniformly
smooth, where (p−1 + q−1 = 1). It is also known that every q-uniformly smooth Banach space is uniformly
smooth.

It is widely known that if E is uniformly smooth, then the duality mapping J is norm-to-norm continuous on
each bounded subset of E. The following are some important and useful properties of J, for further details, see
[1, 51]:

Let C ⊆ E be a nonempty set. Then a mapping A : C → E is called

(a) monotone on E, if 〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ E;
(b) pseudomonotone on E, if for all x, y ∈ E, 〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 ≥ 0;
(c) Lipschitz continuous on E, if there exists a constant L > 0 such that ||Ax − Ay|| ≤ L||x − y|| for all

x, y ∈ E.

Every monotone operator is pseudomonotone but the converse is not true (see for example [43]).

We now give the following useful and important lemmas that are needed in establishing our main results:

Lemma 2.1. [16] Let C be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth
Banach space E. For any x ∈ E and λ > 0, we denote

rλ(x) = x−ΠCJ
−1(Jx− λAx)

then

min{1, λ}||r1(x)|| ≤ ||rλ(x)|| ≤ max{1, λ}||r1(x)||.
Lemma 2.2. [52] Given a number s > 0. A real Banach space X is uniformly convex if and only if there exists
a continuous strictly increasing function h : [0,∞)→ [0,∞) with h(0) = 0 such that

||tx+ (1− t)y||2 ≤ t||x||2 + (1− t)||y||2 − t(1− t)h(||x− y||),
for all x, y ∈ X, t ∈ [0, 1], with ||x|| < s and ||y|| < s.

Lemma 2.3. [27] Let E be a smooth and uniformly convex real Banach space and let {xn} and {yn} be two
sequences in E. If either {xn} or {yn} is bounded and φ(xn, yn)→ 0 as n→∞, then ||xn− yn|| → 0 as n→∞.
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Lemma 2.4. [4] Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach space X. If x ∈ E and q ∈ C, then

q = ΠCx ⇐⇒ 〈y − q, Jx− Jq〉 ≤ 0, ∀y ∈ C(2.8)

and

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C, x ∈ X.(2.9)

Lemma 2.5. [36] Let {an} be a sequence of nonnegative real numbers satisfying the following relation

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0

where

(a) {αn} ⊂ [0, 1], lim
n→∞

αn = 0 and
∑∞
n=1 αn =∞;

(b) lim sup
n→∞

σ ≤ 0;

(c) γn ≥ 0, (n ≥ 1) and
∑∞
n=1 γn <∞.

Then, lim
n→∞

an = 0.

Lemma 2.6. [49, 50] Let {an} be a sequence of real numbers such that there exists a subsequence {nj} of {n}
such that anj < anj+1 for all j ∈ N. Then, there exists a nondecreasing subsequence {mn} ⊂ N such that
mn →∞ and the following properties are satisfied by all (sufficiently large) numbers n ∈ N: amn

< amn+1 and
an < amn+1. In fact, mn = max{i ≤ k : ai < ai+1}.

The following is a special case of ([18], Lemma 1).

Lemma 2.7. For all v 6= 0 ∈ E, ȳ ∈ E, x ∈ d+ and x̄ ∈ d−. We have that φ(x̄, x) ≥ φ(x̄, z) + φ(z, x), where
z := Πdx with d := {y ∈ E : 〈v, y − ȳ〉 = 0}, whereas d+ and d− are defined by d+ := {y ∈ E : 〈v, y − ȳ〉 ≥ 0}
and d− := {y ∈ E : 〈v, y − ȳ〉 ≤ 0}, respectively.

The following was stated and proved in ([19], Prop 2.11), see also ([18], Prop 4).

Lemma 2.8. Let E1 and E2 be two real Banach spaces. Suppose A : E1 → E2 is uniformly continuous on
bounded subsets of E1 and M is a bounded subset of E1. Then, A(M) is bounded.

The following result was stated in real Hilbert space, see ([33]). The result can be applied on a real Banach
space.

Lemma 2.9. Consider VIP (1.1). If the mapping f : [0, 1]→ E is defined as f(t) = A(tx+(1−t)y) is continuous
for all x, y ∈ C (i.e f is hemicontinuous), then M(A,C) ⊂ V I(C,A). Moreover, if A is pseudomonotone, then
V I(C,A) is closed and convex and M(A,C) = V I(C,A), where M(A,C) := {x ∈ C : 〈Ay, y − x〉 ≥ 0,∀y ∈ C}.

3. Explicit Extragradient Method

In this section, we give a concise and precise statement of our algorithm, discuss some of its elementary
properties and its convergence analysis. The convergence analysis is given in the next section.

Statement 3.1. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth
real Banach space E with dual space E∗. For i = 1, 2 · · ·m, let gi : E → R be a family of convex, weakly
lower semicontinous and Gâteaux differentiable functions such that g′i(·) is Li-Lipschitz continuous with L =
max1≤i≤m Li. Let A : C → E∗ be a pseudomonotone operator which is uniformly continuous on bounded subsets
of C.

Assumption 3.2. We require the following assumption for our operator and the solution set:

A1. A : C → E∗ is a pseudomonotone and uniformly continuous on bounded subsets of C.
A2. The solution set V I(C,A) is nonempty.

Assumption 3.3. For the convergence of the Algorithm 3.4, we make the following assumptions:
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B1. The feasible set C is defined by
C := ∩mi=1C

i

where
Ci := {z ∈ E : gi(z) ≤ 0};

B2. {αn} ⊂ (0, 1) with lim
n→∞

αn = 0 and
∑∞
n=0 αn =∞;

B3. 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Algorithm 3.4. Explicit extragradient algorithm

Step I: Choose the sequences {αn} and {βn} satisfying Assumption 3.3, take η, µ ∈ (0, 1) and λ ∈ (0, 1). Let
x0 ∈ C be a given starting point. Set n = 1.

Step II: For i = 1, 2 · · · ,m and given the current iterate wn, construct the family of half spaces

Cin := {z ∈ E : gi(wn) + 〈g′i(wn), z − wn〉 ≤ 0}
and set

Cn = ∩mi=1C
i
n.

Let wn := J−1(αnJx0 + (1− αn)Jxn) and compute

zn = ΠCnJ
−1(Jwn − λAwn).

If rλ(wn) = 0 : STOP.
Step III: Compute yn = wn − θnrλ(wn), n ≥ 1, where θn = ηmn and mn is the smallest positive whole number

m such that

〈Ayn, rλ(wn)〉 ≥ µ

2
φ(wn, zn).

Step IV: Define
xn+1 = J−1((1− βn)Jwn + βnJΠCn(wn − γnAyn)),

where

γn =
〈Ayn, wn − yn〉
||Ayn||2

.

Step V: Set n := n+ 1 and go to step I.

Remark 3.5. From the definition of C and Cn, it is easy to see that C ⊂ Cn. Indeed, for each i ∈ I and x ∈ Ci,
we have by the subdifferential inequality that

gi(xn) + 〈g′i(xn), x− xn〉 ≤ gi(x) ≤ 0.

By the definition of Cin, we have that x ∈ Cin. Hence, Ci ⊂ Cin for all i ∈ I and therefore C ⊂ Cn for all n ≥ 1.

Note that if rλ(wn) = wn− zn = 0, we have arrived at the solution of the variational inequality. We will assume
implicitly in our convergence analysis that this does not occur after finitely many iterations, so that Algorithm
3.4 generates an infinite sequence satisfying in particular rλ(wn) 6= 0 for all n ∈ N. We will show that this
property implies that Algorithm 3.4 is well defined.

Next we show that Algorithm 3.4 is well defined. This implies that the algorithm terminates after finitely many
inner loops.

Proposition 3.6. There exists a nonnegative integer ηmn
satisfying Step III.

Proof. Let n ∈ N be an arbitrary number. Following our assumption rλ(wn) 6= 0. Assume the contrary, that is,
the step size rule does not terminate after finitely many iterations. We have

〈A((1− ηmn
)wn + ηmn

zn), rλ(wn)〉 < µ

2
φ(wn, zn), ∀ mn = m ≥ 0.(3.1)

Letting m→∞, we obtain by the continuity of A, that

〈Awn, rλ(wn)〉 ≤ µ

2
φ(wn, zn).

Let dn = J−1(Jwn − λAwn), then Jdn = Jwn − λAwn and

1

λ
〈Jwn − Jdn, rλ(wn)〉 ≤ µ

2
φ(wn, zn)
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that is

2〈Jwn − Jdn, rλ(wn)〉 ≤ λµφ(wn, zn).

Using (2.2), we obtain

2〈Jwn − Jdn, rλ(wn)〉 = φ(wn, zn) + φ(wn, dn)− φ(zn, dn),

that is

φ(wn, zn) + φ(wn, dn)− φ(zn, dn) ≤ λµφ(wn, zn).

Since λ, µ ∈ (0, 1) and φ(wn, zn), we obtain

φ(wn, zn) + φ(wn, dn)− φ(zn, dn) ≤ φ(wn, zn).

Hence,

φ(wn, dn) < φ(zn, dn).(3.2)

Since dn = J−1(Jwn − λAwn) by definition and wn ∈ C , inequality (3.2) contradicts the definition of the
generalized projection operator ΠCn . The result follows. �

We obtain the following as a consequence of Lemma 3.6. In the following result we show that γn defined in
Step IV is well defined.

Corollary 3.7. 〈Ayn, xn − yn〉 > 0. In particluar, Ayn 6= 0 and therefore γn is well defined and positive.

Proof. Consider again a fixed n ∈ N. Recall by Lemma 2.1, that ||rλ(wn)|| > 0 holds due to our implicit
assumption regarding the termination of the algorithm. Since the step size rule in Step III is well defined by
Lemma 3.6, the definition of yn yields

〈Ayn, xn − yn〉 = θn〈Ayn, rλ(wn)〉 ≥ µθn
2
φ(wn, zn) > 0.(3.3)

Hence proved. �

4. Convergence Analyis

In this section, we show that Algorithm 3.4 generates a sequence {xn} which converges strongly to the solution
of the variational inequality. Firstly, we prove a result which guarantees the existence of weak cluster points of
the sequence. That is, we show that {xn} is bounded.

Proposition 4.1. Let Assumption 3.2, B2 and B3 of Assumption 3.3 hold. Then the sequence {xn} defined by
Algorithm 3.4 is bounded.

Proof. Define for each n the sets

h−n : = {z ∈ E : 〈Ayn, z − yn〉 ≤ 0},
hn : = {z ∈ E : 〈Ayn, z − yn〉 = 0},
h+n : = {z ∈ E : 〈Ayn, z − yn〉 ≥ 0},(4.1)

where {yn} is defined as in Algorithm 3.4. Recall from Corollary 3.7, that Ayn 6= 0.

Let p ∈ V I(C,A). Since A is pseudomonotone, we have 〈Ax, x − p〉 ≥ 0,∀x ∈ C. This implies p ∈ h−n for all
n ∈ N since yn ∈ C. We again assume that Algorithm 3.4 does not terminate after finitely many iterations. We
have 〈Ayn, wn − yn〉 > 0 by Corollary 3.7. Therefore, wn ∈ h+n and wn /∈ h−n for all n ∈ N. Using the definition
of γn, we obtain

un = wn − γnAyn

= wn −
〈Ayn, wn − yn〉
||Ayn||2

Ayn

= Πhn
wn.

Hence, un is the generalized projection of wn onto the set hn. In particular, we have that un ∈ hn.

Using Lemma 2.7, we obtain

φ(p, wn) ≥ φ(p, un) + φ(wn, un).(4.2)
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Define vn := ΠCn
(wn − γnAyn) = ΠCn

(un). Using (2.2) and (2.8), we obtain

φ(p, vn) + φ(un, vn)− φ(p, un) = 2〈Jun − Jvn, p− vn〉 ≤ 0.

This implies

φ(p, un) ≥ φ(p, vn) + φ(un, vn).(4.3)

Combining (4.2) and (4.3), we obtain

φ(p, wn) ≥ φ(p, vn) + φ(un, vn) + φ(wn, un).

Therefore,

φ(p, vn) ≤ φ(p, wn)− φ(un, vn)− φ(wn, un).(4.4)

From the positivity of φ(·, ·), we obtain

φ(p, vn) ≤ φ(p, wn).

Further, from Algorithm 3.4, we have

φ(p, xn+1) = φ(p, J−1((1− βn)Jwn + βnJvn))

= ||p||2 − 2〈p, (1− βn)Jwn + βnJvn〉+ ||(1− βn)Jwn + βnJwn||2

= ||p||2 − 2〈p, (1− βn)Jwn + βnJvn〉+ (1− βn)||wn||2 + βn||vn||2 − βn(1− βn)g(||Jwn − Jvn||)
= (1− βn)φ(p, wn) + βnφ(p, vn)− βn(1− βn)g(||Jwn − Jvn||)
= φ(p, wn)− βn(1− βn)g(||Jwn − Jvn||).

But,

φ(p, wn) = φ(p, J−1(αnJx0 + (1− αn)Jxn))

= ||p||2 − 2〈p, αnJx0 + (1− αn)Jxn〉+ ||αnJx0 + (1− αn)Jxn||2

= ||p||2 − 2αn〈p, Jx0〉 − 2(1− αn)〈p, Jxn〉+ αn||x0||2 + (1− αn)||xn||2 − αn(1− αn)g(||Jx0 − Jxn||)
≤ αnφ(p, x0) + (1− αn)φ(p, xn).(4.5)

Thus

φ(p, xn+1) ≤ αnφ(p, x0) + (1− αn)φ(p, xn)

≤ max{φ(p, x0), φ(p, xn)}

≤
...

≤ max{φ(p, x0), φ(p, x0)} = φ(p, x0).

This shows that the sequence {xn} is bounded. �

Note that in the proof of Proposition 4.1, we have not used the uniform continuity assumption on A on bounded
subsets of C. Furthermore, it does not require condition B2 of Assumption 3.3. As a direct consequence, we
have that {Axn} is bounded. Also, the sequences {zn}, {yn} and {Ayn} are bounded.

The following Lemma is required to prove our strong convergence.

Lemma 4.2. The sequence {xn} generated by Algorithm 3.4 satisfies the following estimates:

(i) an+1 ≤ (1− αn)an + αnbn;
(ii) −1 ≤ lim sup

n→∞
bn < +∞.

where an = φ(p, xn), bn = 〈xn+1 − p, Jx0 − Jp〉 and p = ΠV I(C,A)x0.

Proof. From Algorithm 3.4 and (2.5), we have

φ(p, xn+1) = φ(p, J−1((1− βn)Jwn + βnJvn))

= ||p||2 − 2〈p, (1− βn)Jwn + βnJvn〉+ ||(1− βn)Jwn + βnJvn||2

= ||p||2 − 2(1− βn)〈p, Jwn〉 − 2βn〈p, Jvn〉+ (1− βn)||wn||2 + βn||vn||2 − βn(1− βn)g(||Jwn − Jvn||)
= (1− βn)φ(p, wn) + βnφ(p, vn)− βn(1− βn)g(||Jwn − Jvn||)
≤ φ(p, wn),(4.6)
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that is

φ(p, xn+1) ≤ φ(p, J−1(αnJx0 + (1− αn)Jxn))

= V (p, αnJx0 + (1− αn)Jxn)

≤ V (p, αnJx0 + (1− αn)Jxn − αn(Jx0 − Jp)) + 2〈αn(Jx0 − Jp), J−1(αnJx0 + (1− αn)Jxn)− p〉
= V (p, αnJp+ (1− αn)Jxn) + 2αn〈xn+1 − p, Jx0 − Jp〉
≤ αnφ(p, p) + (1− αn)φ(p, xn) + 2αn〈xn+1 − p, Jx0 − Jp〉
≤ (1− αn)φ(p, xn) + 2αn〈xn+1 − p, Jx0 − Jp〉.(4.7)

This establishes (i). Next we prove (ii). Since {xn} is bounded, we have

sup
n≥0

bn ≤ sup 2||Jx0 − Jp||||xn+1 − p|| <∞.

This implies that lim sup
n→∞

bn < ∞. We now show that lim sup
n→∞

bn ≥ −1. We assume the contrary, that is

lim sup
n→∞

bn < −1. Then there exists n0 ∈ N such that bn < −1, for all n ≥ n0. Then for all n ≥ n0, we get

from that

an+1 ≤ (1− αn)an + αnbn

< (1− αn)an − αn
= an − αn(an + 1)

≤ an − αn
By induction on the last inequality, we get

an+1 ≤ an0 −
n∑

i=n0

αi.(4.8)

Taking superior limits of both sides in the inequality above, we obtain

lim sup
n→∞

an ≤ an0
− lim
n→∞

n∑
i=n0

αi = −∞.(4.9)

This contradicts the fact that {an} is nonnegative. Therefore (ii) holds. �

Recall by Proposition 4.1, that {xn} is bounded. This implies there exists at least one weak limit. The following
result provides a condition under which each of such weak limit belongs to the solution of the variational
inequality.

Lemma 4.3. Let {wnk
} and {vnk

} be subsequences of {wn} and {vn} respectively, such that ||wnk
− vnk

|| = 0
as k →∞, then lim

k→∞
〈Awnk

, x− wnk
〉 ≥ 0 and lim

k→∞
||wnk

− znk
|| = 0.

Proof. Let un and vn be defined as above. We divide the proof into three steps. First, we show that 〈Aynk
, wnk

−
ynk
〉 = 0 as k →∞ holds on the chosen subsequence. To this end, replace p by q in (4.4), then

φ(unk
, wnk

) ≤ φ(q, wnk
)− φ(q, vnk

)

= ||wnk
||2 − ||vnk

||2 + 2〈q, Jvnk
− Jwnk

〉
≤ ||wnk

− vnk
||(||vnk

||+ ||wnk
||) + 2||q||||Jwnk

− Jvnk
|| → 0 as k →∞.(4.10)

By Lemma 2.3, we obtain

lim
k→∞

||unk
− wnk

|| = 0.(4.11)

Now since un ∈ dn, we have

0 = 〈Ayn, un − yn〉 = 〈Ayn, un − wn〉+ 〈Ayn, wn − yn〉.
Using the boundedness of {||Ayn||}, we get

|〈Aynk
, wnk

− ynk
〉| ≤ ||Aynk

||||wnk
− unk

|| → 0, k →∞.(4.12)

Therefore, lim
k→∞

〈Aynk
, wnk

− ynk
〉 = 0. Secondly, we show that there exists {wnk

} such that, for all x ∈ C we

have lim
k→∞

〈Awnk
, x− wnk

〉 ≥ 0.



10 1 OLAWALE KAZEEM OYEWOLE, 2LATEEF OLAKUNLE JOLAOSO, 3OLUWATOSIN TEMITOPE MEWOMO.

In so doing, choose the subsequence {znk
} of {zn} with znk

:= ΠCnk
J−1(Jwnk

− λAwnk
) for all k ∈ N. We now

consider two cases depending on the behaviour of the bounded sequence of step sizes {θnk
}.

Case 1: Suppose that lim
k→∞

θnk
= 0. Subsequencing if necessary, we may assume without loss of generality

that lim
k→∞

θnk
= 0. We first show that lim

k→∞
||wnk

− znk
|| = 0. It suffices to show that lim sup

k→∞
||wnk

− znk
|| = 0

holds. Assume the contrary that lim sup
k→∞

||wnk
− znk

|| = δ > 0. Observe that δ 6= +∞, {wnk
− znk

} is bounded.

Hence, δ < +∞. Let ȳk = 1
l θnk

znk
+(1− 1

l θnk
)wnk

or equivalently, ȳk−wnk
= 1

l θnk
(znk
−wnk

). Since {znk
−wnk

}
is bounded and lim

k→∞
θnk

= 0, it follows that

lim
k→∞

||ȳk − wnk
|| = 0.(4.13)

From the step size rule and the definition of ȳk, we get

〈Aȳk, wnk
− znk

〉 < µ

2
φ(wnk

, znk
), k ∈ N.(4.14)

Since A is uniformly continuous on bounded subsets of C, µ ∈ (0, 1) and the right hand side is bounded from
below by a positive constant, we obtain from (4.13), that there exists n ∈ N such that

0 = 2〈Awnk
, wnk

− znk
〉 − 2〈Awnk

, wnk
− znk

〉
> µφ(wnk

, znk
), k ∈ N, K ≥ N.(4.15)

This is a contradiction since µ > 0 and φ(·, ·) ≥ 0. Therefore, lim sup
k→∞

φ(wnk
, znk

) = 0, by Lemma 2.3, we obtain

lim
k→∞

||wnk
− znk

|| = 0.(4.16)

Case 2: Suppose lim inf
k→∞

θnk
> 0. Then there exists a constant θ such θnk

≥ θ > 0 holds for all k ∈ N. It follows

from the step size rule in Algorithm 3.4, that

〈Aynk
, wnk

− ynk
〉 ≥ µ

2
θnk

φ(wnk
, znk

).(4.17)

Therefore, by the first step and Lemma 2.3, we have lim
k→∞

||wnk
− znk

|| = 0. �

Lemma 4.4. There exists a subsequence {wnk
} of {wn} such that for all x ∈ C, 0 ≤ lim inf

k→∞
〈Awnk

, x− wnk
〉.

Proof. By the definition of znk
together with (2.8), we obtain

〈Jwnk
− λAwnk

− Jznk
, x− znk

〉 ≤ 0, x ∈ Cnk
.(4.18)

This implies that
〈Jwnk

− Jznk
, x− znk

〉 ≤ λ〈Awnk
, x− znk

〉, ∀x ∈ Cnk
.

Hence
〈Jwnk

− Jznk
, x− znk

〉+ λ〈Awnk
, znk

− wnk
〉 ≤ λ〈Awnk

, x− wnk
〉, ∀x ∈ Cnk

.

Fix x ∈ Cnk
and let k → ∞. Using the continuity of J on bounded subsets of E, λ ∈ (0, 1) and the fact that

lim
k→∞

||wnk
− znk

|| = 0. We have that 0 ≤ lim inf
k→∞

〈Awnk
, x− wnk

〉 for all x ∈ Cnk
. Thus, conclusion follows from

this, the fact that wnk
∈ C and C ⊂ Cnk

. �

Next we show that q ∈ V I(C,A)

Lemma 4.5. Let {wnk
} be a subsequence of {wn} such that wnk

⇀ q, then q ∈ V I(C,A).

Proof. First, we show that q ∈ C. Indeed, it follows from znk
∈ Cnk

that

gi(wnk
) + 〈g′i(wnk

), znk
− wnk

〉 ≤ 0.

By using Cauchy Schwartz inequality, we have

gi(wn) ≤ 〈g′i(wnk
), wnk

− znk
〉

≤ ||g′i(wnk
)|| · ||wnk

− znk
||.

Since g′i is Lipschitz continuous and {wnk
} is bounded, we have that {g′i(wnk

)} is bounded. Thus, there exists
Li > 0 such that ||g′i(wnk

)|| for each i. Therefore, we obtain

gi(wnk
) ≤ L · ||wnk

− znk
||,
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where L = max1≤i≤m{Li}. Hence, by the weakly continuity of gi and Lemma 4.3, we have

gi(q) ≤ lim inf
k→∞

gi(wnk
) ≤ lim

k→∞
L · ||wnk

− znk
|| = 0.

Thus, q ∈ C.

Now, take an arbitrary x ∈ C and fix a positive number ε. Using the previous result, we can obtain N large
enough such that

〈Awnk
, x− wnk

〉+ ε ≥ 0, ∀ k ≥ N.
For some bnk

∈ E satisfying 〈Awnk
, bnk
〉 = 1, since Awnk

≥ 0, we can rewrite the above inequality as

〈Awnk
, x+ εbnk

− wnk
〉 ≥ 0, k ≥ N.(4.19)

Using the fact A is pseudomonotone in (4.19), we get

〈A(x+ εbnk
), x+ εbnk

− wnk
〉 ≥ 0, ∀k ≥ N.

Thus,

〈Ax, x− wnk
〉 ≥ 〈Ax−A(x+ εbnk

), x+ εbnk
− wnk

〉 − ε〈Ax, bnk
〉, k ≥ N.

Let ε→ 0, then by the continuity of A and boundedness of {wn} we have

lim inf
k→∞

〈Ax, x− wnk
〉 ≥ 0.

Since ||Jwnk
− Jxnk

|| ≤ αnk
||Jx0 − Jxnk

|| → 0, by the uniform continuity of J on bounded subsets of C, we
obtain ||wnk

− xnk
|| → 0 as k →∞. Thus, xnk

⇀ q implies wnk
⇀ q. We, therefore, have for all x ∈ C,

〈Ax, x− q〉 = lim
k→∞

〈Ax, x− wnk
〉 = lim inf

k→∞
〈Ax, x− wnk

〉 ≥ 0.(4.20)

We obtain by Lemma 2.9 that q ∈ V I(C,A). �

We now state and prove the strong convergence of the sequence {xn} generated by Algorithm 3.4 to the solution
of the underlying variational inequality.

Theorem 4.6. Given Statement 3.1 and assume Assumptions 3.2 and 3.3 hold. Then, the sequence {xn}
generated by Algorithm 3.4 converges strongly to the point p = ΠV I(C,A)x0.

Proof. Let p ∈ V I(C,A). As in previous proofs, we maintain the notations un and vn, that is un = wn − γnAyn
and vn = ΠQn

(un) = ΠQn
(wn − γnAyn). Then, from Algorithm 3.4, we obtain

φ(p, xn+1) = φ(p, J−1((1− βn)Jwn + βnJvn))

= ||p||2 − 2〈p, (1− βn)Jwn + βnJvn〉+ ||(1− βn)Jwn + βnJvn||2

= ||p||2 − 2(1− βn)〈p, Jwn〉 − 2βn〈p, Jvn〉+ (1− βn)||wn||2 + βn||vn||2 − βn(1− βn)h(||Jwn − Jvn||)
= (1− βn)φ(p, wn) + βnφ(p, vn)− βn(1− βn)h(||Jwn − Jvn||)
≤ (1− βn)φ(p, wn) + βnφ(p, wn)− βn(1− βn)h(||Jwn − Jvn||)
= φ(p, wn)− βn(1− βn)h(||Jwn − Jvn||),(4.21)

which implies, φ(p, xn+1) ≤ φ(p, wn). Hence,

φ(p, xn+1) ≤ φ(p, wn) = φ(p, J−1(αnJx0 + (1− αn)Jxn))

= V (p, αnJx0 + (1− αn)Jxn)

≤ V (p, αnJx0 + (1− αn)Jxn − αn(Jx0 − Jp)) + 2αn〈J−1(αnJx0 + (1− αn)Jxn)− p, Jx0 − Jp〉
≤ αnV (p, Jp) + (1− αn)V (p, Jxn) + 2αn〈xn+1 − p, Jx0 − Jp〉
≤ (1− αn)φ(p, xn) + 2αn〈xn+1 − p, Jx0 − Jp〉.(4.22)

We divide the rest of the proof into two cases.

Case 1: Suppose that there exists n0 ∈ N such that the sequence {φ(p, xn)} is monotone non-increasing.
Since {φ(p, xn)} is bounded, it is convergent and hence

φ(p, xn)− φ(p, xn+1)→ 0, as n→∞.
We obtain from (4.21) and simple estimation on φ(p, wn), that

βn(1− βn)g(||Jwn − Jvn||) ≤ φ(p, Jx0) + (1− αn)φ(p, xn)− φ(p, xn+1).
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Using conditions B2, B3 and the property of h, we have ||Jvn − Jwn|| → 0 as n → ∞. Thus, by the uniform
continuity of J on the bounded subsets, we get

lim
n→∞

||wn − vn|| = 0.(4.23)

Furthermore,

||Jxn+1 − Jwn|| = βn||Jvn − Jwn|| → 0, as n→∞.(4.24)

Since J is norm-to-norm continuous on bounded subsets of E, we have ||xn+1 −wn|| → 0 as n→∞. Therefore,

||xn+1 − xn|| ≤ ||xn+1 − wn||+ ||wn − xn|| → 0, as n→∞.(4.25)

We now show that, the sequence {xn} converges strongly to p = ΠV I(C,A)x0. Let {xnj
} be a subsequence of

{xn} such that xnj
⇀ q and

lim sup
n→∞

〈xn+1 − p, Jx0 − Jp〉 = lim
j→∞
〈xnj+1 − p, Jx0 − Jp〉.

Since ||xn+1 − xn|| → 0 as n→∞, we have from Lemma 2.4 equation (2.8), that

lim sup
n→∞

〈xn+1 − p, Jx0 − Jp〉 = lim
j→∞
〈q − p, Jx0 − Jp〉.(4.26)

It follows from Lemma 2.5, Lemma 4.2 (i) and (4.26), that φ(p, xn) → 0 as n → ∞. Therefore, by Lemma 2.3,
that

lim
n→∞

||p− xn|| = 0.

This implies {xn} converges strongly to p = ΠV I(C,A)x0.

Case 2: Suppose that there exists a subsequence {xnj
} of {xn} such that φ(p, xnj

) < φ(p, xnj+1), ∀n ∈ N.

By Lemma 2.6, ther exists a non-decreasing sequence {mn} ⊂ N such that mn →∞ and the following inequality
holds

φ(p, xmn) ≤ φ(p, xmn+1) and φ(p, xn) ≤ φ(p, xmn+1).(4.27)

Note that from

φ(p, xmn) ≤ φ(p, xmn+1) ≤ (1− βmn)φ(p, wmn) + βmnφ(p, vmn)− βmn(1− βmn)h(||Jvmn − Jwmn ||)
≤ φ(p, wmn)− βmn(1− βmn)h(||Jvmn − Jwmn ||)
≤ αmnφ(p, x0) + (1− αmn)φ(p, xmn)− βmn(1− βmn)h(||Jvmn − Jwmn ||).

Hence,

βmn(1− βmn)h(||Jvmn − Jwmn ||) ≤ ≤ φ(p, xmn)− φ(p, xmn) + αmnM1

≤ αmnM1 → 0 as n→∞.(4.28)

By following the same argument as in Case 1, we obtain ||vmn
−zmn

|| → 0, ||wmn
−xmn

|| → 0, ||xmn+1−wmn
|| →

0 and ||xmn+1 − xmn || → 0 as n→∞. Since {xmn} is bounded, there exists a subsequence, still denoted {xmn}
such that xmn ⇀ q ∈ C as n→∞ and

lim sup
n→∞

〈xmn+1 − p, Jx0 − Jp〉 = lim
n→∞

〈xmn+1 − p, Jx0 − Jp〉.

Hence from (2.8), we have

lim sup
n→∞

〈xmn+1 − p, Jx0 − Jp〉 = lim
n→∞

〈q − p, Jx0 − Jp〉 ≤ 0.

From (4.27), we have

0 ≤ φ(p, xmn+1)− φ(p, xmn)

≤ (1− αmn)φ(p, xmn) + 2αmn〈xmn+1 − p, Jx0 − Jp〉 − φ(p, xmn).

Since αmn
> 0, we get

φ(p, xmn
)→ 0 as n→∞(4.29)

and by Lemma 2.3, we obtain lim
n→∞

||xmn
−p|| = 0. Consequently, we obtain ||xn−p|| → 0 as n→∞. Therefore,

the sequence {xn} converges strongly to p = ΠV I(C,A)x0. �

We obtain a result given in the real Hilbert space as a direct consequence of our main theorem:
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Corollary 4.7. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let gi : H → R,
i = 1, 2 . . . ,m, be family of convex, weakly lower semicontinuous and Gâteaux differentiable functions, A : C → H
be a bounded, uniformly continuous pseudomonotone operator. Suppose V I(C,A) 6= ∅ and Assumption 3.3 is
satisfied. Then the sequence {xn} given by the following Algorithm 4.8 converges strongly to a unique solution
p = PV I(C,A)x0, where PV I(C,A) is the metric projection of C onto V I(C,A).

Algorithm 4.8. Explicit extragradient algorithm

Step I: Choose the sequences {αn} and {βn} satisfying Assumption 3.3, take η, µ ∈ (0, 1) and λ ∈ (0, 1). Let x0
be a given starting point. Set n = 1.

Step II: For i = 1, 2 · · · ,m and given the current iterate wn, construct the family of half spaces

Cin := {z ∈ E : gi(wn) + 〈g′i(wn), z − wn〉 ≤ 0}

and set

Cn = ∩mi=1C
i
n.

Let wn := (αnx0 + (1− αn)xn) and compute

zn = PCn
(wn − λAwn).

If rλ(wn) = 0 : STOP.
Step III: Compute yn = wn − θnrλ(wn), n ≥ 1, where θn = ηmn and mn is the smallest positive whole number

m such that

〈Ayn, rλ(wn)〉 ≥ µ

2
||wn − zn||.

Step IV: Define

xn+1 = ((1− βn)Jwn + βnPCn(wn − γnAyn))

where

γn =
〈Ayn, wn − yn〉
||Ayn||2

.

Step V: Set n := n+ 1 and go to step I.

Remark 4.9. We remark that Algorithm 4.8 coincides with Algorithm 1.1 and Corollary 4.7 coincides with
Theorem 4.4 of [28] when the half space Cn is replaced by a feasible set C and the pseudomontone A is reduced
to a monotone operator.

5. A practical model and computational results

In this section, we provide an application of our main result in the form of an equilibrium-optimization which can
be regarded as an extension of a Nash-Cournot oligopolistic equilibrium in electricity markets. The equilibrium-
optimization model has been investigated in some research articles (see for example [14, 42]). In this equilibrium
model, we assume that there are n companies, with each company i possessing generating units Ii. Let x
denote the vector whose entry xj stands for the power generated by unit j. Following [14], we suppose that the

Pi(s) is a decreasing affine function of s where s =
∑N
j=1 xj and N is the number of generating units, that is

Pi(s) = α− βi(s). The profit made by company i is given by fi(x) = Pi(s)(
∑
j∈Ii xj)−

∑
j∈Ii cjxj , where cjxj

is the cost of generating xj from generating unit j. Suppose that Ki is the strategy set of company i, that is the
condition

∑
j∈Ii xj ∈ Ki must be satisfied for every i. Then the strategy set of the model is

K := K1 ×K2 × · · · ×Kn.

In other for each company to maximize its profit, a commonly used approach by choosing the corresponding
production level under the presumption that the production of other companies are parametric input is the Nash
equilibrium concept.

We recall that x̄ ∈ K = K1×K2× · · ·×Kn is an equilibrium point of the model if fi(x̄) ≥ fi(x̄[xi]), ∀ xi ∈
Ki, ∀ 1, 2 . . . , n, where vector x̄[xi] stands for the vector obtained from x̄ by replacing x̄i with xi. By taking
f(x, y) = φ(x, y)− φ(x, x) with

φ(x, y) = −
n∑
i=1

fi(x[yi]).
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Table 1. Algorithm 3.4

Size N CPU time (seconds) Number of Iter. (n)
10 0.3383 16
20 0.4741 14
50 2.4429 14
80 5.8955 17
100 11.6723 21

Then the problem of finding a Nash equilibrium point of the model can be formulated as

x̄ ∈ K : f(x̄, x) ≥ 0,∀ x ∈ K.(5.1)

We suppose for every j, the cost cj for production and the environmental fee f are increasingly convex functions.
The convexity assumption here means that both the cost and fee for producing a unit production increases as
the quantity of the production gets larger. Under this convexity assumption, it is easy to see [53] that (5.1) is
equivalent to

x ∈ C : 〈Bx− a+ Oϕ(x), y − x〉 ≥ 0, ∀ y ∈ C,
where a := (α, α · · · , α)T ,

B1 =


β1 0 0 · · · 0
0 β2 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 0 βn

 , B =


0 β1 β1 · · · β1
β2 0 β2 · · · β2
· · · · · · · · · · · · · · ·
βn βn βn βn 0


and ϕ(x) := xTB1x+

∑N
j=1 cjxj . This holds when cj is differentiable convex for every j.

We test the proposed algorithm with the cost function given by

cj(xj) =
1

2
Px2j + qjxj , Pj ≥ 0.

The algorithm was coded in MATLAB 2019a on a Dell i7 Dual core 8.00GB(7.78 GB usable) RAM laptop. The
computational results are shown in Table 1. The parameters βj for all j = 1, 2 . . . , n, matrix P and vector q
were generated randomly in the interval (0, 1], [1, 50] and [1, 50] respectively. We perform our Algorithm 3.4 by
varying the choices of N, different initial choices x0 generated randomly in the interval [1, 50] and n = 10 with
||xn+1−xn||
||x1−x0|| < 10−6 our stopping criterion.

6. Conclusion

In this paper, we proposed an explicit extragradient method for solving variational inequality problems. Our
proposed algorithm empolys an Armijo linesearch rule which does not depend on a Lipschitz constant of the
underlining pseudomotone operator. We established a strong convergence theorem of the algorithm under some
mild conditions in the framework of Banach space. As a numerical experiment we give an application of our
result to a model in electricity production. Our result extends the results of [28], [44] and other corresponding
results in this direction.
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