REFERENCES
Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen T. H. O., Chromikova,
V., McMahon, M., Jiang, K., Arunkumar, G. A., Jurczyszak, D., Polanco,
J., Bermudez-Gonzalez, M., Kleiner, G., Aydillo, T., Miorin, L., Fierer,
D. S., Lugo, L. A., Kojic, E. M., Stoever, J., Liu S. T. H.,
Cunningham-Rundles, C., Felgner, P. L., Moran, T., García-Sastre, A.,
Caplivski, D., Cheng, A. C., Kedzierska, K., Vapalahti, O., Hepojoki, J.
M., Simon, V., & Krammer, F. (2020). A serological assay to detect
SARS-CoV-2 seroconversion in humans. Nature Medicine, 26,1033–1036. doi: 10.1038/s41591-020-0913-5
Brown, A. J., Gibson, S. J., Hatton, D., & James, D. C. (2017).In silico design of context-responsive mammalian promoters with
user-defined functionality. Nucleic Acids Research, 45,10906–10919. doi: 10.1093/nar/gkx768
Cartwright, J. F., Arnall, C. L., Patel, Y. D., Barber, N. O. W.,
Lovelady, C. S., Rosignoli, G., Harris, C. L., Dunn, S., Field, R. P.,
Dean, G., Daramola, O., Gibson, S. J., Peden, A. A., Brown, A. J.,
Hatton, D., & James D. C. (2020). A platform for context-specific
genetic engineering of recombinant protein production by CHO cells A
platform for context-specific genetic engineering of recombinant protein
production by CHO cells. Journal of Biotechnology, 312, 11‒22.doi: 10.1016/j.jbiotec.2020.02.012
Esposito, D., Mehalko, J., Drew, M., Snead, K., Wall, V., Taylor, T.,
Frank, P., Denson, J.-P., Hong, M., Gulten, G., Sadtler, K., Messing,
S., & Gillette, W. (2020). Optimizing high-yield production of
SARS-CoV-2 soluble spike trimers for serology assays. Protein
Expression and Purification, 174, 105686.doi: 10.1016/j.pep.2020.105686
Estes, B, Hsu, Y. R., Tam, L. T., Sheng, J., Stevens, J., & Haldankar,
R. (2015). Uncovering methods for the prevention of protein aggregation
and improvement of product quality in a transient expression system.Biotechnology Progress, 31, 258–267.doi: 10.1002/btpr.2021
Fernandez-Martell, A., Johari, Y. B., & James, D. C. (2018). Metabolic
phenotyping of CHO cells varying in cellular biomass accumulation and
maintenance during fed-batch culture. Biotechnology and
Bioengineering, 115, 645–660. doi: 10.1002/bit.26485
Johari, Y. B., Brown, A. J., Alves, C. S., Zhou, Y., Wright, C. M.,
Estes, S. D., Kshirsagar, R., & James,
D. C. (2019). CHO genome mining for synthetic promoter design.Journal of Biotechnology, 294, 1–13.doi: 10.1016/j.jbiotec.2019.01.015
Johari, Y. B., Estes, S. D., Alves, C. S., Sinacore, M. S., James, D. C.
(2015). Integrated cell and process engineering for improved transient
production of a “difficult-to-express” fusion protein by CHO cells.Biotechnology and Bioengineering, 112, 2527–2542.doi: 10.1002/bit.25687
Lee, S., Kim, Mi.G., Kim, N., Heo, W. D., & Lee, G. M. (2016). Heparan
sulfate proteoglycan synthesis in CHO DG44 and HEK293 cells.Biotechnology and Bioprocess Engineering, 21, 439‒445.doi: 10.1007/s12257-015-0688-6
Mason, M., Sweeney, B., Cain, K., Stephens, P., & Sharfstein, S. T.
(2012). Identifying bottlenecks in transient and stable production of
recombinant monoclonal-antibody sequence variants in Chinese hamster
ovary cells. Biotechnology Progress, 28, 846–855.doi: 10.1002/btpr.1542
Mycroft-West, C., Su, D., Elli, S., Guimond, S., Miller, G., Turnbull,
J., Yates, E., Guerrini, M., Fernig, D., Lima, M., & Skidmore, M.
(2020). The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1
Receptor Binding Domain undergoes conformational change upon heparin
binding. bioRxiv . doi: 10.1101/2020.02.29.971093
Park, J. H., Jin, J. H., Ji, I. J., An, H. J., Kim, J. W., & Lee, G. M.
(2017). Proteomic analysis of host cell protein dynamics in the
supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell
lines in batch and fed-batch cultures. Biotechnology and
Bioengineering, 114, 2267-2278. doi: 10.1002/bit.26360
Poulain, A., Perret, S., Malenfant, F., Mullick, A., Massie, B., &
Durocher, Y. (2017). Rapid protein production from stable CHO cell pools
using plasmid vector and the cumate gene-switch. Journal of
Biotechnology, 255, 16‒27. doi: 10.1016/j.jbiotec.2017.06.009
Stadlbauer, D., Amanat, F., Chromikova, V., Jiang, K., Strohmeier, S.,
Arunkumar, G. A., Tan, J., Bhavsar, D., Capuano, C., Kirkpatrick, E.,
Meade, P., Brito, R. N., Teo, C., McMahon, M., Simon, V., & Krammer, F.
(2020). SARS-CoV-2 seroconversion in humans: a detailed protocol for a
serological assay, antigen production, and test setup. Current
Protocols in Microbiology, 57, e100. doi: 10.1002/cpmc.100
Uhlen, M., Tegel, H., Sivertsson, Å., Kuo, C., Gutierrez, J. M., Lewis,
N. E., Forsström, B., Dannemeyer, M., Fagerberg, L., Malm, M., Vunk, H.,
Edfors, F., Hober, A., Sjöstedt, E., Kotol, D., Mulder J., Mardinoglu,
A., Schwenk, J. M., Nilsson, P., Zwahlen, M., Takanen, J. O., von
Feilitzen, K., Stadler, C., Lindskog, C., Ponten, F., Nielsen, J.,
Palsson, B. O., Volk, A., Lundqvist, M., Berling, A., Svensson, A.,
Kanje, S., Enstedt, H., Afshari, D., Ekblad, S., Scheffel, J., Katona,
B., Vuu, J., Lindström, E., Xu, L., Mihai, R., Bremer, L., Westin, M.,
Muse, M., Mayr, L. M., Knight, S., Göpel, S., Davies, R., Varley, P.,
Hatton, D., Fields, R., Voldborg, B. G., Rockberg, J., Schiavone, L. H.,
& Hober, S. (2018). The human secretome — the proteins secreted from
human cells. bioRxiv . doi: 10.1101/465815
Watanabe, Y., Allen, J. D., Wrapp, D., McLellan., J. S., & Crispin, M.
(2020). Site-specific glycan analysis of the SARS-CoV-2 spike.Science, 369, 330‒333. doi: 10.1126/science.abb9983
Yuan, M., Liu, H., Wu, N. C., Lee, C. D., Zhu, X., Zhao, F., Huang, D.,
Yu, W., Hua, Y., Tien, H., Rogers, T. F., Landais, E., Sok, D., Jardine,
J. G., Burton, D. R., & Wilson, I. A. (2020). Structural basis of a
shared antibody response to SARS-CoV-2. Science ,doi: 10.1126/science.abd2321