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Abstract We consider the incremental subgradient algorithm employing dynamic step sizes

for minimizing the sum of a large number of component convex functions. The dynamic step

size rule was firstly introduced by Goffin and Kiwiel [Math. Program., 1999, 85(1): 207-211]

for the subgradient algorithm, soon later, for the incremental subgradient algorithm by Nedic

and Bertsekas in [SIAM J. Optim., 2001, 12(1): 109-138]. It was observed experimentally that

the incremental approach has been very successful in solving large separable optimizations,

and that the dynamic step sizes generally have better computational performance than others

in the literature. In the present paper, we propose two modified dynamic step size rules for the

incremental subgradient algorithm and analyse the convergence properties of them. At last,

the assignment problem is considered and the incremental subgradient algorithms employing

different kinds of dynamic step sizes are applied to solve the problem. The computational

experiments show that the two modified ones converges dramatically faster and stabler than

the corresponding one in [SIAM J. Optim., 2001, 12(1): 109-138]. Particularly, for solving

large separable convex optimizations, we strongly recommend the second one (see Algorithm

3.3 in the paper) since it has interesting computational performance and is the simplest one.

Keywords Separable convex optimization; Incremental subgradient algorithm; Dynamic step

size; Diminishing step size

1 Introduction

We consider the following separable convex optimization problem

min
x∈X

f(x) :=

m∑
i=1

fi(x), (1.1)
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where X ⊆ Rn is a nonempty, closed and convex subset, each fi : Rn → R is a convex function

and m is always a very large number. Such kind of optimizations arise in many applications,

such as neural network training, machine learning and tomographic image reconstruction;

see, e.g., [2, 3, 4, 5, 6, 7] and the references therein.

One of the ordinary algorithms for solving problem (1.1) is the subgradient algorithm:

having xk, set

xk+1 := PX(xk − αk

∑
i∈I

gi,k), (1.2)

where gi,k is a subgradient of fi at x
k, αk > 0 is a step size and PX stands the projection on

X. The subgradient algorithm was proposed by Shor in 1960s ([8]) and has been extensively

studied in the literature; see e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and references therein.

Since the negative subgradient is not always the descent direction of f , the step size sequence

{αk} should be chosen such that the generated sequence approaches the solution set. On

can find many classical step sizes for the algorithm in the literature, including the constant

step sizes, the diminishing step sizes, the Polyak step sizes and the dynamic step sizes in

[8, 9, 10, 11, 12, 13]. The incremental subgradient algorithm seems first proposed and studied

by Nedic and Bertsekas in [2] for solving problem (1.1), which is motivated by the idea of the

incremental gradient algorithm for separable smooth optimizations (see, e.g., [4, 5, 6, 20, 21]

and the references therein). The algorithm is similar to the ordinary subgradient algorithm

(1.2). The main difference is that at each iteration, the iterate is updated incrementally by

a cycle of m subiterations. Where, each subiteration is a subgradient iteration for a single

component function fi. More precisely, letting xk be the current iterate, the next iterate

xk+1 is obtained as follows

xk+1 = φm,k, (1.3)

where φm,k is obtained after the m steps

φi,k = PX [φi−1,k − αkgi,k], gi,k ∈ ∂fi(φi−1,k) i = 1, 2, · · · ,m, (1.4)

starting with

φ0,k = xk. (1.5)

The updates described by (1.4) are referred to as the subiterations of the kth cycle. The au-

thors in [2] established the convergence properties of the incremental subgradient algorithms

employing a number of variants of step size rules. In particular, we note that some numerical

experiments provided there show that the incremental subgradient algorithm often converges

much faster than the corresponding ordinary one (employing the same step sizes), and in

most cases, the dynamic step size rule performs better than others. It is known that the

classical dynamic step size rule was first introduced for the subgradient algorithm by Goffin

and Kiwiel in [1] where two parameters δ0 and R0 should be given in advance (noting that

δ0 is updated dynamically and R0 is fixed).
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Inspired by these studies, we propose two modified dynamic step size rules for the in-

cremental subgradient algorithm; see, Algorithms 3.2 and 3.3 in Section 3. The convergence

properties of them are analyzed, respectively. At last, the assignment problem is considered

and the incremental subgradient algorithms employing different kinds of dynamic step sizes

are applied to solve the problem. The computational experiments show that the two modified

ones converges dramatically faster and stabler than the corresponding one in [2]. Particularly,

for solving large separable convex optimizations, we strongly recommend Algorithm 3.3 since

it has interesting computational performance and is the simplest one in the sense that there

is only one parameter δ0 should be given in advance.

The paper is organized as follows. As usual, some basic notions, notation and preliminary

results are provided in the next section. In section 3, two modified dynamic step size rules for

the incremental subgradient algorithm are introduced, together with convergence analyses.

In section 4, we consider the assignment problem, and we apply the incremental subgradient

algorithms employing different dynamic step sizes to solve the problem, together with some

numerical experiments. The last section includes some conclusions.

2 Notation and Preliminaries

Notation and terminologies used in the present paper are standard; the readers are referred

to some textbooks for more details; see, e.g., [22, 23]. Let Rn be the n dimensional Euclidean

space and the standard Euclidean norm is denoted by ∥ · ∥. Let X ⊆ Rn be a non-empty

subset of Rn and x ∈ X. The normal cone of the set X at point x is denoted by NX(x), that

is,

NX(x) := {υ ∈ Rn|⟨υ, y − x⟩ ≤ 0 ∀y ∈ X}.

The distance and the projection at the point x in relation to the set X are denoted by dX(x)

and PX(x):

dX(x) := inf
y∈X

{∥x− y∥}, PX(x) := {y ∈ X : ∥x− y∥ = dX(x)}.

Recall that the subset X is said to be convex if for any x, y ∈ X and any λ ∈ (0, 1), there

is λx+ (1− λ)y ∈ X. The following properties of PX are well known in the case when X is

convex.

Proposition 2.1. Let X ⊂ Rn be a closed convex set and x ∈ Rn. Then PX(x) is a singleton,

and the following assertions hold.

(i) PX(x) = {yx} if and only if

⟨x− yx, y − yx⟩ ≤ 0 ∀y ∈ X.

(ii) PX is nonexpansive, that is,

∥PX(x1)− PX(x2)∥ ≤ ∥x1 − x2∥ ∀x1, x2 ∈ Rn.
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Let f : Rn → R be a function defined on Rn. Recall that f is said to be convex function

if the following inequality holds for any x, y ∈ Rn

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ (0, 1).

Let ∂f(x) stands the subdifferential of f at x, which is defined by

∂f(x) = {g ∈ Rn|f(y) ≥ f(x) + ⟨g, y − x⟩, y ∈ Rn}.

Any element g ∈ ∂f(x) is called a subgradient of f at x. The following result gives some

properties of convex functions.

Proposition 2.2. Let f : Rn → R be a convex function and x ∈ Rn. Then, f is continuous

on Rn and ∂f(x) is a non-empty bounded closed convex subset in Rn.

The following proposition provides the necessary and sufficient condition for a point to

be a solution of problem (1.1).

Proposition 2.3. A point x∗ ∈ X is a solution of the problem (1.1) if and only if

0 ∈ ∂f(x∗) +NX(x∗).

3 Incremental subgradient algorithms employing dynamic step

sizes and convergence properties

We consider here the incremental subgradient algorithm employing dynamic step sizes for

solving the separable convex optimization (1.1):

min
x∈X

f(x) :=
m∑
i=1

fi(x),

where each fi : Rn → R is convex and X ⊆ Rn is a nonepmty, closed and convex subset.

Two modified dynamic step sizes for the incremental subgradient algorithm shall be proposed

below. For this puepose, we recall the following incremental subgradient algorithm employing

the classical dynamic step sizes, which was said to be path-based incremental target level

algorithm in [2].

Algorithm 3.1. ([2, path-based incremental target level algorithm])

Step 0 Select x0 ∈ Rn, R0 > 0, δ0, C > 0. Let k = l = m = k(l) = 0, σ0 = 0 and

f−1
rec = +∞.

Step 1 If f(xk) < fk−1
rec , then set fk

rec = f(xk), xkrec = xk; otherwise, set fk
rec =

fk−1
rec , xkrec = xk−1

rec .

Step 2 If 0 ∈ ∂f(xk) +NX(xk), then stop; otherwise, go to Step1.
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Step 3 If f(xk) ≤ f
k(l)
rec − 1

2δl, then set k(l + 1) = k, σk = 0, δl+1 = δl and l = l + 1.

Step 4 If σk > R0, then set k(l + 1) = k, σk = 0, δl+1 = 1
2δl and xk = xkrec. Choose

gk ∈ ∂f(xkrec), and set l = l + 1.

Step 5 Let fk
lev = f

k(l)
rec − δl. Calculate xk+1 via (1.3)-(1.5) with the step size

αk = γk
fk − fk

lev

C2
, 0 < γ ≤ γk ≤ γ < 2. (3.1)

Step 6 Set σk+1 = σk + αkC, k = k + 1 and go to Step1.

Accordingly, we see that two parameters δ0 and R0 are used in Algorithm 3.1 which

should be given in advance. The numerical experiments in [2] show that the computational

performance of the algorithm relies heavily on these two parameters (noting that δ0 is updated

dynamically by Step 4 and R0 is fixed). We shall propose two modified dynamic step size rules

for the incremental subgradient algorithm. The first one is very similar with Algorithm 3.1,

where the only difference is that we add Step 3 below to update parameter R0 dynamically.

Algorithm 3.2. Step 0 Select x0, R0 > 0, δ0 > 0. Let k = l = p = k(l) = k̃(p) = 0, σ0 = 0

and f−1
rec = ∞.

Steps 1-2 are same as Steps 1-2 of Algorithm 3.1, respectively.

Step 3 If f(xk) ≤ f
k̃(p)
rec − 1

pδ0, then set k̃(p+ 1) = k, Rp+1 =
1
2Rp and p = p+ 1.

Step 4 If σk > Rp, then set k(l + 1) = k, σk = 0, δl+1 = 1
2δl and xk = xkrec. Choose

gk ∈ ∂f(xkrec), and set l = l + 1.

Steps 5-7 are same as Steps 4-6 of Algorithm 3.1, respectively.

The second one is simpler than Algorithm 3.1 in the sense that only one parameter δ0 is

kept and updated dynamically by a different criteria in Step 3 below.

Algorithm 3.3. Step 0 Select x0, δ0 > 0, k = 0, l = 0, f−1
rec = +∞.

Steps 1-2 are same as Steps 1-2 of Algorithm 3.1, respectively.

Step 3 If f(xk) ≤ fk−1
rec − 1

2δl, then set fk
lev = fk

rec− δl; otherwise, set f
k
lev = fk−1

rec − δl, l =

l + 1, δl =
δ0√
l
.

Step 4 is same as Step 5 of Algorithm 3.1.

Step 5 Set k = k + 1, and go to Step 1.

We always assume for the remainder that the solution set of problem (1.1) is nonempty,

that is,

X∗ = Argminx∈Xf(x) ̸= ∅. (3.2)

This particularly implies that

f∗ := inf
x∈X

f(x) > −∞. (3.3)

Furthermore, our convergence results need the following assumption, which is also used in [2,

Assumption 2.1].
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Assumption 3.1. (subgradient boundedness) There exist constants C1, C2, . . . , Cm > 0 such

that

∥g∥ ≤ Ci ∀g ∈ ∂fi(xk) ∪ ∂fi(φi−1,k), i = 1, 2, . . . ,m, k ∈ N. (3.4)

We first give the following important lemma, which can be derived directly by a careful

look through the proof of [2, Lemma 2.1].

Lemma 3.1. Let Assumption 3.1 hold and C :=
m∑
i=1

Ci in (3.1). Let {xk} be a sequences

generated by the Algorithm 3.2 or Algorithm 3.3. Then the following inequality holds:

∥ xk+1 − y ∥2≤∥ xk − y ∥2 −2αk

(
f(xk)− f(y)

)
+ α2

kC
2 ∀y ∈ X. (3.5)

3.1 Convergence results for Algorithm 3.2

In this subsection, we study Algorithm 3.2 and its convergence properties. To this end, we first

give some lemmas. The first lemma is taken from [2, Proposition 2.4], which is regarding the

convergence of the incremental subgradient algorithm employing the diminishing step sizes

(defined by (3.6)), which is also useful for proving the main result of the present subsection.

Lemma 3.2. ([2, Proposition 2.4]) Let Assumption 3.1 hold, and let {xk} be a sequence

generated by (1.3)-(1.5). Suppose that the step sizes {αk} satisfy

αk > 0,
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k < ∞. (3.6)

Then, we have limk→∞ f(xk) = f∗.

Lemma 3.3. Let {xk} be a sequence generated by Algorithm 3.2. Then, we have p < ∞ and

l → ∞, and lim
l→∞

δl = 0.

Proof. From Step 3 of Algorithm 3.2, we see that

f(xk̃(j+1)) ≤ f k̃(j)
rec − 1

j
δ1 ∀j ≥ 1, (3.7)

Summing up the inequalities in (3.7) over j = 1, 2, . . . , p and noting that f
k̃(1)
rec = f1

rec = f(x1)

(see Step 3), there holds:

f(xk̃(p+1)) ≤ f(x1)−
p∑

i=1

δ1
k
. (3.8)

Letting p → +∞, we get that lim
p→∞

f(xk̃(p)) = −∞. This contradicts (3.3), and so we have

proven p < ∞.

Next, we show l → ∞. Assume on the contrary that l < ∞. Then, there holds from Step

5 that
∞∑

j=k(l)

αjC ≤ Rp.
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This particularly implies that

lim
k→∞

αk = 0. (3.9)

On the other hand, we see from (3.1) that for any k ≥ k(l), there is

αk = γk
f(xk)− fk

lev

C2
= γk

f(xk)−
(
f
k(l)
rec − δl

)
C2

.

Noting from Step 3 that f(xk) > f
k(l)
rec − 1

2δl (for each k ≥ k(l)), it follows that αk >
γδl
2C2 > 0.

This contradicts (3.9), and then l → ∞.

We are left to show lim
l→∞

δl = 0. To this end, let lim
l→∞

δl = δ∞. If δ∞ > 0, then there exists

l0 ∈ N such that

δl = δ∞ ∀l ≥ l0 (3.10)

(as {δl} is nonincreasing). Recalling that l → ∞, we conclude from Step 4 of Algorithm 3.2

(see also Step 3 of Algorithm 3.1) that

fk(l+1)
rec ≤ fk(l)

rec − 1

2
δl ∀l ≥ l0.

Summing up the inequalities in the above expression over l0 ≤ l ≤ n and noting (3.10), we

get that

fk(n+1)
rec ≤ fk(l0)

rec − 1

2
(n− l0)δ∞.

Then, we have that lim
l→∞

f
k(l)
rec = −∞, which contradicts (3.3). Thus, lim

l→∞
δl = 0 is shown,

and the proof is complete.

We are ready to show the main result of the subsection.

Theorem 3.1. Let Assumption 3.1 hold and C :=
m∑
i=1

Ci in (3.1). Let {xk} be a sequence

generated by Algorithm 3.2. Then lim
k→∞

fk
rec = f∗.

Proof. Let lim
k→∞

fk
rec = f∞ (which exists because of (3.3) and the decreasing monotonicity of

{fk
rec}). Suppose on the contrary that f∞ > f∗, and let f∗∗ ∈ (f∗, f∞), ϵ = f∞ − f∗∗ > 0.

Noting lim
l→∞

δl = 0 by Lemma 3.3, there is l̄ ∈ N such that

δl ≤ ϵ = f∞ − f∗∗ ∀l ≥ l̄.

Then, recalling that {fk
rec} is decreasing monotone, we see from Step 6 of Algorithm 3.2 (see

also Step 5 of Algorithm 3.1) that

fk
lev ≥ f∞ − ϵ ≥ f∗∗ ∀k ≥ k(l). (3.11)
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By the continuity of f and the convexity of X, one can take ȳ ∈ X such that f(ȳ) = f∗∗.

Applying Lemma 3.1 (to y = ȳ), we get that

∥xk+1 − ȳ∥2 ≤ ∥xk − ȳ∥2 − 2αk

(
f(xk)− f(ȳ)

)
+ α2

kC
2

≤ ∥xk − ȳ∥2 − 2αk

(
f(xk)− fk

lev

)
+ α2

kC
2 ∀k ≥ k(l̄),

where the second inequality is from (3.11). In view of (3.1), it follows that

∥xk+1 − ȳ∥2 ≤ ∥xk − ȳ∥2 − 2
γk
α2
kC

2 + α2
kC

2 ≤ ∥xk − ȳ∥2 − ( 2γ − 1)C2α2
k ∀k ≥ k(l̄).

Summing up the inequalities over k ≥ k(l̄), we see that∑
k≥k(l̄)

(
2

γ
− 1)C2α2

k ≤ ∥xk(l̄) − ȳ∥2.

Then, we have
∞∑

k=k(l̄)

α2
k < ∞. (3.12)

Noting p < ∞ by Lemma 3.3, we set

L = {l ∈ N|δl =
δl−1

2
, k(l) ≥ k̃(p)}.

Then, the cardinality of L is infinite because of lim
l→∞

δl = 0. Taking into account of Steps 4

and 7 of Algorithm 3.2, we get that

k(l+1)∑
k=k(l)

Cαk ≥ Rp ∀l ∈ L.

This implies that
∞∑
k=0

αk ≥
∑
l∈L

k(l+1)∑
k=k(l)

αk >
∑
l∈L

Rp

C
= ∞.

Combining this and (3.12), Lemma 3.2 is applicable to showing that lim
k→∞

fk
rec = f∗, which is

a contradiction. Therefore, lim
k→∞

fk
rec = f∗ is show, completing the proof.

3.2 Convergence result for Algorithm 3.3

In this subsection, we study the convergence properties of Algorithm 3.3. To proceed, we

show the following lemma.

Lemma 3.4. Let {xk} be the sequence generated by algorithm 3.3. Then, we have l → ∞
and lim

l→∞
δl = 0.
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Proof. If l < ∞, then by Step 3 of Algorithm 3.3, the exists k0 ∈ N such that

f(xk) ≤ f(xk−1)− δl
2

∀k ≥ k0.

Summing up the inequalities over k ≥ k0, we get that

f(xk) ≤ f(xk0−1)− (k − k0)
δl
2

∀k ≥ k0.

Thus, there holds lim
k→∞

f(xk) = −∞, which contradicts (3.3) and so l → ∞. Furthermore, by

definition of δl, it is clear that lim
l→∞

δl = lim
l→∞

δ0
l = 0. The proof is complete.

The following theorem is regarding the convergence property of Algorithm 3.3.

Theorem 3.2. Let Assumption 3.1 hold and C :=
m∑
i=1

Ci in (3.1). Let {xk} be a sequence

generated by Algorithm 3.3. Then, we have lim
k→∞

fk
rec = f∗.

Proof. Let lim
k→∞

fk
rec = f∞ (which exists as we have explained at the beginning of the proof

of Theorem 3.2). Suppose on the contrary that f∞ > f∗. Noting Step 3 of Algorithm 3.3,

we see that either fk
lev = fk

rec − δl or f
k−1
lev = fk

rec − δl for all l ∈ N. Recalling lim
k→∞

fk
rec = f∞,

l → ∞ and lim
l→∞

δl = 0 (from Lemma 3.4), there exists k0 ∈ N such that

fk
lev > f∗ ∀k ≥ k0. (3.13)

Now, take x∗ ∈ X∗ ⊆ X (which exists by the blanket assumption (3.2)). Then, by assump-

tion, Lemma 3.1 is applicable (to y := x∗) to getting that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2αk(f(x
k)− f∗) + α2

kC
2.

In view of (3.1) and (3.13), there holds

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − γk(2− γk)
(f(xk)−fk

lev)
2

C2

≤ ∥xk − x∗∥2 − γ(2− γ) (f(x
k)−fk

lev)
2

C2 ∀k ≥ k0.

Summing up the inequalities over k ≥ k0, it is clear that

∞∑
k≥k0

γ(2− γ)

C2
(f(xk)− fk

lev)
2 ≤ ∥xk0 − x∗∥2 < ∞. (3.14)

On the other hand, recall again that l → ∞ (from Lemma 3.4). By definition of Algorithm

3.3, we see that l increases only when the second case of Step 3 occurs. Then, we conclude

that for each l ∈ N, there exists kl ∈ N such that

f(xkl) > fkl−1
rec − 1

2
δl = fkl

lev +
1

2
δl and kl+1 > kl.
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Then, there holds

f(xkl)− fkl
lev >

δl
2

∀l ∈ N. (3.15)

By definition of δl(:=
δ0√
l
), we obtain that

∞∑
k=0

(f(xk)− fk
lev)

2 ≥
∞∑
l=0

(f(xkl)− fkl
lev)

2 >
∞∑
l=0

δ2l
4

=
∞∑
l=0

δ20
4l

= ∞.

This contradicts (3.14), completing the proof.

4 Numerical results

In this section, Algorithms 3.1, 3.2 and 3.3 are applied to solve the assignment problem. The

problem is to assign m jobs to n machines; see more details in [2]. If job i is performed

at machine j, it costs ai,j and requires pij time units. Given the total available time tj at

machine j, we want to find the minimum cost assignment of the jobs to the machines. The

problem is formulated as

min
m∑
i=1

n∑
j=1

aijyij

s.t.
n∑

j=1
yij = 1, i = 1, 2, . . . ,m,

m∑
i=1

pijyij ≤ tj , j = 1, 2, . . . , n,

yij = 1 or 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

where yij is the assignment variable, which is equal to 1 if the ith job is assigned to the jth

machine and is equal to 0 otherwise. As pointed out in [2], the dual problem is

max f(x) :=
m∑
i=1

fi(x)

s.t. x ≥ 0,

where

fi(x) := min
yij=1 or 0,

∑n
j=1 yij=1

n∑
j=1

(aij + xjpij)yij −
1

m

n∑
j=1

tjxj , i = 1, 2, . . . ,m.

As done in [2], each fi is evaluated as follows:

fi(x) := aij∗ + xj∗pij∗ −
1

m

n∑
j=1

tjxj ∀x ≥ 0,

where j∗ ∈ {1, 2, . . . , n} is so that

aij∗ + xj∗pij∗ = min
1≤j≤n

{aij + xjpij} .
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Moreover, a subgradient g = (g1, g2, · · · , gn)T of fi at x is given by

gj =


− tj
m

if j ̸= j∗,

pij∗ −
t∗j
m

if j = j∗.

In our experiments, we chose n = 4 and m = 800. The data {aij} and {pij} for the problems

are generated randomly according to a uniform distribution over intervals [1, 5] and [1, 10],

respectively, and the values tj were calculated according to the formula tj =
1
2n

m∑
i=1

pij . The

experiment results are reported in Tables 4.1-4.3.

Tables 4.1 and 4.2 report the numerical results of applying Algorithms 3.1-3.3 with the

same parameters R0 = 5, δ0 = 5× 104 and the same initial point (Algorithm 3.3 is only with

the parameter δ0 = 5 × 104). Where the notation fk
rec/time stands the best estimations of

the cost f∗ and the CPUtime of the kth iteration. Both tables show that Algorithms 3.2 and

3.3 converges dramatically faster than Algorithm 3.1.

Table 4.3 demonstrates the number of iterations required for Algorithms 3.1-3.3 and

parameter choices to achieve a given threshold cost f̄ . The notation used in the tables is as

follows:

> 300 means that the value f̄ has not been achieved within 300 iterations.

R0/δ0/iter are the values of the parameters R0, δ0 and the number of iterations needed

to achieve or exceed f̄ .

It is shown in Table 4.3 that the computational performance of Algorithm 3.1 relies heavily

on parameters (R0 and δ0), and Algorithms 3.2 and 3.3 are always more effective and stabler

than Algorithm 3.1.

Table 4.1

x0 = (0, 0, 0, 0), R0 = 5, δ0 = 5× 104, f∗ ≈ 1949.25

Incremental subgradient algorithm with dynamic step sizes

Iter Algorithm 3.1 Algorithm 3.2 Algorithm 3.3

k fk
rec/time (s) fk

rec/time (s) fk
rec/time (s)

1 1230.00/0.07 1230.00/0.07 1230.00/0.07

10 1891.03/0.40 1949.01/0.35 1940.36/0.35

50 1913.81/1.59 1949.03/1.35 1949.18/1.35

100 1919.98/4.85 1949.18/4.53 1949.22/4.53

500 1930.93/103.05 1949.25/103.57 1949.25/103.01

Table 4.2

x0 = (3, 4, 5, 6), R0 = 10, δ0 = 5× 105, f∗ ≈ 1949.25
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Incremental subgradient algorithm with dynamic step sizes

Iter Algorithm 3.1 Algorithm 3.2 Algorithm 3.3

k fk
rectime (s) fk

rec/time (s) fk
rec/time (s)

1 690.25/0.07 690.25/0.07 690.25/0.07

10 1435.32/0.18 1449.00/0.18 1632.92/0.18

50 1534.44/1.50 1641.19/1.39 1920.82/1.38

100 1548.73/4.50 1772.63/4.50 1949.01/4.60

500 1571.28/102.32 1949.03/102.59 1949.19/102.14

Table 4.3

f∗ ≈ 1949.25, f̄ = 1949

Incremental subgradient algorithm with dynamic step sizes

Initial point Algorithm 3.1 Algorithm 3.2 Algorithm 3.3

x0 R0/δ0/iter R0/δ0/iter δ0/iter

(0,0,0,0) 1/5× 104/ > 300 1/5× 104/10 5× 104/19

(0,0,0,0) 10/5× 104/52 10/5× 104/10 5× 104/19

(0,0,0,0) 20/5× 104/30 20/5× 104/10 5× 104/19

(0,0,0,0) 30/5× 104/ > 300 30/5× 104/10 5× 104/19

(0,0,0,0) 30/6× 104/ > 300 30/6× 104/10 6× 104/19

(0,0,0,0) 10/1× 105/196 10/1× 105/30 1× 105/139

(0,0,0,0) 20/1× 105/95 10/1× 105/38 1× 105/139

(0,0,0,0) 40/7× 104/98 40/7× 104/51 7× 104/8

(0.8,0.5,0.1,1.5) 5/2× 104/62 5/2× 104/18 2× 104/38

(0.8,0.5,0.1,1.5) 20/6× 104/136 20/6× 104/39 6× 104/35

(3,4,5,6) 20/4.5× 105/ > 300 20/4.5× 105/170 4.5× 105/93

(3,4,5,6) 10/5× 105/ > 300 10/5× 105/277 5× 105/85

5 Conclusions

In the present paper, we propose two modified dynamic step size rules for the incremental

subgradient algorithm (Algorithms 3.2 and 3.3), and we establish the convergence results

of them. Numerical experiments show that the modified ones converges dramatically faster

and stabler than the classical one in [2]. Particularly, for solving large separable convex

optimizations, we strongly recommend Algorithm 3.3 since it has interesting computational

performance and is the simplest one in the sense that there is only one parameter δ0 should be

given in advance. In our future study, we shall use the randomization and the ε-subgradients

in the context of the incremental approaches.
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