References
  1. Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O’Gara P, et al. (2012). High levels of circulating epinephrine trigger apical cardiodepression in a b2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 126:697–706.
  2. Adzika GK, Machuki JO, Shang W, Hou H, Ma T, Wu L, et al. (2019). Pathological cardiac hypertrophy: the synergy of adenylyl cyclases inhibition in cardiac and immune cells during chronic catecholamine stress. J. Mol. Med. 97:897–907.
  3. Xie M, Burchfield JS, Hill JA (2013). Pathological ventricular remodeling: therapies: part 2 of 2. Circulation 128:1021–1030.
  4. Hartupee J, Mann DL (2016). Role of inflammatory cells in fibroblast activation. J Mol Cell. Cardiol. 93:143–148.
  5. Kong P, Christia P, Frangogiannis NG (2014). The pathogenesis of cardiac fibrosis. Cell. Mol. Life. Sci. 71:549–574.
  6. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. (2014). Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104.
  7. Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, et al (2014). Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 115:284–295.
  8. Hulsmans M, Sam F, Nahrendorf M (2016). Monocyte and macrophage contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 93:149–155.
  9. Laukova M, Vargovic P, Rokytova I, Manz G, Kvetnansky R (2018). Repeated Stress Exaggerates Lipopolysaccharide-Induced Inflammatory Response in the Rat Spleen. Cell Mol Neurobiol 38:195–208.
  10. Li Y, Chen L, Kass RS, Dessauer CW (2012). The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J. Biol. Chem. 287:29815–29824.
  11. Kipanyula MJ, Woodhoo A, Rahman M, Payne D, Jessen KR, Mirsky R (2013). Calcineurin-nuclear factor of activated T cells regulation of Krox-20 expression in Schwann cells requires elevation of intracellular cyclic AMP. J. Neurosci. Res. 91:105–115.
  12. Pereira L, Rehmann H, Lao DH, Erickson JR, Bossuyt J, Chen J, et al. (2015). Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes. Proc. Natl. Acad. Sci. USA 112:3991–3996.
  13. Murphy JG, Crosby KC, Dittmer PJ, Sather WA, Dell’Acqua ML (2019) AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca2+ channels. Mol Biol Cell 30:1743–1756.
  14. Gerlo S, Kooijman, R, Beck IM, Kolmus, K, Spooren A, Haegeman, G (2011). Cyclic AMP: a selective modulator of NF-κB action. Cell. Mol. Life Sci.  68,  3823–3841.
  15. Patial S, Shahi S, Saini Y, Lee T, Packiriswamy N, Appledorn DM, et al. (2011). G-protein coupled receptor kinase 5 mediates lipopolysaccharide-induced NFκB activation in primary macrophages and modulates inflammation in vivo in mice. J. Cell. Physiol. 226:1323–1333.
  16. Gravning J, Ahmed MS, Qvigstad E, Krobert K, Edvardsen T, Moe IT, et al. (2013). Connective tissue growth factor/CCN2 attenuates-adrenergic receptor responsiveness and cardiotoxicity by induction of G protein-coupled receptor kinase-5 in cardiomyocytes. Mol. Pharmacol. 84:372–383.
  17. Hullmann JE, Grisanti LA, Makarewich CA, Gao E, Gold JI, Chuprun JK, et al. (2014). GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ. Res. 115:976–985.
  18. Quan MY, Song XJ, Liu HJ, Deng XH, Hou HQ, Chen LP, et al. (2019). Amlexanox attenuates experimental autoimmune encephalomyelitis by inhibiting dendritic cell maturation and reprogramming effector and regulatory T cell responses. J Neuroinflammation 16:52.
  19. Jia D, Jiang H, Weng X, Wu J, Bai P, Yang W, et al. (2019). Interleukin35 promotes macrophage survival and improves wound healing after myocardial infarction in mice. Circ. Res. 124: 1323-1336.
  20. Ray A, Dittel BN (2010). Isolation of Mouse Peritoneal Cavity Cells. J. Vis. Exp. 28:1488.
  21. Gold JI, Gao E, Shang X, Premont RT, Koch WJ (2013). Determining the absolute requirement of g protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: Short communication. Circ. Res. 111:1048-1053.
  22. Lieu M, Koch WJ (2019). GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy. Expert. Opin. Ther. Targets 23:201–214.
  23. Kim MH, Gorouhi F, Ramirez S, Granick JL, Byrne BA, Soulika AM, et al. (2014). Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2 adrenergic receptor mediated upregulation of IL-6. J. Invest. Dermatol. 134:809–817.
  24. Wu YS, Chen CC, Chien CL, Lai HL, Jiang ST, Chen YC, et al. (2017). The type VI adenylyl cyclase protects cardiomyocytes from β-adrenergic stress by a PKA/STAT3-dependent pathway. J. Biomed. Sci.24 :68.
  25. Tang T, Gao MH, Lai NC, Firth AL, Takahashi T, Guo T, et al. (2008). Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117:61–69.
  26. Raker VK, Becker C, Steinbrink K (2016) The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front. Immunol. 7 :123.
  27. Premont RT, Gainetdinov RR (2007). Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol. 69:511–534.
  28. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, et al. (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. USA 105:12457-12462.
  29. Islam KN, Bae JW, Gao E, Koch WJ (2013). Regulation of nuclear factor κB (NF-κB) in the nucleus of cardiomyocytes by G protein-coupled receptor kinase 5 (GRK5). J. Biol. Chem. 288:35683–35689.
  30. Sorriento D, Santulli G, Ciccarelli M, Maione AS, Illario M, Trimarco B, et al. (2018). The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors. Int. J. Mol. Sci. 19:861.
  31. Zimmer A, Bagchi AK, Vinayak K, Bello-Klein A, Singal PK (2019). Innate immune response in the pathogenesis of heart failure in survivors of myocardial infarction. Am J. Physiol. Heart. Circ. Physiol. 316:H435–H445.
  32. Liu YZ, Wang YX, Jiang CL (2017). Inflammation: The Common Pathway of Stress-Related Diseases. Front. Hum. Neurosci. 11:316.
  33. Maydych, V (2019). The Interplay Between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Front. Neurosci.13 :384.
  34. Packiriswamy N, Parameswaran N (2015). G-protein-coupled receptor kinases in inflammation and disease. Genes Immun. 16:367-377.
  35. Wehbi VL, Taskén K (2016). Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells - Role of Anchored Protein Kinase A Signaling Units. Front. Immunol. 7:222.
  36. Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, et al. (2009). Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. J. Immunol. 182:4017–4024.
  37. Homan KT, Wu E, Cannavo A, Koch WJ, Tesmer JJ (2014). Identification and characterization of amlexanox as a G protein-coupled receptor kinase 5 inhibitor. Molecules 19:16937–16949.