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Abstract
In this paper we consider, Space-Time Fractional Advection-Dispersion

equation on a finite domain with variable coefficients. Fractional
Advection- Dispersion equation as a model for transporting hetero-
geneous subsurface media as one approach to the modeling of the
generally non-Fickian behavior of transport. We use a semi-analytical
method as Reproducing kernel Method to solve Space-Time Fractional
Advection-Dispersion equation so that we can get better approximate
solutions than the methods with which this problem has been solved.
The main obstacle to solve this problem is the existence of a Gram-
Schmidt orthogonalization process in the general form of reproducing
kernel method, that is very time consuming. So, we introduce the Im-
proved Reproducing Kernel Method, which is a different implemen-
tation for the general form of the reproducing kernel method. In this
method, the Gram-Schmidt orthogonalization process is eliminated to
significantly reduce the CPU-time. Also, present method, increases
the accuracy of approximate solutions. Due to the increasing accu-
racy of approximate solutions, we will be able to provide a valid error
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analysis for this technique. The accuracy of the theoretical results il-
lustrated by solving two numerical examples and we show that present
method could provide better approximations than the general form of
reproducing kernel method. One of the main drawbacks of the present
method is that it is not able to solve the fractional problems that have
no boundary conditions. The Improved Reproducing Kernel Method
is applicable to solve the fractional problems when the problem has
conditions at the beginning and end of its definition interval or re-
gion, even if these conditions are nonlocal or any mixed form. It is
important to note that the proposed method can be implemented on
problems with fractional derivatives, despite the boundary conditions
at the beginning and end of their definition interval or region.

Keyword: Space-time fractional advection dispersion equation; Fractional
derivative; Reproducing kernel method; Error analysis.

1 Introduction
We consider the following (S-TFA-D) equation on a finite domain with vari-
able coefficients. The existence and uniqueness of the sufficiently smooth
solution have been studied in [21].

∂µ1y(x,t)
∂tµ1

= −p(x, t)Dµ2
x y(x, t) + q(x, t)Dµ3

x y(x, t) + f(x, t),
0 < t ≤ 1, 0 < x < 1,
y(x, 0) = ψ(x), y(0, t) = 0, y(1, t) = φ(x).

(1)

Fractional derivatives are employed in physics, hydrology, polymer physic,
biophysics, thermodynamics, and chaotic dynamics [5–14]. Various authors
have introduced the fractional advection-dispersion equation as a model for
transporting heterogeneous subsurface media as one approach to the model-
ing of the generally non-Fickian behavior of transport [15, 16, 27, 28]. Frac-
tional derivative relative to t (time) is the Caputo of order (0 < µ1 ≤ 1) and
fractional derivatives relative to x (space) are the Riemann-Liouville of order
(1 < µ2 ≤ 2) and (0 < µ3 ≤ 1), which are physical considerations [1–4].
Average fluid velocity and the dispersion coefficient are p(x, t) and q(x, t)
respectively. The function f(x, t) can be used to represent sources and sinks.
Flow is from left to right by assuming p(x, t) ≥ 0 and q(x, t) ≥ 0 and y(x, t)
is the solute concentration. General form of the RKM is fully introduced
in [18] and has already been used to solve Eq. (1), [17]. Since the general
form of the RKM has a Gram-Schmidt orthogonalization process, CPU time
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can increased. However, the presence of the Gram-Schmidt orthogonaliza-
tion process in the general form of the RKM reduces the accuracy of the
approximate solutions; furthermore, it is not possible to provide a correct er-
ror analysis. If the accuracy of the approximate solutions is not appropriate,
then, we cannot provide a suitable approximation for the derivative of the
solution, and the same can be said about the error analysis for the derivative
of the approximate solution. Therefore, we seek to implement RKM without
using the orthogonalization process so that we can obtain the results of solv-
ing the problem in less time and increase the accuracy of the approximate
solutions, if possible. The proposed method in this study makes it unnec-
essary to use the Gram-Schmidt orthogonalization process. We introduce
IRKM that is a different implementation of the RKM in general form with
a very low CPU time. However, we show that the IRKM improves the ap-
proximate solutions compared to the general form of the RKM, significantly.
We employ the idea presented in [19] by Wang et al. The convergence and
error analysis theorems are proved, and numerical examples are presented
to compare the accuracy of IRKM in comparison with the other methods.
Some applications of the RKM to solve fractional problems are studied by Ali
Akgul et al. [29, 30] who investigated the electrodynamic flow and solutions
of strongly non-linear equations via the reproducing kernel model. Omar Abu
Arqub et al. [31] applied a fitted fractional reproducing kernel algorithm for
the numerical solutions of ABC-fractional Volterra integrodifferential equa-
tions. Also, in [32], the authors have considered Dirichlet time-fractional
Diffusion-Gordon types equations in porous media using reproducing kernel
approach. Beside, Dehghan et al. [33] have used the element free Galerkin
approach based on the reproducing kernel particle method for solving the
2D fractional Tricomi-type equation with Robin boundary condition. Some
numerical methods for solving fractional problems by Omid Nikan et al. are
presented in [35–39].

Remark 1.1. One of the main drawbacks of the proposed method in this
paper and also the general form of the RKM is that it is not able to solve
the fractional problems that have no boundary conditions. The RKM is
applicable to solve the fractional problems when the problem has conditions
at the beginning and end of its definition interval or region, even if these
conditions are in nonlocal form, differential-difference form, integral, or any
mixed form. In general, even if there are boundary conditions as a nonlocal or
differential-difference or integral form for a solution and its derivative at the
boundary point of the fractional differential equation, the approximate solution
can be calculated with appropriate accuracy for the fractional differential
equation by RKM. This result is due to the implementation of the RKM to
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overcome various fractional problems.

2 Preliminaries
We define the reproducing kernel space Wm[0, 1] such that y(m−1)(x) is ab-
solutely continuous and y(m)(x) ∈ L2[0, 1] and equipped with conditions
y(0) = y(1) = 0. The inner product and norm are as follows,

< y1(x), y2(x) >Wm=
m−1∑
i=0

y1
(i)(0)y2

(i)(0) +

∫ 1

0

y1
(m−1)(x)y2

(m−1)(x)dx,

∥y(x)∥Wm =
√
< y, y >Wm , y1(x), y2(x) ∈ Wm,

and we consider the reproducing kernels functions for spaces W 2[0, 1] and
W 3[0, 1] in the following form [18],

Rη(x) =
3ηx
13

− 5η2x
26

− 5η3x
78

− η5x
156

− 5ηx2

26
+ 21η2x2

104
+ 5η4x2

624
− η5x2

624
− 5ηx3

78
− 5η3x3

936
+

5η4x3

1872
− η5x3

1872
+ 5η2x4

624
+ 5η3x4

1872
− 5η4x4

3744
+ η5x4

3744
− ηx5

156
− η2x5

624
− η3x5

1872
+ η4x5

3744
− η5x5

18720
+ 13x5 + 105x3η2 − 15x4η + 50xη4 − 25x2η3 x ≤ η

50ηx4 + 105x2η3 − 25x3η2 + 13η5 − 15xη4 η < x
1560

,

Qξ(t) = ξt+

 3t2ξ − t3 t ≤ ξ
3tξ2 − ξ3 ξ < t

6
.

We define the reproducing kernel space W(3,2)(D) such that ∂3y(x,t)
∂x2∂t1

is com-
pletely continuous on D ≡ [0, 1] × [0, 1] and ∂5y(x,t)

∂x3∂t2
∈ L2(D) and equipped

with conditions y(0, t) = y(1, t) = y(x, 0) = 0. The inner product and norm
are as follows,

< y1(x, t), y2(x, t) >W(3,2)(D)=

2∑
i=0

∫ 1

0

[
∂2

∂t2
∂i

∂xi
y1(0, t)

∂2

∂t2
∂i

∂xi
y2(0, t)

]
dt

+
1∑

j=0

⟨
∂j

∂tj
y1(x, 0),

∂j

∂tj
y2(x, 0)

⟩
W3[0,1]

+

∫ 1

0

∫ 1

0

∂3

∂x3
∂2

∂t2
y1(x, t)

∂3

∂x3
∂2

∂t2
y2(x, t)dxdt,
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∥y(x, t)∥W(3,2)(D) =
√
< y, y >W(3,2)(D).

and reproducing kernels functions for space W(3,2)(D) isKη,ξ(x, t) = Rη(x)Qξ(t),
see [18].

Definition 2.1. The Caputo and Riemann-Liouville fractional differential
operator ∂αu(x,t)

∂tα
and Dµ

xu(x, t) are defined as,

∂αu(x, t)

∂tα
=


1

Γ(m− α)

∫ t

0

(t− τ)m−α−1∂
mu(x, τ)

∂τm
dτ,

m− 1 < α < m,

∂mu(x, t)

∂tm
, α = m ∈ N,

Dµ
xu(x, t) =


1

Γ(m− µ)

∂m

∂xm

∫ x

0

(x− θ)m−µ−1u(θ, t)dθ,

m− 1 < µ < m,

∂mu(x, t)

∂xm
, µ = m ∈ N.

We can see the properties of operators ∂αu(x,t)
∂tα

and Dµ
xu(x, t) in [1–4].

3 Construction of the numerical method
Suppose L(y(x, t)) ≡ ∂µ1y(x,t)

∂tµ1
+ p(x, t)Dµ2

x y(x, t)− q(x, t)
Dµ3

x y(x, t) is a bounded linear operator and L : W(3,2)(D) −→
W(1,1)(D), and kη,ξ(x, t) = rη(x)qξ(t) is reproducing kernel function for W(1,1)(D).
We choose a dense set {(xi, tj)}∞i,j=1 inD and define, ϕi,j(x, t) = kη,ξ(x, t)|(η,ξ)=(xi,tj)

and φi,j(x, t) =
L∗ϕij(x, t), where L∗ is adjoint operator of L and L−1 exists.

Theorem 3.1. Ψij(x, t) = Kη,ξ(x, t)|(η,ξ)=(xi,tj) are complete function sys-
tem in W(3,2)(D).

Proof 3.1. See [19–21].

Now, using the following theorem, we introduce the IRKM.

Theorem 3.2. The following function

y(x, t) =
∞∑
i=1

∞∑
j=1

cijΨij(x, t), (2)

is exact solution of Eq. (1) where {(xi, tj)}∞i,j=1 are dense points on D.
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Proof 3.2. See [19, 22].

Consider approximate solution of Eq. (1) as,

yn(x, t) =

n1∑
i=1

n2∑
j=1

cijΨij(x, t), (3)

where n is number of collocation points to apply the IRKM on D and i =
1, 2, . . . , n1, j = 1, 2, . . . , n2 and n = n1 × n2. For determining the unknown
coefficients cij, we define residual function R as,

Rn(x, t) = L(yn(x, t))− f(x, t), (4)
and we obtain cij such that

⟨
Rn(x, t),Ψij(x, t)

⟩
W(3,2)(D)

= 0. Using Eq. (3)
and Eq. (4) we have,

n1∑
i=1

n2∑
j=1

cijLΨij(x, t)|(x,t)=(xι,tℓ) = f(xι, tℓ),

ι = 1, 2, . . . , n1 , ℓ = 1, 2, . . . , n2 , i = 1, 2, . . . , n1 ,

j = 1, 2, . . . , n2 , Ψij(x, t) = Kη,ξ(x, t)|(η,ξ)=(xi,tj) ,

(5)

where LΨij(x, t)|(x,t)=(xι,tℓ) is matrix n × n. Eq (5) is a system of algebraic
equations to obtain cij.

3.1 Convergence analysis
Theorem 3.3. Let B = {yn(x, t)| ∥yn(x, t)∥W(3,2)(D) ≤ ρ} where is com-

pact set in C(D) and ρ is a constant, then, yn(x, t) and its derivatives
∂x∂tyn(x, t) and ∂2x∂tyn(x, t) are uniformly convergent to y(x, t), ∂x∂ty(x, t)
and ∂2x∂ty(x, t) respectively.

Proof 3.3. We need to show that ∥yn(x, t) − y(x, t)∥W(3,2) −→ 0 when
n −→ ∞. From Eqs. (3),(4),(5) we have,

L(yn(xi, tj)) = f(xi, tj),

i = 1, 2, . . . , n1 , j = 1, 2, . . . , n2 , n1 × n2 = n.

Since B is compact and {yn(x, t)}∞n=1 ∈ B, it is clear that y(x, t) ∈ B and
convergent subsequence {ynl

(x, t)}∞l=1 exists such that converge to an element
of B. Suppose ynl

(x, t) −→ y(x, t) when l → ∞, n→ ∞ and we have,

L(ynl
(xi, tj)) = f(xi, tj),

i = 1, 2, . . . , n1 , j = 1, 2, . . . , n2 , n1 × n2 = n.
(6)
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Table 1
Max absolute error for Example 4.1 with different value of n

W(3,2) PM PM [17] [17] [26]
n=36 n = 144 n = 36 n = 144 n = 400

En 3.0× 10−7 3.0× 10−9 2.1× 10−4 4.1× 10−5 2.0× 10−2

Time (Sec) 2290.67 9845.89 − − −

Suppose ynl
(x, t) −→ y(x, t). Since L is a bounded linear operator, therefore

we have,

L(ynl
(x, t)) −→ L(y(x, t)),

and from the Eq. (6) Rn(x, t) −→ 0 and ∥yn(x, t) − y(x, t)∥W(3,2) −→ 0
when n −→ ∞. Now we prove that yn(x, t) uniformly convergent to y(x, t)
when, n→ ∞, from the reproducing properties we have,

|yn(x, t)− y(x, t)| =| < yn(η, ξ)− y(η, ξ), Kx,t(η, ξ) >W(3,2) |
≤∥yn(η, ξ)− y(η, ξ)∥W(3,2)∥Kx,t(η, ξ)∥W(3,2)

≤C̊∥yn(η, ξ)− y(η, ξ)∥W(3,2)

therefore yn(x, t) −→ y(x, t) when, n→ ∞. Prove the Convergence of
∂x∂tyn(x, t) and ∂2x∂tyn(x, t) are similar to yn(x, t).

3.2 Stability
Theorem 3.4. If the Eq. (1) has solution y(x, t), then the present method

on the solution y(x, t) from yn(x, t) is stable in the reproducing kernel space
W(3,2)

2 (D).

Proof 3.4. See [34].

3.3 Error analysis
Theorem 3.5. Suppose yn(x, t) is the approximate solution of the Eq. (1)

in space W(3,2)(D) and y(x, t) is the exact solution. (x, t) ∈ D and ∥y(x, t)−
yn(x, t)∥∞ = max(x,t)∈D |y(x, t) − yn(x, t)|, ∥∂x∂ty(x, t) − ∂x∂tyn(x, t)∥∞ =
max(x,t)∈D
|∂x∂ty(x, t) − ∂x∂tyn(x, t)| and C1, C2, C3, C4, C5, C6 are positive constants,
hx = max1≤i≤n1|xi+1 − xi|, and ht =

7



Table 2
Max absolute error En and error ratio for Example 4.1

PM
n = 12 n = 24 E24

E12
n = 48 E48

E24
n = 96 E96

E48

2× 10−5 1.4× 10−6 0.07 1.10× 10−7 0.08 1.1× 10−8 0.1

Time (Sec)

804.11 1509.11 − 3040.69 − 6241.66 −

Table 3
Max absolute error E′

n and error ratio for Example 4.1

PM
n = 12 n = 24

E′
24

E′
12

n = 48
E′

48
E′

24
n = 96

E′
96

E′
48

1.7× 10−4 1.1× 10−5 0.06 9.00× 10−7 0.08 9.× 10−8 0.1

Table 4
Max absolute error E′′

n and error ratio for Example 4.1

PM
n = 12 n = 24

E′′
24

E′′
12

n = 48
E′′

48
E′′

24
n = 96

E′′
96

E′′
48

3.6× 10−4 4× 10−5 0.11 7× 10−6 0.17 1.2× 10−6 0.17

Table 5
Stability of the present method for Example 4.1 with n = 12

PM
εEn

εE′
n

εE′′
n

ϵ = 10−4 1.75× 10−4 6.5× 10−4 2.8× 10−3

|En − εEn| |E′
n − εE′

n| |E′′
n − εE′′

n |

1.5× 10−4 4.8× 10−4 2.4× 10−3

Table 6
Max absolute error En and error ratio for Example 4.2

PM
n = 12 n = 24 E24

E12
n = 48 E48

E24
n = 96 E96

E48

4.0× 10−5 2.4× 10−6 0.06 8.0× 10−8 0.03 3.6× 10−9 0.04

Time (Sec)

1519.25 2819.56 − 5002.38 − 9563.05 −
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Table 7
Max absolute error E′

n and error ratio for Example 4.2

PM
n = 12 n = 24

E′
24

E′
12

n = 48
E′

48
E′

24
n = 96

E′
96

E′
48

4.4× 10−4 4.4× 10−5 0.1 2.4× 10−6 0.05 1.6× 10−7 0.06

Table 8
Max absolute error E′′

n and error ratio for Example 4.2

PM
n = 12 n = 24

E′′
24

E′′
12

n = 48
E′′

48
E′′

24
n = 96

E′′
96

E′′
48

2.4× 10−3 4.4× 10−4 0.18 4.5× 10−5 0.1 6.5× 10−6 0.14

Table 9
Stability of the present method for Example 4.2 with n = 12

PM
εEn

εE′
n

εE′′
n

ϵ = 10−6 4.3× 10−5 4.45× 10−4 2.45× 10−3

|En − εEn| |E′
n − εE′

n| |E′′
n − εE′′

n |

3× 10−6 5× 10−6 5× 10−5
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max1≤j≤n2|tj+1− tj|. n = n1×n2 where is number of collocation points in re-
gion D. If ∂3x∂ty(x, t), ∂2x∂2t y(x, t) ∈ C([0, 1]×[0, 1]) and ∥∂3x∂tyn(x, t)∥∞, ∥∂2x∂2t yn(x, t)∥∞
are bonded then,

∥y(x, t)− yn(x, t)∥∞ ≤ C2h
2
xht + C1h

3
x,

∥∂x∂ty(x, t)− ∂x∂tyn(x, t)∥∞ ≤ C4hxht + C3h
2
x,

∥∂2x∂ty(x, t)− ∂2x∂tyn(x, t)∥∞ ≤ C5hx + C6ht.

Proof 3.5. From [16–19, 24], in each [xi, xi+1]× [tj, tj+1] ⊂ D we have

∂2x∂ty(x, t)− ∂2x∂tyn(x, t) = ∂2x∂ty(x, t)− ∂2x∂ty(xi, tj)+

∂2x∂tyn(xi, tj)− ∂2x∂tyn(x, t) + ∂2x∂ty(xi, tj)− ∂2x∂tyn(xi, tj).
(7)

We write two terms of Taylor series expansion of ∂2x∂ty(x, t) at the point
(xi, tj) as,

∂2x∂ty(x, t) = ∂2x∂ty(xi, tj)+
[
(x− xi)∂

3
x∂ty(xi, tj)

+ (t− tj)∂
2
x∂

2
t y(xi, tj)

]
,

since ∂3x∂ty(x, t), ∂2x∂2t y(x, t) ∈ C([0, 1] × [0, 1]) constants C̃1, C̃2 exist such
that ∀(x, t) ∈ D, |∂

4y(x,t)
∂x2∂t2

| ≤ C̃2 and |∂
4y(x,t)
∂x3∂t

|
≤ C̃1,

∥∂2x∂ty(x, t)− ∂2x∂ty(xi, tj)∥∞ ≤ C̃1hx + C̃2ht. (8)
Moreover, we can write

∂2x∂tyn(xi, tj)− ∂2x∂tyn(x, t) =−
∫ x

xi

∂3s∂tyn(s, tj)ds

−
∫ t

tj

∂2x∂
2
wyn(x,w)dw,

|∂2x∂tyn(xi, tj)− ∂2x∂tyn(x, t)| ≤
∫ x

xi

|∂3s∂tyn(s, tj)|ds

+

∫ t

ti

|∂2x∂2wyn(x,w)|dw,

since ∥∂3x∂tyn(x, t)∥∞, ∥∂2x∂2t yn(x, t)∥∞ are bonded, we have

∥∂2x∂tyn(xi, tj)− ∂2x∂tyn(x, t)∥∞ ≤ Ĉ1hx + Ĉ2ht. (9)
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For any ϵ1 > 0, ϵ2 > 0, ϵ3 > 0, by using Theorem 3.3 for the approximate
solution in W(3,2)(D) exists n sufficiently large such that,

|∂2x∂ty(xi, tj)− ∂2x∂tyn(xi, tj)| ≤ ϵ1,

|∂x∂ty(xi, t)− ∂x∂tyn(xi, t)| ≤ ϵ2,

|y(xi, t)− yn(xi, t)| ≤ ϵ3,

(10)

by combining above equations we have,

∥∂2x∂ty(x, t)− ∂2x∂tyn(x, t)∥∞ ≤ C5hx + C6ht.

We know have,

∂x∂ty(x, t)− ∂x∂tyn(x, t) = ∂x∂ty(xi, t)− ∂x∂tyn(xi, t)+∫ x

xi

(∂2ξ∂ty(ξ, t)− ∂2ξ∂tyn(ξ, t))dξ,

y(x, t)− yn(x, t) = y(xi, t)− yn(xi, t)+∫ x

xi

(∂ξ∂ty(ξ, t)− ∂ξ∂tyn(ξ, t))dξ,
(11)

by combining Eqs. (10) and (11) we have,

∥∂x∂ty(x, t)− ∂x∂tyn(x, t)∥∞ ≤ C4hxht + C3h
2
x,

∥y(x, t)− yn(x, t)∥∞ ≤ C2h
2
xht + C1h

3
x.

Remark 3.1. In Theorem 3.5, we proved the least degree of convergence.
If there are more smooth conditions, the maximum error bound can be reduced,
and the convergence order can be increased. Suppose ∂4x∂ty(x, t), ∂3x∂2t y(x, t) ∈
C([0, 1]× [0, 1]) and ∥∂4x∂tyn(x, t)∥∞, ∥∂3x∂2t yn(x, t)∥∞ are bonded and in each
[xi, xi+1]× [tj, tj+1] ⊂ D, then

∂3x∂ty(x, t)− ∂3x∂tyn(x, t) = ∂3x∂ty(x, t)− ∂3x∂ty(xi, tj)+

∂3x∂tyn(xi, tj)− ∂3x∂tyn(x, t) + ∂3x∂ty(xi, tj)− ∂3x∂tyn(xi, tj).
(12)

We write two terms of Taylor series expansion of ∂3x∂ty(x, t) at the point
(xi, tj) as,

∂3x∂ty(x, t) = ∂3x∂ty(xi, tj)+
[
(x− xi)∂

4
x∂ty(xi, tj)

+ (t− tj)∂
3
x∂

2
t y(xi, tj)

]
,
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since ∂4x∂ty(x, t), ∂3x∂2t y(x, t) ∈ C([0, 1] × [0, 1]) constants M̃1, M̃2 exist such
that ∀(x, t) ∈ D, |∂

5y(x,t)
∂x3∂t2

| ≤ M̃2 and |∂
5y(x,t)
∂x4∂t

| ≤ M̃1,

∥∂3x∂ty(x, t)− ∂3x∂ty(xi, tj)∥∞ ≤ M̃1hx + M̃2ht. (13)

Moreover, we can write

∂3x∂tyn(xi, tj)− ∂3x∂tyn(x, t) =−
∫ x

xi

∂4s∂tyn(s, tj)ds

−
∫ t

tj

∂3x∂
2
wyn(x,w)dw,

|∂3x∂tyn(xi, tj)− ∂3x∂tyn(x, t)| ≤
∫ x

xi

|∂4s∂tyn(s, tj)|ds

+

∫ t

ti

|∂3x∂2wyn(x,w)|dw,

since ∥∂4x∂tyn(x, t)∥∞, ∥∂3x∂2t yn(x, t)∥∞ are bonded, we have,

∥∂3x∂tyn(xi, tj)− ∂3x∂tyn(x, t)∥∞ ≤ M̂1hx + M̂2ht. (14)

If we assume that ∂mx ∂tyn(x, t) uniformly convergent to
∂mx ∂ty(x, t) where m = 0, 1, 2, 3 and for any ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0,
exists n sufficiently large such that,

|∂3x∂ty(xi, tj)− ∂3x∂tyn(xi, tj)| ≤ ϵ1,

|∂2x∂ty(xi, t)− ∂2x∂tyn(xi, t)| ≤ ϵ2,

|∂x∂ty(xi, t)− ∂x∂tyn(xi, t)| ≤ ϵ3,

|y(xi, t)− yn(xi, t)| ≤ ϵ4,

(15)

and therefore we have,

∥∂3x∂ty(x, t)− ∂3x∂tyn(x, t)∥∞ ≤M1hx +M2ht.

We know have,

∂2x∂ty(x, t)− ∂2x∂tyn(x, t) = ∂2x∂ty(xi, t)− ∂2x∂tyn(xi, t)+∫ x

xi

(∂3ξ∂ty(ξ, t)− ∂3ξ∂tyn(ξ, t))dξ,

∂x∂ty(x, t)− ∂x∂tyn(x, t) = ∂x∂ty(xi, t)− ∂x∂tyn(xi, t)+∫ x

xi

(∂2ξ∂ty(ξ, t)− ∂2ξ∂tyn(ξ, t))dξ,

12



y(x, t)− yn(x, t) = y(xi, t)− yn(xi, t)+∫ x

xi

(∂ξ∂ty(ξ, t)− ∂ξ∂tyn(ξ, t))dξ,

by combining above equations, similar to Theorem 3.5 we have,

∥∂2x∂ty(x, t)− ∂2x∂tyn(x, t)∥∞ ≤M3hxht +M4h
2
x,

∥∂x∂ty(x, t)− ∂x∂tyn(x, t)∥∞ ≤M5h
2
xht +M6h

3
x,

∥y(x, t)− yn(x, t)∥∞ ≤M7h
3
xht +M8h

4
x.

4 Numerical implementations
In this section, presented method is illustrated by solving some numerical
examples. The following definitions and notations are setup for all exam-
ples. En = Max(x,t)∈D

∣∣yn(x, t) − y(x, t)
∣∣, E ′

n = Max(x,t)∈D
∣∣∂x∂tyn(x, t) −

∂x∂ty(x, t)
∣∣ and E ′′

n = Max(x,t)∈D
∣∣∂2x∂tyn(x, t) − ∂2x∂ty(x, t)

∣∣ are maximum
absolute errors where n is number of collocation points. All present numer-
ical results are obtained by using Mathematica 12.1. In Table 1 maximum
absolute errors are compared with methods [17] and [26]. Error ratios for
Examples 4.1 and 4.2 are provided in Tables 2, 3, 4 and Tables 6, 7, 8, re-
spectively. Stability analysis of the present method are shown in Tables 5
and 9 for Examples 4.1 and 4.2, respectively. Figures 1, 2, 3, 4, 5 and 6 are
shown absolute errors for Examples 4.1 and 4.2 and their derivatives.

Algorithm

1. Choose n collocation points in the region [0, 1]× [0, 1] where n = n1 × n2;
2. Set Ψij(x, t) = Kη,ξ(x, t)|(η,ξ)=(xi,tj) where i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2;
3. Set G = [LΨij(x, t)|(x,t)=(xι,tℓ)]

ι=1,2,...,n1,ℓ=1,2,...,n2

i=1,2,...,n1,j=1,2,...,n2
, n× n matrix;

4. Compute B = [f(xι, tℓ)]
T
ι=1,2,...,n1,ℓ=1,2,...,n2

;
5. solve system of the algebraic equationsGC = B, where C = [cij]

T
i=1,2,...,n1,j=1,2,...,n2

;
6. Set yn(x, t) =

∑n1

i=1

∑n2

j=1 cijΨij(x, t);

Example 4.1. [17, 26]
∂0.6y(x,t)

∂t0.6
= x0.6t1.4D0.6

x y(x, t) + 5Γ(1.4)x1.6t1.4

Γ(2.4)
D1.6

x y(x, t)

+f(x, t),

0 < t ≤ 1, 0 < x < 1,

y(x, 0) = x2, y(0, t) = 0, y(1, t) = 4t2 + 1,

where y(x, t) = x2(4t2 + 1) is exact solution.
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Example 4.2.

∂0.4y(x,t)
∂t0.4

= 0.3Γ(0.7)x1.5t2.3

Γ(5.6)
D0.8

x y(x, t) +2Γ(0.2)x0.4t1.2

Γ(3.4)

D1.3
x y(x, t) + f(x, t),

0 < t ≤ 1, 0 < x < 1,

y(x, 0) = xex−1, y(0, t) = 0, y(1, t) = t2 + 1,

where y(x, t) = xex−1(t2 + 1) is exact solution.

5 Conclusion
In this paper, we solved the space-time fractional advection-dispersion equa-
tion with variable coefficients using IRKM, such that makes us unnecessary
to use the Gram-Schmidt orthogonalization process. Moreover, we provided
the convergence and error analysis. According to the theoretical results of
the error analysis, the error ratio for the approximate solution yn(x, t) and its
derivative ∂x∂tyn(x, t) and ∂2x∂tyn(x, t) must be at most 0.125, 0.25 and 0.5
respectively. However, according to Remark 3.1 the error ratio for approxi-
mate solution yn(x, t) and its derivative ∂x∂tyn(x, t) and ∂2x∂tyn(x, t) must be
at most 0.0625, 0.125 and 0.25 respectively. However, numerical examples
showed that the results of the present IRKM could provide better approx-
imations than RKM what was introduced in [18]. Finally, it is important
to note that the proposed method can be implemented on problems with
fractional derivatives, despite the boundary conditions at the beginning and
end of their definition interval.
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Fig. 1. Approximate solution for Example 4.1, with n = 48 ( |yn(x, t)− y(x, t)| ).

Fig. 2. Approximate solution for Example 4.1, with n = 48 (
|∂x∂tyn(x, t)− ∂x∂ty(x, t)| ).

Fig. 3. Approximate solution for Example 4.1, with n = 48 (
|∂2

x∂tyn(x, t)− ∂2
x∂ty(x, t)| ).
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Fig. 4. Approximate solution for Example 4.2, with n = 24 ( |yn(x, t)− y(x, t)| ).

Fig. 5. Approximate solution for Example 4.2, with n = 24 (
|∂x∂tyn(x, t)− ∂x∂ty(x, t)| ).

Fig. 6. Approximate solution for Example 4.2, with n = 24 (
|∂2

x∂tyn(x, t)− ∂2
x∂ty(x, t)| ).
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