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1. INTRODUCTION

In recent years new technologies are rapidly developing, and for this development many
branches of science, including significant contributions of mathematics, work together.
Especially, the topics such as logic, data mining, artificial intelligence, quantum physics,
machine learning come to the forefront. In this context, the concept of neutrosophic set is
a solution to the problems in various fields of the real life.

It is widely known that the concept of continuity and any concept related to continuity
have a great importance not only for pure mathematics but also for many other branches
of science involving mathematics such as computer science, information theory, biological
science and dynamical systems. Many scientists focused on continuity and introduced
numerous concepts related to it. These concepts have always been indispensable parts in
many studies. Sequential continuity has always been among the significant ones of these
concepts. In [1], Connor and Grosse-Erdmann changed the definition of the convergence of
sequences on the structure of sequential continuity. Furthermore, Cakalli [2] extended this
concept to topological group-valued sequences, gave theorems in this generalized setting
some of which were new not only in the setting of topological groups, but also new in the
real case (see also [3, 4, 5, 6]). In this paper, our purpose is to extend these ideas to a
neutrosophic topological space and make some investigations in this direction.

2. PRELIMINARIES

In this section, we present basic definitions related to neutrosophic set theory and neu-
trosophic topological spaces. Our notation and terminology are standard and follow mainly
the papers [7, 8].

Definition 2.1. ([8]) A neutrosophic set A on the universe set X is defined as:

A = {〈x,TA(x), IA(x),FA(x)〉 : x ∈ X},

where T , I, F : X→]−0,1+[ and −0≤ TA(x)+IA(x)+FA(x)≤ 3+. T , I and F are called the
membership function, indeterminacy function and non-membership function, respectively.

Membership functions T, indeterminacy functions I and non-membership functions F of
neutrosophic sets take value from real standard or nonstandard subsets of ]−0,1+[. How-
ever, these subsets are sometimes inconvenient to be used in real life applications such as
economic and engineering problems. On account of this fact, we consider the neutrosophic
sets, whose membership function, indeterminacy function and non-membership function
take values from subsets of [0,1].
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Definition 2.2. ([9]) Let X be a nonempty set. If r, t, s are real standard or non standard
subsets of ]−0,1+[, then the neutrosophic set

xr,t,s (xp) =

{
(r, t,s), if x = xp

(0,0,1), if x 6= xp

is called a neutrosophic point. xp ∈ X is called the support of xr,t,s, and r denotes the degree
of membership value, t the degree of indeterminacy and s the degree of non-membership
value of xr,t,s.

Definition 2.3. ([7]) Let A be a neutrosophic set over the universe set X . The complement
of A is denoted by Ac and is defined by:

Ac =
{
〈x, FF̃(e)(x),1 − IF̃(e)(x), TF̃(e)(x)〉 : x ∈ X

}
It is obvious that [Ac]c = A.

Definition 2.4. ([7]) Let A and B be two neutrosophic sets over the universe set X . A is
said to be a neutrosophic subset of B if

TA(x) ≤ TB(x), IA(x) ≤ IB(x),FA(x) ≥ FB(x),∀x ∈ X .

It is denoted by A ⊆ B. A is said to be neutrosophic equal to B if A ⊆ B and B ⊆ A. It is
denoted by A = B.

Definition 2.5. ([7]) Let A1 and A2 be two neutrosophic soft sets over the universe set X .
Then:

(1) the union of A1 and A2, denoted by A1∪A2 = A3, is defined by
A3 =

{〈
x, TA3 (x) , IA3 (x) , FA3 (x)

〉
: x ∈ X

}
,

where
TA3 (x) = max{TA1 (x) ,TA2 (x)} ,
IA3 (x) = max{IA1 (x) , IA2 (x)} ,
FA3 (x) = min{FA1 (x) ,FA2 (x)} .

(2) the intersection of A1 and A2, denoted by A1∩A2 = A3 is defined by
A3 =

{〈
x, TA3 (x) , IA3 (x) , FA3 (x)

〉
: x ∈ X

}
,

where
TA3(x) = min{TA1(x),TA2(x)},
IA3 (x) = min{IA1 (x) , IA2 (x)} ,

FA3 (x) = max{FA1 (x) ,FA2 (x)} .

Definition 2.6. ([7]) A neutrosophic set A over the universe set X is said to be
(1) the null neutrosophic set, denoted by 0X , if TA (x) = 0, IA (x) = 0, FA (x) = 1, ∀x ∈

X ;
(2) the absolute neutrosophic set, denoted by 1X , if TA (x) = 1, IA (x) = 1, FA (x) =

0, ∀x ∈ X .

Clearly 0c
X = 1X and 1c

X = 0X .

Definition 2.7. ([7]) The collection τ of the neutrosophic sets over the universe set X is
said to be a neutrosophic topology on X , if

1.0X and 1X belong to τ;
2. The union of any subcollection of τ belongs to τ;
3. The intersection of a finite number of sets in τ belongs to τ .

Then (X ,τ) is said to be a neutrosophic topological space over X . Each member of τ is
said to be a neutrosophic open set, and its complement is said to be a neutrosophic closed
set.
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Note. In what follows (X ,τ) and (Y,σ) will denote neutrosophic topological spaces.
Sometime, when it is clear from the context, we write simply X and Y instead of (X ,τ) and
(Y,σ).

3. NEW DEFINITIONS

In the following, we give several new definitions that will be required in the next section.

Definition 3.1. (1) A neutrosophic point xr,t,s is said to be neutrosophic quasi-coincident
(neutrosophic q-coincident, for short) with a neutrosophic set A, denoted by xr,t,sqA if
xr,t,s * Ac. If xr,t,s is not neutrosophic quasi-coincident with A, we write xr,t,sq̃A.

(2) A neutrosophic set A is said to be neutrosophic quasi-coincident (neutrosophic q-
coincident, for short) with B, denoted by AqB if A * Bc. If A is not neutrosophic quasi-
coincident with B, we denote it by Aq̃B.

Definition 3.2. Let (X ,τ) be a neutrosophic topological space. Then:
(1) A neutrosophic set A in (X ,τ) is said to be a neutrosophic q-neighborhood of a

neutrosophic point xr,t,s if there exists a neutrosophic open set B such that xr,t,sqB⊂ A.
(2) A neutrosophic point xr,t,s in (X ,τ) is said to be a neurosophic cluster point of a

neutrosophic set A if every neutrosophic open q-neighborhood B of xr,t,s is q-coincident
with A. The union of all neutrosophic cluster points of A is called the neutrosophic closure
of A and is denoted by A.

(3) A neutrosophic point xr,t,s is said to be a neurosophic boundary point of a neutro-
sophic set F if every neutrosophic open q-neighborhood G of xr,t,s is q-coincident with F
and Fc. The union of all neutrosophic boundary points of F is called the neutrosophic
boundary of F and denoted by Fb.

Definition 3.3. Let (X ,τ) be a neutrosophic topological space.
(1) A neutrosophic sequence in (X ,τ) is a function S : N→ (X ,τ) from the set N of

natural numbers to (X ,τ). We write x = {xnrn ,tn ,sn}n∈N to denote a sequence in (X ,τ).
(2) A neutrosophic subsequence of a neutrosophic sequence S : N→ (X ,τ,E) is a com-

position S◦P, where P : N→ N is an increasing cofinal function. That is,
(a) P(n1)≤ (n2), whenever n1 ≤ n2 (P is increasing),
(b) For each n1 ∈ N, there exists a naturel number n2 ∈ N such that n1 ≤ P(n2) (P is

cofinal in N). For k ∈ N, the neutrosophic point (S◦P)(k) will often be written
{

xnrn ,tn ,sn

}
.

(3) A neutrosophic sequence x = {xnrn ,tn ,sn}n∈N in (X ,τ) converges to a neutrosophic
point xr,t,s in (X ,τ) (written xnrn ,tn ,sn → xr,t,s) if for each neutrosophic q-neighbourhood U
of xr,t,s there exists n0 ∈ N such that xnrn ,tn ,sn qU for all n≥ n0.

(4) We will use boldface letters x, y, . . . for neutrosophic sequences. By s(X) and c(X)
we denote the set of all neutrosophic sequences in (X ,τ) and the set of all convergent
neutrosophic sequences in (X ,τ), respectively.

Definition 3.4. Let (X ,τ) be a neutrosophic topological space.
(1) (X ,∆) is a neutrosophic group on X if ∆ is a binary operation defined on X such that

the following conditions hold:
(a) Associativity: For all neutrosophic points x1r1 ,t1 ,s1

, x2r2 ,t2 ,s2
, x3r3 ,t3 ,s3

in (X ,τ), we
have

x1r1 ,t1 ,s1
∆

(
x2r2 ,t2 ,s2

∆ x3r3 ,t3,s3

)
=
(

x1r1 ,t1 ,s1
∆x2r2 ,t2 ,s2

)
∆ x3r3 ,t3 ,s3

.

(b) Identity: There exists an identity neutrosophic point eα,β ,γ in (X ,τ) such that
x1r1 ,t1,s1

∆ eα,β ,γ = eα,β ,γ ∆ x1r1 ,t1 ,s1
= x1r1 ,t1 ,s1

for any neutrosophic point x1r1 ,t1 ,s1
in (X ,τ).

(c) Inverse: For any neutrosophic point x1r1 ,t1 ,s1
in (X ,τ), there exists an inverse neutro-

sophic point
(

x1r1 ,t1 ,s1

)−1
in (X ,τ) such that
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x1r1 ,t1 ,s1
∆

(
x1r1 ,t1,s1

)−1
= eα,β ,γ and

(
x1r1,t1 ,s1

)−1
∆x1r1 ,t1 ,s1

= eα,β ,γ .

(2) Let (s(X),∗) be the group of neutrosophic sequences in X , and (X ,∆) be a neutro-
sophic group. A neutrosophic method is a function G defined on a subgroup (cG(X),∗) of
(s(X),∗) such that G(x ∗ y) = G(x)∆G(y) for all neutrosophic convergent sequences x, y
in (X ,τ).

(3) A neutrosophic sequence x =
{

xnrn ,tn ,sn

}
n∈N is said to be G-convergent to xr,t,s, if

x ∈ cG(X) and G(x) = xr,t,s.
(4) A neutrosophic method G is called neutrosophic regular if every convergent neutro-

sophic sequence x = {xnrn ,tn ,sn}n∈N is G-convergent with G(x) = xr,t,s, where x converges
to xr,t,s.

If (X ,∆) is a neutrosophic group on a neutrosophic topological space (X ,τ), and A, B
neutrosophioc sets in (X ,τ), then

A∆B = {x1r1 ,t1 ,s1
: x1r1 ,t1 ,s1

= x2r2 ,t2 ,s2
∆ x3r3 ,t3 ,s3

, x2r2 ,t2 ,s2
∈ A, x3r3 ,t3 ,s3

∈ B}
and

A−1 = {(xr,t,s)
−1 : xr,t,s ∈ A}.

Definition 3.5. A neutrosophic point xr,t,s is said to be a neutrosophic sequential cluster
point of a neutrosophic set A if there exists a neutrosophic sequence of neutrosophic points
in A that converges to xr,t,s. The union of all neutrosophic sequential cluster points of A is
called the neutrosophic sequential closure of A and denoted by Fseq.

Definition 3.6. Let f be a function from (X ,τ) to (Y,σ). Then for a neutrosophic sets A
in X and B in Y we have:

(1) the image of A under f , written as f (A), is a neutrosophic subset of Y whose mem-
bership function, indeterminacy function and non-membership function are defined as

Tf (A)(y) =

{
supz∈ f←(y){TA(z)}, if f←(y) is not empty,
0, if f←(y) is empty,

I f (A)(y) =

{
supz∈ f←(y){IA(z)}, if f←(y) is not empty,
0, if f←(y) is empty,

Ff (A)(y) =

{
infz∈ f←(y){FA(z)}, if f←(y) is not empty,
1, if f←(y) is empty

for all y in Y (where f←(y) = {x : f (x) = y}).
(2) the inverse image (or preimage) of B under f , written as f←(B), is a neutrosophic

subset of X defined as
Tf←(B)(x) = TB( f (x)),
I f←(B)(x) = IB( f (x)),
Ff←(B)(x) = FB( f (x))

for all x in X .

4. SEQUENTAL DEFINITIONS OF CONTINUITY IN NEUTROSOPHIC TOPOLOGICAL
SPACES

In this section, we introduce some new concepts and investigate their properties. Also,
we give several counterexamples.

Definition 4.1. Let A be a neutrosophic set and xr,t,s be a neutrosophic point in (X ,τ).
Then, xr,t,s is in the neutrosophic G- sequential closure of A (or neutrosophic G-hull of A),
if there is a neutrosophic sequence x = {xnrn,tn ,sn}n∈N of neutrosophic points in A such that

G(x) = xr,t,s. We denote neutrosophic G-sequential closure of a neutrosophic set A by AG.
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We say that a neutrosophic set A is G-sequentially neutrosophic closed if it contains all the
neutrosophic points in its neutrosophic G-closure, that is if AG ⊆ A.

It is clear that /0G
= 0X and XG

= 1X . If G is a neutrosophic regular method, then

A⊂ A⊂ AG. Even for neutrosophic regular methods, it is not always true that (AG
)

G
= AG

as the following example shows.

Example 4.2. Let X = [0,1] and let τ be a neiutrosophic topology on X . Consider the
neutrosophic method G defined by

G(x) = u0.5,0.5,0.5, where u = lim
n→∞

xn + xn+1

2
for a neutrosophic sequence x =

{
xnrn ,tn ,sn

}
n∈N in X . Further, consider a neutrosophic set

A = 00.5,0.5,0.5∪10.5,0.5,0.5. Then

AG
= 00.5,0.5,0.5∪0.50.5,0.5,0.5∪10.5,0.5,0.5

and (
AG
)G

= 00.5,0.5,0.5∪0.250.5,0.5,0.5∪0.50.5,0.5,0.5∪0.750.5,0.5,0.5∪10.5,0.5,0.5.

So,
(

AG
)G
6= AG.

Definition 4.3. A subset A of X is called neutrosophic G-sequentially compact if for any
neutrosophic sequence x = {xnrn ,tn ,sn}n∈N in A there is a subsequence y = {xnrnk ,tnk ,snk

}k∈N
of x with G(y) ∈ A.

Definition 4.4. A function f : X → Y is neutrosophic G-sequentially continuous at a neu-
trosophic point ur,t,s, if for any sequence x = {xnrn,tn ,sn}n∈N in X , G(x) = ur,t,s implies
G( f (x)) = f (ur,t,s). We say that f is G-sequentially continuous on a neutrosophic subset
D of X , if it is neutrosophic G-sequentially continuous at every ur,t,s ∈ D and is neutro-
sophic G-sequentially continuous if it is neutrosophic G-sequentially continuous on X .

Theorem 4.5. The image of any neutrosophic G-sequentially compact subset of X under a
neutrosophic G-sequentially continuous function is neutrosophic G-sequentially compact.

Proof. Let f be any neutrosophic G-sequentially continuous function on X and A be
any neutrosophic G-sequentially compact subset of X . Take any neutrosophic sequence
y = {ynrnk ,tnk ,snk

}n∈N = { f (xnrnk ,tnk ,snk
)}n∈N of neutrosophic points in f (A). Since A is

neutrosophic G-sequentially compact, there exists a subsequence z = {xnrnk ,tnk ,snk
}k∈N of

x = {xnrn ,tn ,sn}n∈N with G(z) ∈ A. Then the sequence f (z) = { f (xnrnk ,tnk ,snk
)}k∈N is a sub-

sequence of the sequence y. Since f is neutrosophic G-sequentially continuous, G( f (z))∈
f (A). Thus, f (A) is neutrosophic G-sequentially compact. �

Definition 4.6. A neutrosophic method G is called neutrosophic subsequential if for any
neutrosophic sequence x such that G(x) = xr,t,s, there exists a subsequence {xnrnk ,tnk ,snk

}k∈N
of x that converges to xr,t,s.

Definition 4.7. Let ur,t,s be a neutrosophic point in (X ,τ). Then:
(1) ur,t,s is in the neutrosophic sequential derived set of A (called also sequential ac-

cumulation point of A) if there exists a neutrosophic sequence x = {xnrn ,tn ,sn}n∈N
of neutrosophic points in A such that where xnrn ,tn ,sn q(ur,t,s)

c for all n ∈ N and
xnrn ,tn ,sn → ur,t,s. We denote neutrosophic sequential derived set of a neutrosophic
set A by A′.

(2) ur,t,s is in the neutrosophic G-sequential derived set of A (also called a neutro-
sophic G-sequential accumulation point of A) if there exists a neutrosophic se-
quence x = {xnrn ,tn ,sn}n∈N in A such that xnrn ,tn ,sn q(ur,t,s)

c for all n ∈ N and G(x) =
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ur,t,s. We denote neutrosophic G-sequential derived set of a neutrosophic set A by
(A′)G.

(3) ur,t,s is a neutrosophic G-sequential boundary point of a neutrosophic set A if
ur,t,s lies in both the neutrosophic G-sequential closure of A and neutrosophic G-
sequential closure of the complement of A. We denote neutrosophic G-sequential
boundary set of A by ((A)b)G.

The following three theorems give characterizations of a neutrosophic subsequential
method.

Theorem 4.8. Let G be a neutrosophic regular method and A be any neutrosophic subset
of X. Then AG

= A if and only if G is a neutrosophic subsequential method, where A
denotes the usual closure of A.

Proof. Suppose that G is a neutrosophic subsequential method and that ar,t,s ∈ AG. Then,
there is a neutrosophic sequence x = {xnrn ,tn ,sn}n∈N in A such that G(x) = ar,t,s. As G is
a neutrosophic subsequential method, there is a subsequence {xnrnk ,tnk ,snk

}k∈N of x such

that xnrnk ,tnk ,snk
→ ar,t,s, and hence ar,t,s ∈ A. As G is neutrosophic regular, it follows that

AG
= A.
Conversely, let AG

= A for every neutrosophic subset A of X . Let x = {xnrn,tn ,sn}n∈N be a
neutrosophic G-convergent sequence with G(x) = ar,t,s. Since G is a neutrosophic regular
method, ar,t,s ∈

⋃
n≥m xnrn ,tn ,sn

G
for any m∈N. As

⋃
n≥m xnrn ,tn ,sn

G
=
⋃

n≥m xnrn ,tn ,sn , it follows
that ar,t,s ∈

⋂
m
⋃

n≥m xnrn ,tn,sn . Hence, there is a neutrosophic subsequence {xnrnk ,tnk ,snk
}k∈N

of x such that xnrnk ,tnk ,snk
→ ar,t,s. �

Theorem 4.9. Let G be a neutrosophic regular method. Then, G is a neutrosophic subse-
quential method if and only if A′ = (A′)G for every neutrosophic subset A of X.

Proof. First, suppose that A′ = (A′)G for every neutrosophic subset A of X . Then A = A∪
A′ = A∪ (A′)G = AG. It follows from Theorem 4.8 that G is a neutrosophic subsequential
method.

Now suppose that G is a neutrosophic subsequential method and take any neutrosophic
subset A of X . Let ur,t,s be any neutrosophic point in A′. Then there is a neutrosophic
sequence x = {xnrn ,tn ,sn }n∈N of neutrosophic points in A such that xnrn ,tn,sn q(ur,t,s)

c for all
n ∈ N and xnrn ,tn ,sn → xr,t,s. As G is regular, G(x) = xr,t,s. Hence, xr,t,s ∈ (A′)G. To prove
that (A′)G ⊂ A′, take any neutrosophic point ur,t,s in (A′)G. Then there is a neutrosophic
sequence x = {xnrn,tn ,sn}n∈N of neutrosophic points in A whose supports are different from
ur,t,s such that G(x) = ur,t,s. As G is a neutrosophic subsequential method, there is a neu-
trosophic subsequence (xnk) of x with xnrnk ,tnk ,snk

→ ur,t,s. Hence ur,t,s ∈ A′. This completes
the proof. �

Theorem 4.10. Let G be a neutrosophic regular method. Then G is a neutrosophic subse-
quential method if and only if Ab = (Ab)G for every neutrosophic subset A of X.

Proof. Firstly, suppose that Ab =(Ab)G for every neutrosophic subset A of X . Then A=A∪
Ab = A∪ (Ab)G = AG. It follows from Theorem 4.8 that G is a neutrosophic subsequential
method.

Suppose now that G is a neutrosophic subsequential method and take any neutrosophic
subset A of X . Let ur,t,s be any neutrosophic point in Ab. Then ur,t,s is in both A and Ac.
Hence, there exist a neutrosophic sequence x = {xnrn ,tn,sn }n∈N of neutrosophic points in A
and a neutrosophic sequence y = {ynpn ,vn ,mn}n∈N of neutrosophic points in Ac such that

xnrn ,tn ,sn → ur,t,s and ynpn ,vn ,mn → ur,t,s.
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As G is neutrosophic regular, G(x) = ur,t,s and G(y) = ur,t,s, hence ur,t,s ∈ (Ab)G.
To prove that (Ab)G ⊂ Ab, take any neutrosophic point ur,t,s of (Ab)G. Then ur,t,s is

in both A and Ac. Hence there exist a neutrosophic sequence x = {xnrn ,tn ,sn}n∈N in A
and a neutrosophic sequence y = {ynpn ,vn ,mn}n∈N in Ac such that G(x) = ur,t,s and G(y) =
ur,t,s. As G is a neutrosophic subsequential method, there are neutrosophic subsequences
{xnkrnk ,tnk ,snk

}k∈N of x and {ynkpnk ,vnk ,mnk
}k∈N of y such that

xnkrnk ,tnk ,snk
→ ur,t,s and ynkpnk ,vnk ,mnk

→ ur,t,s.

Hence, ur,t,s ∈ Ab. This completes the proof. �

Theorem 4.11. Let (X ,τ) be a neutrosophic topological space and (X ,∆) be a neutro-
sophic group whose identity neutrosophic point is eα,β ,γ . If G is a neutrosophic regular
method, then for any neutrosophic sets A, B in (X ,τ) the following are satisfied:

(1) If A⊂ B, then AG ⊂ BG;
(2) AG∪BG ⊂ A∪BG;
(3) A∩BG ⊂ AG∩BG;
(4) AG

∆BG ⊂ A∆B
G

;

(5) A−1G
= (AG

)−1;
(6) Neutrosophic G-sequential closure of a neutrosophic subgroup of (X ,∆) is also a

neutrosophic subgroup of (X ,∆);
(7) A∆eα,β ,γ = A, if A is neutrosophic G-closed.

Proof. We will prove only (2) and (4) because the proofs of other properties are similar
and easy.

(2) Take any element ur,t,s of AG ∩BG. Then ur,t,s is either in AG or in BG. Suppose
ur,t,s ∈ AG. There is a neutrosophic sequence x = {xnrn ,tn ,sn}n∈N in A, hence in A∪B, with

G(x) = ur,t,s. Hence, ur,t,sA∩BG.
(4) Let ur,t,s ∈ AG

∆BG. Hence, there exist u1r1 ,t1 ,s1
∈ AG and u2r2 ,t2 ,s2

∈ BG such that
ur,t,s = u1r1 ,t1 ,s1

∆u2r2 ,t2 ,s2
. Then, there are neutrosophic sequences x = {xnrn ,tn ,sn}n∈N in A

and y = {ynpn ,vn ,mn }n∈N in B such that G(x) = u1r1 ,t1 ,s1
and G(y) = u2r2 ,t2 ,s2

. Now define
a sequence z = x∆y. From the additivity of G, we get G(z) = G(x∆y) = G(x)∆G(y) =
u1r1 ,t1 ,s1

∆u2r2 ,t2 ,s2
∈ A∆B

G. �

Example 4.12. Take the neutrosophic topological space (X ,τ) and the neutrosophic method
G as in Example 4.2. Consider neutrosophic sets A = 00.5,0.5,0.5 and B = 10.5,0.5,0.5 . Then

AG∪BG
= 00.5,0.5,0.5∪10.5,0.5,0.5 and A∪BG

= 00.5,0.5,0.5∪0,50.5,0.5,0.5∪10.5,0.5,0.5 .
This means that the converse inclusion in (2) of Theorem 4.11 is not always true.

Example 4.13. Take any neutrosophic topological space (X ,τ). Consider a neutrosophic
method G defined as G(x) = x1r1 ,t1 ,s1

for any neutrosophic sequence x = {xnrn ,tn ,sn}n∈N in
X . Then, any neutrosophic subset of X is neutrosophic G-sequentially closed. This shows
that the neutrosophic G-sequential closure of a neutrosophic set may be different from the
neutrosophic sequential closure of the set.

The proof of the following theorem is omitted because it is similar to the proof of
Theorem 4.11.

Theorem 4.14. Let G be a neutrosophic regular method and {Ai : i ∈ I} be any collection
of neutrosophic subsets of X , where I is an index set. Then the followings are satisfied:

(1)
⋃

i∈I Ai
G ⊂

⋃
i∈I Ai

G
;

(2)
⋂

i∈I Ai
G ⊂

⋂
i∈I Ai

G;
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(3) Ai1
G

∆Ai2
G

∆Ai3
G

∆ . . .∆Aik
G

∆ . . .⊂ Ai1∆Ai2∆Ai3∆ . . .∆Aik ∆ . . .
G

,
where ik ∈ I, k ∈ N.

Theorem 4.15. Let G be a neutrosophic regular method and A and B neutrosophic subsets
of X. Then the following are satisfied:

(1) if A⊂ B then (A′)G ⊂ (B′)G;
(2) AG

= A∪ (A′)G;
(3) AG

= A∪ (Ab)G.

Proof. (1) The proof is easy and thus omitted.
(2) Take any neutrosophic point ur,t,s of AG. If ur,t,s ∈ A, then it is in A∪ (A′)G. If

ur,t,s /∈ A, there exists a neutrosophic sequence x = {xnrn ,tn ,sn}n∈N of neutrosophic points in
A such that xnrn ,tn ,sn q(ur,t,s)

c for all n ∈ N and G(x) = ur,t,s. Thus, ur,t,s ∈ (A′)G.

On the other hand, we get A∪ (A′)G ⊂ AG since A⊂ AG and (A′)G ⊂ AG.
(3) Let ur,t,s ∈ A∪ (Ab)G. If ur,t,s is in A, there is nothing to prove since A ⊂ AG for a

neutrosophic regular method G. If ur,t,s ∈ (Ab)G, then ur,t,s ∈AG∩(Ac)
G

. Hence, ur,t,s ∈AG.
Conversely, take any neutrosophic point ur,t,s of AG. Thus, ur,t,sq̃Ac or ur,t,sqAc . If

ur,t,sq̃Ac, then ur,t,s ∈ A and there is nothing to prove. If ur,t,sqAc , ur,t,s ∈ Ac. Then, there
exists a neutrosophic sequence y = {ynpn ,vn ,mn }n∈mathbbN in Ac such that ynpn,vn ,mn → ur,t,s.
As G is neutrosophic regular, G(y) = ur,t,s. Hence ur,t,s ∈ (Ab)G. �

Remark 4.16. For a neutrosophic regular method G, a neutrosophic subset A of X is

neutrosophic closed if and only if (A′)G ⊂ A. But, we note that
(
((A′)G)

′
)G

is not always

a neutrosophic subset of A∪ (A′)G.

Corollary 4.17. Let G be a neutrosophic regular method. Then the intersection of any
collection of neutrosophic G-sequentially closed subsets of X is again a neutrosophic G-
sequentially closed subset of X.

Notice that for neutrosophic regular methods G, the union of two neutrosophic G-
sequentially closed subsets of X need not be a neutrosophic G-sequentially closed. Ex-
ample 4.12 shows it.

Theorem 4.18. Let G be a neutrosophic regular method. If a function f : X → Y is neu-
trosophic G-sequentially continuous at a neutrosophic point ur,t,s, then ur,t,s ∈ AG implies

f (ur,t,s) ∈ f (A)
G

for every neutrosophic subset A of X.

Proof. Suppose that f is neutrosophic G-sequentially continuous at a neutrosophic point
ur,t,s. Let A be any neutrosophic subset of X and ur,t,s ∈ AG. Then, there is a neutrosophic
sequence x = {xnrn ,tn ,sn}n∈N of neutrosophic points in A such that G(x) = ur,t,s. Since f
is neutrosophic G-sequentially continuous at ur,t,sk, G( f (x)) = f (ur,t,s) . Thus f (ur,t,s) ∈
f (A)

G
. �

Corollary 4.19. Let G be a neutrosophic regular method. If a neutrosophic function
f : X → Y is neutrosophic G sequentially continuous, then f (AG

)⊂ f (A)
G

for every neu-
trosophic subset A of X.

For neutrosophic regular subsequential methods the converse of Theorem 4.18, as well
as of Corollary 4.19 is also valid, i.e. a function f is neutrosophic G-sequentially continu-
ous at a neutrosophic point ur,t,s if and only if the ur,t,s ∈ AG implies f (ur,t,s) ∈ f (A)

G
, and

a function f is neutrosophic G-sequentially continuous on X if and only if f (AG
)⊂ f (A)

G

for every neutrosophic subset A of X .
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Corollary 4.20. Let G be a neutrosophic regular method. If a bijection f : X→Y is neutro-
sophic G-sequentially continuous on X, then f ((A′)G) ⊂ ( f (A′))G for every neutrosophic
subset A of X.

Proof. Take a neutrosophic point f (ur,t,s) in f ((A′)G). This means that ur,t,s ∈ (A′)G. So,
there exists a neutrosophic sequence x= {xnrn ,tn,sn }n∈N innA such that where xnrn ,tn ,sn q(ur,t,s)

c

for all n ∈ N and G(x) = ur,t,s . Then, f (x) = { f (xnrn ,tn ,sn ))}n∈N is a neutrosophic se-
quence in f (A). Since f is a bijection and neutrosophic G-sequentially continuous on X ,
f (xnrn ,tn ,sn ))q( f (ur,t,s))

c for all n ∈ N in f (A) and G( f (x)) = f (ur,t,s). Hence, f (ur,t,s) ∈
( f (A′))G. �

From this corollary and Theorem 4.18 we have the following.

Corollary 4.21. Let G be a neutrosophic regular method. If a bijection f is neutrosophic
G-sequentially continuous, then f (((A)b)G)⊂ (( f (A))b)G for every neutrosophic subset A
of X.

For neutrosophic regular subsequential methods the converse of Corollaries 4.20 and
4.21 is also true.

Theorem 4.22. Let G be a neutrosophic regular method. If a function f : X → Y is
neutrosophic G-sequentially continuous on X, then the preimage of any neutrosophic G-
sequentially closed subset of Y is neutrosophic G-sequentially closed, i.e. f←(U) is neu-
trosophic G-sequentially closed for every neutrosophic G-sequentially closed subset U of
Y .

Proof. Take a neutrosophic G-sequentially closed subset U of X . Let V = f←(U) and
suppose that ur,t,s ∈ V G. Then, there exists a neutrosophic sequence x = {xnrn ,tn ,sn}n∈N
of neutrosophic points in V such that G(x) = ur,t,s. Since G( f (x)) = f (ur,t,s), f (x) is a
neutrosophic sequence of neutrosophic point is in U and since U is neutrosophic G-closed,
we obtain that f (ur,t,s) ∈U . This implies that ur,t,s ∈V . Hence, V G ⊂V . �

We omit the proof of the following simple result.

Theorem 4.23. Let G be a neutrosophic regular subsequential method. Then every neu-
trosophic G-sequentially continuous function is neutrosophic continuous in the ordinary
sense.

Theorem 4.24. Let G be a neutrosophic regular method. If every continuous function is
neutrosophic G-sequentially continuous, then G is a neutrosophic subsequential method.

Proof. Suppose that G is not a neutrosophic subsequential method. We are going to find a
function which is neutrosophic continuous but not neutrosophic G-sequentially continuous.
As G is not neutrosophic subsequential there is a neutrosophic subset A of X whose closure
is a proper neutrosophic subset of its neutrosophic G-sequential closure. Take u1r1 ,t1 ,s1

∈
AG ∩Ac and u2r2 ,t2 ,s2

∈ A. Define a function f as f (xr,t,s) = u2r2 ,t2 ,s2
for all xr,t,s ∈ A and

f (x)= u1r1 ,t1,s1
for xr,t,s ∈Ac. It is clear that f is not neutrosophic G-sequentially continuous

and f is neutrosophic continuous in the ordinary sense. This completes the proof. �

Now we give the following definition.

Definition 4.25. A function f is called neutrosophic G-sequentially closed if f (K) is neu-
trosophic G-sequentially closed for every neutrosophic G-sequentially closed neutrosophic
subset K of X .

Theorem 4.26. Let G be a neutrosophic regular method. A function f is G-sequentially
closed if and only if ( f (A))

G ⊂ f (AG
) for every neutrosophic subset A of X.
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Proof. From the neutrosophic regularity of G, we have A ⊂ AG. Since f is neutrosophic
G-sequentially closed, we deduce ( f (A))

G ⊂ f (AG
).

Now suppose that ( f (A))
G ⊂ f (AG

). Let C be any neutrosophic G-sequentially closed

neutrosophic subset of X . Then ( f (C))
G ⊂ f (CG

) = f (C). Hence f is neutrosophic G-
sequentially closed. This completes the proof. �

Theorem 4.27. Let (X ,∆) be a neutrosophic group in a neutrosophic topological space
(X ,τ). Let G1 and G2 be two neutrosophic methods of neutrosophic sequential conver-
gence with cG1(X) = cG2(X). Then, AG1∆G2 ⊂ AG1

∆AG2 .

Proof. Let ur,t,s ∈AG1∆G2 . Then there is a sequence x= {xnrn ,tn ,sn}n∈N such that (G1∆G2)(x)
= ur,t,s. Hence G1(x)∆G2(x) = ur,t,s . Write G1(x) = u1r1 ,t1 ,s1

and G2(x) = u2r2 ,t2 ,s2
. There-

fore u1r1 ,t1 ,s1
∈ AG1 and u2r2 ,t2 ,s2

∈ AG2 . Hence ur,t,s = u1r1 ,t1,s1
∆u2r2 ,t2 ,s2

∈ AG1
∆AG2 . �

Corollary 4.28. Let G1 and G2 be two subsequential methods of sequential convergence
with cG1(X) = cG2(X). Then:

(1) (A′)G1+G2 ⊂ (A′)G1 +(A′)G2 ;
(2) (Ab)G1+G2 ⊂ (Ab)G1 +(Ab)G2 .

Theorem 4.29. Let (X ,∆) be a neutrosophic group in a neutrosophic topological space
(X ,τ). A function f on (X ,τ) is additive if and only if for every methods G1 and G2 of se-
quential convergence with cG1(X) = cG2(X) , G1-sequential continuity and G2-sequential
continuity of f together imply (G1∆G2)-sequential continuity of f .

Proof. Let (G1∆G2)(x) = ur,t,s. Write G1(x) = u1r1 ,t1 ,s1
and G2(x) = u2r2 ,t2 ,s2

. As f is G1-
continuous and G2-continuous, G1( f (x)) = f (u1r1 ,t1 ,s1

) and G2( f (x)) = f (u2r2 ,t2 ,s2
). Hence

(G1∆G2)( f (x)) = G1( f (x))∆G2( f (x)) = f (u1r1 ,t1 ,s1
)∆ f (u2r2 ,t2 ,s2

) =

f (u1r1 ,t1 ,s1
∆u2r2 ,t2 ,s2

) = f (ur,t,s).

Now suppose that f is not additive. There are elements u1r1 ,t1 ,s1
and u2r2 ,t2 ,s2

with

f (u1r1 ,t1 ,s1
∆u2r2 ,t2,s2

) 6= f (u1r1 ,t1 ,s1
)∆ f (u2r2 ,t2 ,s2

).

Define G1(x) = u1r1 ,t1 ,s1
and G2(x) = u2r2 ,t2 ,s2

, where x =
{

xnrn,tn ,sn

}
n∈N . Then

(G1∆G2)(x) = G1(x)∆G2(x) = u1r1 ,t1,s1
∆u2r2 ,t2 ,s2

but

(G1∆G2)( f (x)) = f (u1r1,t1 ,s1
)∆ f (u2r2 ,t2 ,s2

)

which is different from f (u1r1 ,t1 ,s1
∆u2r2 ,t2 ,s2

). This completes the proof. �

5. CONCLUSION

We introduced the concept of neutrosophic G-sequential continuity. The definitions
of neutrosophic sequence, neutrosophic quasi-coincidence, neutrosophic q-neighborhood,
neutrosophic cluster point, neutrosophic boundary point, neutrosophic sequential closure,
neutrosophic group, neutrosophic method are also given. Using these definitions, we define
the concepts of neutrosophic G- sequential closure and neutrosophic G-sequential derived
set. Additionally, the concept of G-sequentially neutrosophic compactness is introduced.
Their properties are analyzed and some implications are given. It is also shown by coun-
terexamples that the converse statements of these implications are not always true.

Since topological structures of neutrosophic sets carry great importance for numerous
mathematicians, various concepts related to the other types of topological spaces, which
constitute advantageous situations in different fields, have been adapted to neutrosophic
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topological spaces. Our expectation is that many scientists will take advantage of using
these detections to advance their research in mathematics and also in different disciplines
that apply mathematical methods. We also hope that these findings may constitute a general
framework for their applications in practical life.
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