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Summary

The existence and uniqueness of the solution is proved for a nonlinear bound-
ary value problem for ODE subject to an infinite condition1, which describes
the study of two-phase Stefan problems on the semi-infinite line [0,∞). This
result considerably extends the analysis of a recent work4. A highly accu-
rate analytic approximate solution of this problem is also provided via the
Adomian decomposition method.

KEYWORDS:
Boundary value problem, existence and uniqueness theorem, approximate solution, Modi-

fied error function, Stefan problem, Adomian decomposition method, Adomian polynomi-

als.

1 INTRODUCTION

In1, the authors introduced the concept of the modified error function for the model conduction heat transfer with
phase change into a semi-infinite slab [0,∞), where the thermal conductivities and specific heats of both phases were
assumed to be a linear function of the temperature. This function is a solution of the following nonlinear boundary
value problem {

[(1 + δy)y′]
′
+ 2x(1 + γy)y′ = 0, 0 < x < ∞,

y(0) = 0, y(∞) = 1,
(1)

where the system parameters δ, γ ∈ (−1,∞).

The modified error function for the case when γ = 0 and δ > 0 was studied by the authors in2,3, where the existence
and uniqueness theorems were established by considering the fixed-point theorem. Also, explicit approximations
solutions were provided in3.
Recently, the authors4 proved the existence and uniqueness of the solution of Pr.(1) under the following severely
restrictive condition on δ and γ (Theorem 2.14)

max(1, 1 + δ)
3
2 max(1, 1 + γ)

1
2

max(1, 1 + δ)
5
2 min(1, 1 + γ)

1
2

(2 | δ | + | δ − γ | max(1, 1 + δ)

min(1, 1 + δ)min(1, 1 + γ)
) < 1, (2)

which is also rather quite complicated.
In this note, a result for the existence and uniqueness of the solution to Pr.(1) is proved without any conditions on
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the parameters γ and δ, which considerably extends the result in4. It is often very difficult, if not impossible, to
find explicit solutions of such problems. However, the Adomian decomposition method is the most important tool
for finding solutions to this problem. Hence an exceptionally accurate approximate analytic solution of Pr.(1) is also
provided. A comparison of our solution can be made with the useful result of our Theorem 3 that provides the lower
and upper bounds of y and guarantees the existence of the solution of this problem in [0, 1] as well.

2 EXISTENCE AND UNIQUENESS THEOREM

2.1 An equivalent problem
Writing the nonlinear second-order ODE of Pr.(1) in an equivalent form as

1

δ
[(1 + δy)(1 + δy)′]

′
+

2

γ
x(1 + γy)′(1 + γy) = 0, 0 < x < ∞, (3)

or
1

δ

(
(1 + δy)2

)′′
+

2δ

γ
x
[
(1 + γy)2

]′
= 0, 0 < x < ∞, (4)

or (
(
1

δ
+ y)2

)′′

+
2γ

δ
x

(
(
1

γ
+ y)2

)′

= 0, 0 < x < ∞. (5)

By the change of variable
z =

1

δ
+ y. (6)

Eq. (5) becomes (
z2
)′′

+
2γ

δ
x

[
(z +

1

γ
− 1

δ
)2
]′

= 0, 0 < x < ∞, (7)

or (
z2
)′′

+
2γ

δ
x

[
z2 + 2(

1

γ
− 1

δ
)z

]′
= 0, 0 < x < ∞, (8)

Substituting the transformation z2 = u into Eq. (8), we obtain

u′′ +
2γ

δ
x

(
1 + (

1

γ
− 1

δ
)u− 1

2

)
u′ = 0, 0 < x < ∞. (9)

Thus

Lemma 1. Pr.(1) can be converted to the nonlinear boundary value problem{
u′′

u′ + 2γ
δ x
(
1 + βu− 1

2

)
= 0, β = 1

γ − 1
δ , γ ̸= 0, δ ̸= 0, 0 < x < ∞,

u(0) = 1
δ2 , u(∞) = (1 + 1

δ )
2,

(10)

where u = ( 1δ + y)2.

Remark 1. For γ = δ = 0, Pr.(1) becomes a simple linear second-order ODE. For δ > 0, γ = 0, Pr.(1) can be converted
into a special case of Pr.(10): {

u′′ + 2xu− 1
2u′ = 0, 0 < x < ∞,

u(0) = 1, u(∞) = (1 + δ)2,
(11)

where u = (1 + δy)2.

2.2 Existence
Now we prove the double inequalities for the lower and upper bounds of the solution y(x) for different values of δ
and γ that guarantee the existence of the solution of Pr.(1).
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Theorem 1. There is at least one solution y(x) of Pr.(1) such that

1. For 0 < γ < δ or −1 < γ < 0 < δ or −1 < γ < δ < 0, we have

y1(x) ≤ y(x) ≤ y2(x), (12)

where

y1 = −1

δ
+

√√√√ 1

δ2
+

δ + 2

δ
erf

(√
γ

δ
(1 + β

δ + 1

δ
)x

)
(13)

and

y2 = −1

δ
+

√
1

δ2
+

δ + 2

δ
erf(x). (14)

2. For 0 < δ < γ or −1 < δ < 0 < γ or −1 < δ < γ < 0, we have

y2(x) ≤ y(x) ≤ y1(x). (15)

Proof. 1. Since 1
δ2 ≤ u(x) ≤ (1+ 1

δ )
2, that is δ+1

δ ≤ 1√
u(x)

≤ δ and in view of 0 < γ < δ and β = 1
γ −

1
δ > 0, we have

2
γ

δ
(1 + β

δ + 1

δ
)x ≤ 2γ

δ
x
(
1 + βu− 1

2 (x)
)
≤ 2x. (16)

If u′(x) ≥ 0. Then

2
γ

δ
(1 + β

δ + 1

δ
)xu′(x) ≤ 2γ

δ
x
(
1 + βu− 1

2 (x)
)
u′(x) ≤ 2xu′(x). (17)

Similarly, if u′(x) ≤ 0. Then

2xu′(x) ≤ 2γ

δ
x
(
1 + βu− 1

2 (x)
)
u′(x) ≤ 2

γ

δ
(1 + β

δ + 1

δ
)xu′(x). (18)

Let

G1(x, u, u
′) =

{
2γ
δ (1 + β δ+1

δ )xu′, if u′(x) ≥ 0,

2xu′, if u′(x) ≤ 0
(19)

and

G2(x, u, u
′) =

{
2xu′, if u′(x) ≥ 0,

2γ
δ (1 + β δ+1

δ )xu′, if u′(x) ≤ 0.
(20)

For comparison purposes, we have the following linear boundary value problems:
For u′(x) ≥ 0, {

u′′
1 + 2xγ

δ (1 + β δ+1
δ )u′

1 = 0, 0 < x < ∞,

u1(0) =
1
δ2 , u1(∞) = (1 + 1

δ )
2 (21)

and {
u′′
2 + 2xu′

2 = 0, 0 < x < ∞,

u2(0) =
1
δ2 , u2(∞) = (1 + 1

δ )
2.

(22)

For u′(x) ≤ 0, {
u′′
1 + 2xu′

1 = 0, 0 < x < ∞,

u1(0) =
1
δ2 , u1(∞) = (1 + 1

δ )
2 (23)

and {
u′′
2 + 2xγ

δ (1 + β δ+1
δ )u′

2 = 0, 0 < x < ∞,

u2(0) =
1
δ2 , u2(∞) = (1 + 1

δ )
2.

(24)

Then the solutions of these BVPs can be immediately obtained as follows

u1(x) =
1

δ2
+

δ + 2

δ
erf

(√
γ

δ
(1 + β

δ + 1

δ
)x

)
(25)
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and

u2(x) =
1

δ2
+

δ + 2

δ
erf(x). (26)

It follows that ui(x), i = 1, 2 satisfy the following conditions:

u′′
1 +G1(x, u1, u

′
1) ≥ 0, (27)

u′′
2 +G2(x, u2, u

′
2) ≤ 0 (28)

and u1(x) < u2(x), x ∈ (0,∞), where the ranges of ui, i = 1, 2 are [ 1
δ2 , (1 +

1
δ )

2]. Also, the following condition
is satisfied

G1(x, u1 − u2, u
′
1 − u′

2) ≤ f(x, u1, u
′
1)− f(x, u2, u

′
2) ≤ G2(x, u1 − u2, u

′
1 − u′

2), (29)

where f(x, u, u′) = 2γ
δ x
(
1 + βu− 1

2 (x)
)
u′(x). Thus, we can conclude from Theorem 7.3 (see pp. 110-1115) that

Pr.(10) has at least one solution u(x) such that

u1(x) ≤ u(x) ≤ u2(x). (30)

If we set u(x) =
(
1
δ + y(x)

)2
, then we obtain (12).

The proofs of all cases are similar.

2.3 Uniqueness
We are now ready to prove the uniqueness of the solution.

Theorem 2. The given boundary problem Pr.(1) has only one solution y that satisfies (12) or (15).

Proof. Let u and v be two solutions of Pr. (10). Thus

0 = (u− v)′′ + f(x, u, u′)− f(x, v, v′). (31)

Since f(x, u, u′)− f(x, v, v′) ≤ G2(x, u− v, u′ − v′). If we let w(x) = u(x)− v(x), then for w′(x) ≥ 0, we have

w′′(x) + 2xw′(x) ≥ 0 (32)

and for w′(x) ≤ 0, we have

w′′(x) + 2
γ

δ
(1 + β

δ + 1

δ
)xw′(x) ≥ 0. (33)

Multiplying both sides of Eq. (32) by w, and integrating from 0 to ∞ and taking into account that w(0) = w(∞) = 0,

we obtain
∞∫
0

w2(x)dx+

∞∫
0

(w′)2(x)dx ≤ 0. (34)

This implies w(x) = 0. Similarly for Eq. (33), we obtain w(x) = 0. Thus the solution is unique.

3 NUMERICAL RESULTS - ADOMIAN DECOMPOSITION METHOD

Integrating the nonlinear second-order ODE of Pr.(10) from 0 to x, we obtain

u′ = C1(γ, δ) exp

−2γ

δ

x∫
0

ξ
(
1 + βu− 1

2 (ξ)
)
dξ

 , 0 < x < ∞, (35)

where C1(γ, δ) = u′(0) is an unknown constant.
Hence

u =
1

δ2
+ C1(γ, δ)

x∫
0

exp

−2γ

δ

η∫
0

ξ
(
1 + βu− 1

2 (ξ)
)
dξ

 dη, 0 ≤ x < ∞. (36)
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The constant C1(γ, δ) = u′(0) can be determined by using the second boundary condition u(∞) = (1 + 1
δ )

2, from
which we can readily obtain

C1(γ, δ) = u′(0) =
1 + 2

δ∫∞
0

exp
(
− 2γ

δ

∫ x

0
ξ
(
1 + βu− 1

2 (ξ)
)
dξ
)
dx

. (37)

We now propose to solve the second-order nonlinear boundary value problem Pr. (10) by the Adomian decomposition
method (ADM)6,7,8,9,10? ,12.
Based on the classical Adomian decomposition method, we decompose the solution into the solution components
un(x)

u(x) =

∞∑
n=0

un(x) (38)

and the composite nonlinearity in Eq. (36) is decomposed in terms of the Adomian polynomials as follows?

Ñ2u(x) = exp

−2γ

δ

x∫
0

ξ
(
1 + βu− 1

2 (ξ)
) =

∞∑
n=0

An(x) = N0(N1x). (39)

Let N0u
0 = e−u0

=
∑∞

n=0 A
0
n(u

0
0, u

0
1, ..., u

0
n) and N1u

1 = 2γ
δ

∫ x

0
ξ
(
1 + βu− 1

2 (ξ)
)
dξ. Thus the Adomian polynomials

A0
n for the N0u

0 = e−u0

are given by 

A0
0 = e−u0

0 ,

A0
1 = (−u0

1)e
−u0

0 ,

A0
2 = (−u0

2 +
1
2 (u

0
1)

2)e−u0
0 ,

...

(40)

Now calculating the An for N1x, we have

A1
0 = 2γ

δ

∫ x

0
ξ
(
1 + β(u1

0)
− 1

2 (ξ)
)
dξ,

A1
1 = 2γ

δ

∫ z

0
ξ
(
1 + β(u1

0)
− 3

2 (ξ)u1
1(ξ)

)
dξ,

A1
2 = 2γ

δ

∫ z

0
ξ
(
1 + β[34 (u

1
0)

− 5
2 (ξ)(u1

1)
2(ξ)− 1

2u
1
2(ξ)(u

1
0)

− 1
2 (ξ)]

)
dξ,

...

(41)

Upon substitution of these into Eq. (36), we establish the Adomian recursion scheme for the function u(x) as follows
u0(x) = 1

δ2 ,

un+1(x) = C1(δ, γ)
∫ x

0
An(ξ)dξ, n ≥ 0.

(42)

The first components of the solution u(x) are

u0(x) = 1
δ2 ,

u1(x) = C1

∫ x

0
A0(ξ)dξ = C1(δ, γ)

∫ x

0
exp

(
−γ

δ (1 + βδ)ξ2
)
dξ = C1(δ, γ)

∫ x

0
exp(−ξ2)dξ,

... .

(43)

Hence
u(x) = u0(x) + u1(x) + .... (44)
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Since the Adomian decomposition method usually converges quite rapidly, we first consider only the first component
of this solution, then

u(x) =
1

δ2
+ C1(δ, γ)

x∫
0

exp(−ξ2)dξ. (45)

Now imposing the boundary condition at infinity u(∞) = (1 + 1
δ )

2, we obtain

C1(δ, γ) =
δ + 2

δ

2√
π
. (46)

If so desired to further refine our approximation of this constant, we only need calculate additional higher-order
terms in (42), but as we shall soon see in the sequel, our new approximate solution is already quite good and indeed
exceptionally accurate. Therefore

u(x) =
1

δ2
+

δ + 2

δ
erf(x). (47)

Consequently, in view of u(x) = ( 1δ + y(x))2 the approximate solution of Pr.(1) is given by

y = −1

δ
+

√
1

δ2
+

δ + 2

δ
erf(x), (48)

which is exactly the upper and lower bounds of the exact solution (see Theorem 3). Another observation is that this
approximate solution is independent of gamma and can be regarded as a new approximate analytic solution of Pr.(1)
in the semi-infinite interval. Figures 1 and 2 have been drawn to show the upper and lower bounds of the solution
y(x). The maximum difference between the upper and lower bounds of the exact solution ∥ y1 − y2 ∥∞ is negligible
and displayed in Figure 3. The residual Error ER(x) is also considered with different values of δ and γ in Figure 4
for small and large values of x by substituting y(x) in Pr.(1).
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