References
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics , 17(1) , 1-17. https://doi.org/10.1007/s10592-015-0775-4
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R. P. (2018). Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA.Environmental Science & Technology , 52(11) , 6408-6416. https://doi.org/10.1021/acs.est.8b01071
Collins, R. A., Wangensteen, O. S., O’Gorman, E. J., Mariani, S., Sims, D. W., & Genner, M. J. (2018). Persistence of environmental DNA in marine systems. Communications Biology , 1 , 185. https://doi.org/10.1038/s42003-018-0192-6
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017a). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities.Molecular Ecology , 26(21) , 5872-5895. https://doi.org/10.1111/mec.14350
Deiner, K., Renshaw, M. A., Li, Y., Olds, B. P., Lodge, D. M., & Pfrender, M. E. (2017b). Long‐range PCR allows sequencing of mitochondrial genomes from environmental DNA. Methods in Ecology and Evolution , 8(12) , 1888-1898. https://doi.org/10.1111/2041-210X.12836
Doi, H., Uchii, K., Matsuhashi, S., Takahara, T., Yamanaka, H., & Minamoto, T. (2017). Isopropanol precipitation method for collecting fish environmental DNA. Limnology and Oceanography: Methods ,15(2) , 212-218. https://doi.org/10.1002/lom3.10161
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics , 26(19) , 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental Science & Technology , 50(4) , 1859-1867. https://doi.org/10.1021/acs.est.5b05672
Ellison, S. L., English, C. A., Burns, M. J., & Keer, J. T. (2006). Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnology , 6(1) , 33. https://doi.org/10.1186/1472-6750-6-33
Fay, M. P. (2010). Two-sided exact tests and matching confidence intervals for discrete data. R Journal , 2(1) , 53-58. https://journal.r-project.org/archive/2010/RJ-2010-008/RJ-2010-008.pdf
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples.Biology Letters , 4(4) , 423-425. https://doi.org/10.1098/rsbl.2008.0118
Hayami, K., Sakata, M. K., Inagawa, T., Okitsu, J., Katano, I., Doi, H., Nakai, K., Ichiyanagi, H., Gotoh, R. O., Miya, M., Sato, H., Yamanaka, H., & Minamoto, T. (2020). Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecology and Evolution , 10(12) , 5354-5367. https://doi.org/10.1002/ece3.6279
Jackson, J. B. C, Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., & Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science , 293(5530) , 629-637. https://doi.org/10.1126/science.1059199
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019). Particle size distribution of environmental DNA from the nuclei of marine fish. Environmental Science & Technology, 53(16) , 9947-9956. https://doi.org/10.1021/acs.est.9b02833
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020b). Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environmental DNA ,2(2) , 140-151. https://doi.org/10.1002/edn3.51
Jo, T., Fukuoka, A., Uchida, K., Ushimaru, A., & Minamoto, T. (2020a). Multiplex real-time PCR enables the simultaneous detection of environmental DNA from freshwater fishes: a case study of three exotic and three threatened native fishes in Japan. Biological Invasions , 22(2) , 455-471. https://doi.org/10.1007/s10530-019-02102-w
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., & Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Molecular Ecology Resources , 17(6) , e25-e33. https://doi.org/10.1111/1755-0998.12685
Ladell, B. A., Walleser, L. R., McCalla, S. G., Erickson, R. A., & Amberg, J. J. (2019). Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA. Conservation Genetics Resources , 11(1) , 83-88. https://doi.org/10.1007/s12686-017-0955-2
Lawson Handley, L., Read, D. S., Winfield, I. J., Kimbell, H., Johnson, H., Li, J., Hahn, C., Blackman, R., Wilcox, R., Donnelly, R., Szitenberg, A., & Hänfling, B. (2019). Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake.Environmental DNA , 1(1) , 26-39. https://doi.org/10.1002/edn3.5
Margules, C. R. & Pressey, R. L. (2000). Systematic conservation planning. Nature , 405(6783) , 243-253. https://doi.org/10.1038/35012251
Masuda, R. (2008). Seasonal and interannual variation of subtidal fish assemblages in Wakasa Bay with reference to the warming trend in the Sea of Japan. Environmental Biology of Fishes , 82 , 387–399. https://doi.org/10.1007/s10641-007-9300-z
Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N., & Kawabata, Z. (2012). Surveillance of fish species composition using environmental DNA. Limnology , 13(2) , 193-197. https://doi.org/10.1007/s10201-011-0362-4
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science ,2(7) , 150088. https://doi.org/10.1098/rsos.150088
Muggeo, V. M. R. (2017). Interval estimation for the breakpoint in segmented regression: a smoothed score-based approach. Australian & New Zealand Journal of Statistics , 59 , 311-322. https://doi.org/10.1111/anzs.12200
Okabe, S. & Shimazu, Y. (2007). Persistence of host-specificBacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Applied Microbiology and Biotechnology , 76(4) , 935-944. https://doi.org/10.1007/s00253-007-1048-z
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5-5 . https://CRAN.R-project.org/package=vegan
Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020). Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology , 29(22) , 4258-4264. https://doi.org/10.1111/mec.15643
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M., & Lodge, D. M. (2015). The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol DNA extraction. Molecular Ecology Resources , 15(1) , 168-176. https://doi.org/10.1111/1755-0998.12281
Sakata, M. K., Maki, N., Sugiyama, H., & Minamoto, T. (2017). Identifying a breeding habitat of a critically endangered fish,Acheilognathus typus , in a natural river in Japan. The Science of Nature , 104(11-12) , 100. https://doi.org/10.1007/s00114-017-1521-1
Sakata, M. K., Watanabe, T., Maki, N., Ikeda, K., Kosuge, T., Okada, H., Yamanaka, H., Sado, T., Miya, M., & Minamoto, T. (2020b). Determining an effective sampling method for eDNA metabarcoding: a case study for fish biodiversity monitoring in a small, natural river.Limnology , in press. https://doi.org/10.1007/s10201-020-00645-9
Sakata, M. K., Yamamoto, S., Gotoh, R. O., Miya, M., Yamanaka, H., & Minamoto, T. (2020a). Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA.Environmental DNA , 2(4) , 505-518. https://doi.org/10.1002/edn3.75
Sales, N. G., Wangensteen, O. S., Carvalho, D. C., & Mariani, S. (2019). Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environmental DNA ,1(2) , 119-130. https://doi.org/10.1002/edn3.14
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J., Hanrahan, B. R., Renshaw, M. A., Gantz, C. A., & Bolster, D. (2018). Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environmental Science & Technology ,52(15) , 8530-8537. https://doi.org/10.1021/acs.est.8b01822
Sigsgaard, E. E., Jensen, M. R., Winkelmann, I. E., Møller, P. R., Hansen, M. M., & Thomsen, P. F. (2020). Population‐level inferences from environmental DNA—Current status and future perspectives.Evolutionary Applications , 13(2) , 245-262. https://doi.org/10.1111/eva.12882
Spens, J., Evans, A. R., Halfmaerten, D., Knudsen, S. W., Sengupta, M. E., Mak, S. S., Sigsgaard, E. E., & Hellström, M. (2017). Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter.Methods in Ecology and Evolution , 8(5) , 635-645. https://doi.org/10.1111/2041-210X.12683
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation , 183 , 85-92. https://doi.org/10.1016/j.biocon.2014.11.038
Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA to estimate the distribution of an invasive fish species in ponds.PLoS ONE , 8(2) , e56584. https://doi.org/10.1371/journal.pone.0056584
Takahara, T., Minamoto, T., & Doi, H. (2015). Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio ). Biological Conservation ,183 , 64-69. https://doi.org/10.1016/j.biocon.2014.11.014
Takahara, T., Taguchi, J., Yamagishi, S., Doi, H., Ogata, S., Yamanaka, H., & Minamoto, T. (2020). Suppression of environmental DNA degradation in water samples associated with different storage temperature and period using benzalkonium chloride. Limnology and Oceanography: Methods , 18(8) , 437-445. https://doi.org/10.1002/lom3.10374
Thomas, A. C., Nguyen, P. L., Howard, J., & Goldberg, C. S. (2019). A self‐preserving, partially biodegradable eDNA filter. Methods in Ecology and Evolution , 10(8) , 1136-1141. https://doi.org/10.1111/2041-210X.13212
Thomsen, P. F. & Willerslev, E. (2015). Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity.Biological Conservation , 183 , 4-18. https://doi.org/10.1016/j.biocon.2014.11.019
Weltz, K., Lyle, J. M., Ovenden, J., Morgan, J. A., Moreno, D. A., & Semmens, J. M. (2017). Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS ONE ,12(6) , e0178124. https://doi.org/10.1371/journal.pone.0178124
Williams, K. E., Huyvaert, K. P., & Piaggio, A. J. (2016). No filters, no fridges: a method for preservation of water samples for eDNA analysis. BMC Research Notes , 9(1) , 1-5. https://doi.org/10.1186/s13104-016-2104-5
Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., & Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea.Scientific Reports , 7 , 40368. https://doi.org/10.1038/srep40368
Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S., Motozawa, H., Hongo, M., Sogo, Y., Kakimi, N., Teramura, I., Sugita, M., Baba, M., & Kondo, A. (2017). A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology , 18(2) , 233-241. https://doi.org/10.1007/s10201-016-0508-5
Ziani, K., Chang, Y., McLandsborough, L., & McClements, D. J. (2011). Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. Journal of Agricultural and Food Chemistry , 59(11) , 6247-6255. https://doi.org/10.1021/jf200450m