References
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA
and implications for conservation genetics. Conservation
Genetics , 17(1) , 1-17. https://doi.org/10.1007/s10592-015-0775-4
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R.
P. (2018). Does size matter? An experimental evaluation of the relative
abundance and decay rates of aquatic environmental DNA.Environmental Science & Technology , 52(11) , 6408-6416.
https://doi.org/10.1021/acs.est.8b01071
Collins, R. A., Wangensteen, O. S., O’Gorman, E. J., Mariani, S., Sims,
D. W., & Genner, M. J. (2018). Persistence of environmental DNA in
marine systems. Communications Biology , 1 , 185.
https://doi.org/10.1038/s42003-018-0192-6
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel,
A., Altermatt, F., Creer, S., Bista, I., Lodge, D. M., de Vere, N.,
Pfrender, M. E., & Bernatchez, L. (2017a). Environmental DNA
metabarcoding: Transforming how we survey animal and plant communities.Molecular Ecology , 26(21) , 5872-5895.
https://doi.org/10.1111/mec.14350
Deiner, K., Renshaw, M. A., Li, Y., Olds, B. P., Lodge, D. M., &
Pfrender, M. E. (2017b). Long‐range PCR allows sequencing of
mitochondrial genomes from environmental DNA. Methods in Ecology
and Evolution , 8(12) , 1888-1898.
https://doi.org/10.1111/2041-210X.12836
Doi, H., Uchii, K., Matsuhashi, S., Takahara, T., Yamanaka, H., &
Minamoto, T. (2017). Isopropanol precipitation method for collecting
fish environmental DNA. Limnology and Oceanography: Methods ,15(2) , 212-218. https://doi.org/10.1002/lom3.10161
Edgar, R. C. (2010). Search and clustering orders of magnitude faster
than BLAST. Bioinformatics , 26(19) , 2460-2461.
https://doi.org/10.1093/bioinformatics/btq461
Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of
temperature and trophic state on degradation of environmental DNA in
lake water. Environmental Science & Technology , 50(4) ,
1859-1867. https://doi.org/10.1021/acs.est.5b05672
Ellison, S. L., English, C. A., Burns, M. J., & Keer, J. T. (2006).
Routes to improving the reliability of low level DNA analysis using
real-time PCR. BMC Biotechnology , 6(1) , 33.
https://doi.org/10.1186/1472-6750-6-33
Fay, M. P. (2010). Two-sided exact tests and matching confidence
intervals for discrete data. R Journal , 2(1) , 53-58.
https://journal.r-project.org/archive/2010/RJ-2010-008/RJ-2010-008.pdf
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water samples.Biology Letters , 4(4) , 423-425.
https://doi.org/10.1098/rsbl.2008.0118
Hayami, K., Sakata, M. K., Inagawa, T., Okitsu, J., Katano, I., Doi, H.,
Nakai, K., Ichiyanagi, H., Gotoh, R. O., Miya, M., Sato, H., Yamanaka,
H., & Minamoto, T. (2020). Effects of sampling seasons and locations on
fish environmental DNA metabarcoding in dam reservoirs. Ecology
and Evolution , 10(12) , 5354-5367.
https://doi.org/10.1002/ece3.6279
Jackson, J. B. C, Kirby, M. X., Berger, W. H., Bjorndal, K. A.,
Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson,
J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H.
S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., &
Warner, R. R. (2001). Historical overfishing and the recent collapse of
coastal ecosystems. Science , 293(5530) , 629-637.
https://doi.org/10.1126/science.1059199
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019).
Particle size distribution of environmental DNA from the nuclei of
marine fish. Environmental Science & Technology, 53(16) ,
9947-9956. https://doi.org/10.1021/acs.est.9b02833
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020b).
Estimating shedding and decay rates of environmental nuclear DNA with
relation to water temperature and biomass. Environmental DNA ,2(2) , 140-151. https://doi.org/10.1002/edn3.51
Jo, T., Fukuoka, A., Uchida, K., Ushimaru, A., & Minamoto, T. (2020a).
Multiplex real-time PCR enables the simultaneous detection of
environmental DNA from freshwater fishes: a case study of three exotic
and three threatened native fishes in Japan. Biological
Invasions , 22(2) , 455-471.
https://doi.org/10.1007/s10530-019-02102-w
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., &
Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables
the improved estimation of distribution and biomass using environmental
DNA. Molecular Ecology Resources , 17(6) , e25-e33.
https://doi.org/10.1111/1755-0998.12685
Ladell, B. A., Walleser, L. R., McCalla, S. G., Erickson, R. A., &
Amberg, J. J. (2019). Ethanol and sodium acetate as a preservation
method to delay degradation of environmental DNA. Conservation
Genetics Resources , 11(1) , 83-88.
https://doi.org/10.1007/s12686-017-0955-2
Lawson Handley, L., Read, D. S., Winfield, I. J., Kimbell, H., Johnson,
H., Li, J., Hahn, C., Blackman, R., Wilcox, R., Donnelly, R.,
Szitenberg, A., & Hänfling, B. (2019). Temporal and spatial variation
in distribution of fish environmental DNA in England’s largest lake.Environmental DNA , 1(1) , 26-39.
https://doi.org/10.1002/edn3.5
Margules, C. R. & Pressey, R. L. (2000). Systematic conservation
planning. Nature , 405(6783) , 243-253.
https://doi.org/10.1038/35012251
Masuda, R. (2008). Seasonal and interannual variation of subtidal fish
assemblages in Wakasa Bay with reference to the warming trend in the Sea
of Japan. Environmental Biology of Fishes , 82 , 387–399.
https://doi.org/10.1007/s10641-007-9300-z
Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N., & Kawabata, Z.
(2012). Surveillance of fish species composition using environmental
DNA. Limnology , 13(2) , 193-197.
https://doi.org/10.1007/s10201-011-0362-4
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K.,
Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., &
Iwasaki, W. (2015). MiFish, a set of universal PCR primers for
metabarcoding environmental DNA from fishes: detection of more than 230
subtropical marine species. Royal Society Open Science ,2(7) , 150088. https://doi.org/10.1098/rsos.150088
Muggeo, V. M. R. (2017). Interval estimation for the breakpoint in
segmented regression: a smoothed score-based approach. Australian
& New Zealand Journal of Statistics , 59 , 311-322.
https://doi.org/10.1111/anzs.12200
Okabe, S. & Shimazu, Y. (2007). Persistence of host-specificBacteroides–Prevotella 16S rRNA genetic markers in environmental
waters: effects of temperature and salinity. Applied Microbiology
and Biotechnology , 76(4) , 935-944.
https://doi.org/10.1007/s00253-007-1048-z
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). vegan: Community
Ecology Package. R package version 2.5-5 .
https://CRAN.R-project.org/package=vegan
Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020).
Environmental DNA: What’s behind the term? Clarifying the terminology
and recommendations for its future use in biomonitoring. Molecular
Ecology , 29(22) , 4258-4264. https://doi.org/10.1111/mec.15643
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M., & Lodge, D.
M. (2015). The room temperature preservation of filtered environmental
DNA samples and assimilation into a phenol–chloroform–isoamyl alcohol
DNA extraction. Molecular Ecology Resources , 15(1) ,
168-176. https://doi.org/10.1111/1755-0998.12281
Sakata, M. K., Maki, N., Sugiyama, H., & Minamoto, T. (2017).
Identifying a breeding habitat of a critically endangered fish,Acheilognathus typus , in a natural river in Japan. The
Science of Nature , 104(11-12) , 100.
https://doi.org/10.1007/s00114-017-1521-1
Sakata, M. K., Watanabe, T., Maki, N., Ikeda, K., Kosuge, T., Okada, H.,
Yamanaka, H., Sado, T., Miya, M., & Minamoto, T. (2020b). Determining
an effective sampling method for eDNA metabarcoding: a case study for
fish biodiversity monitoring in a small, natural river.Limnology , in press. https://doi.org/10.1007/s10201-020-00645-9
Sakata, M. K., Yamamoto, S., Gotoh, R. O., Miya, M., Yamanaka, H., &
Minamoto, T. (2020a). Sedimentary eDNA provides different information on
timescale and fish species composition compared with aqueous eDNA.Environmental DNA , 2(4) , 505-518.
https://doi.org/10.1002/edn3.75
Sales, N. G., Wangensteen, O. S., Carvalho, D. C., & Mariani, S.
(2019). Influence of preservation methods, sample medium and sampling
time on eDNA recovery in a neotropical river. Environmental DNA ,1(2) , 119-130. https://doi.org/10.1002/edn3.14
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J.,
Hanrahan, B. R., Renshaw, M. A., Gantz, C. A., & Bolster, D. (2018).
Water flow and biofilm cover influence environmental DNA detection in
recirculating streams. Environmental Science & Technology ,52(15) , 8530-8537. https://doi.org/10.1021/acs.est.8b01822
Sigsgaard, E. E., Jensen, M. R., Winkelmann, I. E., Møller, P. R.,
Hansen, M. M., & Thomsen, P. F. (2020). Population‐level inferences
from environmental DNA—Current status and future perspectives.Evolutionary Applications , 13(2) , 245-262.
https://doi.org/10.1111/eva.12882
Spens, J., Evans, A. R., Halfmaerten, D., Knudsen, S. W., Sengupta, M.
E., Mak, S. S., Sigsgaard, E. E., & Hellström, M. (2017). Comparison of
capture and storage methods for aqueous macrobial eDNA using an
optimized extraction protocol: advantage of enclosed filter.Methods in Ecology and Evolution , 8(5) , 635-645.
https://doi.org/10.1111/2041-210X.12683
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying
effects of UV-B, temperature, and pH on eDNA degradation in aquatic
microcosms. Biological Conservation , 183 , 85-92.
https://doi.org/10.1016/j.biocon.2014.11.038
Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA
to estimate the distribution of an invasive fish species in ponds.PLoS ONE , 8(2) , e56584.
https://doi.org/10.1371/journal.pone.0056584
Takahara, T., Minamoto, T., & Doi, H. (2015). Effects of sample
processing on the detection rate of environmental DNA from the Common
Carp (Cyprinus carpio ). Biological Conservation ,183 , 64-69. https://doi.org/10.1016/j.biocon.2014.11.014
Takahara, T., Taguchi, J., Yamagishi, S., Doi, H., Ogata, S., Yamanaka,
H., & Minamoto, T. (2020). Suppression of environmental DNA degradation
in water samples associated with different storage temperature and
period using benzalkonium chloride. Limnology and Oceanography:
Methods , 18(8) , 437-445. https://doi.org/10.1002/lom3.10374
Thomas, A. C., Nguyen, P. L., Howard, J., & Goldberg, C. S. (2019). A
self‐preserving, partially biodegradable eDNA filter. Methods in
Ecology and Evolution , 10(8) , 1136-1141.
https://doi.org/10.1111/2041-210X.13212
Thomsen, P. F. & Willerslev, E. (2015). Environmental DNA–An emerging
tool in conservation for monitoring past and present biodiversity.Biological Conservation , 183 , 4-18.
https://doi.org/10.1016/j.biocon.2014.11.019
Weltz, K., Lyle, J. M., Ovenden, J., Morgan, J. A., Moreno, D. A., &
Semmens, J. M. (2017). Application of environmental DNA to detect an
endangered marine skate species in the wild. PLoS ONE ,12(6) , e0178124. https://doi.org/10.1371/journal.pone.0178124
Williams, K. E., Huyvaert, K. P., & Piaggio, A. J. (2016). No filters,
no fridges: a method for preservation of water samples for eDNA
analysis. BMC Research Notes , 9(1) , 1-5.
https://doi.org/10.1186/s13104-016-2104-5
Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M.,
Minamoto, T., & Miya, M. (2017). Environmental DNA metabarcoding
reveals local fish communities in a species-rich coastal sea.Scientific Reports , 7 , 40368.
https://doi.org/10.1038/srep40368
Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S.,
Motozawa, H., Hongo, M., Sogo, Y., Kakimi, N., Teramura, I., Sugita, M.,
Baba, M., & Kondo, A. (2017). A simple method for preserving
environmental DNA in water samples at ambient temperature by addition of
cationic surfactant. Limnology , 18(2) , 233-241.
https://doi.org/10.1007/s10201-016-0508-5
Ziani, K., Chang, Y., McLandsborough, L., & McClements, D. J. (2011).
Influence of surfactant charge on antimicrobial efficacy of
surfactant-stabilized thyme oil nanoemulsions. Journal of
Agricultural and Food Chemistry , 59(11) , 6247-6255.
https://doi.org/10.1021/jf200450m