References
Ananyev G., Gates C. & Dismukes G. C. (2016). The O2 quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1857, 1380-1391.
Ananyev G., Gates C., Kaplan A. & Dismukes G. C. (2017). Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1858, 873-883.
Aro E. M., Virgin I. & Andersson B. (1993). Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1143, 113-134.
Barber J. & Andersson B. (1992). Too much of a good thing: light can be bad for photosynthesis. Trends in Biochemical Sciences, 17, 61-66.
Brestic M., Zivcak M., Kalaji H. M., Carpentier R. & Allakhverdiev S. I. (2012). Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology & Biochemistry, 57.
Bricker T. M. & Frankel L. K. (2008). The psbo1 Mutant of Arabidopsis Cannot Efficiently Use Calcium in Support of Oxygen Evolution by Photosystem II. Journal of Biological Chemistry, 283, 29022-29027.
Callahan F. E. & Cheniae G. M. (1985). Studies on the photoactivation of the water-oxidizing enzyme : I. Processes limiting photoactivation in hydroxylamine-extracted leaf segments. Plant Physiology, 79, 777-786.
Croce R. & Van Amerongen H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology, 10, 492.
Dall’osto L., Cazzaniga S., Bressan M., Paleček D., Židek K., Niyogi K. K., Fleming G. R., Zigmantas D. & Bassi R. (2017). Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nature Plants, 3, 17033.
Eberhard S. & Finazzi Gwollman F. A. (2008). The dynamics of photosynthesis. Annual Review of Genetics, 42, 463-515.
Farquhar G. D., Von Caemmerer S. V. & Berry J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
Feikema W. O., Marosvölgyi M. A., Lavaud J. & Gorkom H. J. V. (2006). Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. BBA - Bioenergetics, 1757, 829-834.
Fristedt R., Willig A., Granath P., Crèvecoeur M., Rochaix J.-D. & Vener A. V. (2009). Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. The Plant Cell, 21, 3950-3964.
Gao J., Li P., Ma F. & Goltsev V. (2013). Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection. J Photochem Photobiol B, 137.
Garmier M., Carroll A. J., Delannoy E., Vallet C., Day D. A., Small I. D. & Millar A. H. (2008). Complex I dysfunction redirects cellular and mitochondrial metabolism in Arabidopsis. Plant Physiology, 148, 1324-1341.
Goltsev V., Zaharieva I., Chernev P. & Strasser R. J. (2009). Delayed fluorescence in photosynthesis. Photosynthesis Research, 101, 217.
Gururani M. A., Venkatesh J. & Tran L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304-1320.
Hakala M., Tuominen I., Keränen M., Tyystjärvi T. & Tyystjärvi E. (2005). Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1706, 68-80.
Hall J., Renger T., Müh F., Picorel R. & Krausz E. (2016). The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence. Biochimica Et Biophysica Acta, 1857, 1580-1593.
Havurinne V. & Tyystjärvi E. (2017). Action spectrum of photoinhibition in the diatom Phaeodactylum tricornutum. Plant & Cell Physiology, 58, 2217-2225.
Hideg , Spetea C. & Vass I. (1994). Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1186, 143-152.
Horton P., Ruban A. & Walters R. (1996). Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 655-684.
Hughes N. M., Morley C. B. & Smith W. K. (2010). Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytologist, 175, 675-685.
Ivanov A. G., Sane P. V., Hurry V., quist G. & Huner N. P. A. (2008). Photosystem II reaction centre quenching: mechanisms and physiological role. Photosynthesis Research, 98, 565-574.
Jiang M., Ren L., Lian H., Liu Y. & Chen H. (2016). Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.). Plant Science, 249, 46-58.
Johnson G. N., Rutherford A. W. & Krieger A. (1995). A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1229, 202-207.
Jorrin-Novo J. V. (2014). Plant proteomics methods and protocols. Methods in Molecular Biology, 1072, 3-13.
Keren N. & Krieger-Liszkay A. (2011). Photoinhibition: molecular mechanisms and physiological significance. Physiologia Plantarum, 142, 1-5.
Kirk J. T. O. (2010). The nature of the underwater light field.
Lavaud J. (2007). Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Functional Plant Science and Biotechonology, 1, 267-287.
Li L., Aro E. M. & Millar A. H. (2018). Mechanisms of photodamage and protein turnover in photoinhibition. Trends in Plant Science, 23, 667-676.
Li Y. Y., Mao K., Zhao C., Zhao X. Y., Zhang R. F., Zhang H. L., Shu H. R. & Hao Y. J. (2013). Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica). Plant Cell Reports, 32, 555-566.
Makarova V. V., Kosourov S., Krendeleva T. E., Semin B. K., Kukarskikh G. P., Rubin A. B., Sayre R. T., Ghirardi M. L. & Seibert M. (2007). Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity. Photosynthesis Research, 94, 79-89.
Mano J. I., Eva H. & Asada K. (2004). Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Archives of Biochemistry & Biophysics, 429, 71-80.
Marri L., Zaffagnini M., Collin V., Issakidis-Bourguet E., Lemaire S. D., Pupillo P., Sparla F., Miginiac-Maslow M. & Trost P. (2009). Prompt and easy activation by specific thioredoxins of Calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Molecular Plant, 2, 259-269.
Melis A. (1999). Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends in Plant Science, 4, 130-135.
Millar A. H., Mittova V., Kiddle G., Heazlewood J. L., Bartoli C. G. & Theodoulou (2003). Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiology, 133, 443-447.
Miyake C., Yonekura, K., Kobayashi, Y., & Yokota, A (2002). Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant and Cell Physiology, 43, 951-957.
Miyata K., Noguchi K. & Terashima I. (2012). Cost and benefit of the repair of photodamaged photosystem II in spinach leaves: roles of acclimation to growth light. Photosynthesis Research, 113, 165-180.
Nikkanen L., Toivola J. & Rintamäki E. (2016). Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant Cell & Environment, 39, 1691-1705.
Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A. R. & Jahns P. (2010). Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797, 466-475.
Nishiyama Y., Allakhverdiev S. I. & Murata N. (2011). Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum, 142, 35-46.
Ohnishi N., Allakhverdiev S. I., Takahashi S., Higashi S., Watanabe M., Nishiyama Y. & Murata N. (2005). Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry, 44, 8494-9.
Olsen J. L., Rouzé P., Verhelst B., Lin Y. C., Bayer T., Collen J., Dattolo E., De P. E., Dittami S. & Maumus F. (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530, 331-335.
Peng T. & Moriguchi T. (2013). The molecular network regulating the coloration in apple. Scientia Horticulturae, 163, 1-9.
Popelkova H., Boswell N. & Yocum C. (2011). Probing the topography of the photosystem II oxygen evolving complex: PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant. Photosynthesis Research, 110, p.111-121.
Porra R., Thompson W. & Kriedemann P. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 975, 384-394.
Pospíšil P. (2016). Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science, 7, 1950.
Schubert N., Ia M., Colombo-Pallota F. & Iquez S. E. (2015). Leaf and canopy scale characterization of the photoprotective response to high-light stress of the seagrass Thalassia testudinum: High-light response in a seagrass. Limnology & Oceanography, 60, 286-302.
Soitamo A., Havurinne V. & Tyystjärvi E. (2017). Photoinhibition in marine picocyanobacteria. Physiologia Plantarum, 161, 97-108.
Strasser B. J. (1997). Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 52, 147-155.
Strasser R. J., Tsimilli-Michael M., Qiang S. & Goltsev V. (2010). Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797, 1313-1326.
Tóth S. Z., Nagy V., Puthur J. T., Kovács L. & Garab G. (2011). The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiology, 156, 382-392.
Tóth S. Z., Puthur J. T., Nagy V. & Garab G. (2009). Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiology, 149, 1568-1578.
Thompson L. K. & Brudvig G. W. (1988). Cytochrome b-559 may function to protect photosystem II from photoinhibition. Biochemistry, 27, 6653-6658.
Tyystjärvi E. (2008). Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coordination Chemistry Reviews, 252, 361-376.
Tyystjärvi E. (2013). Photoinhibition of photosystem II. Int Rev Cell Mol Biol, 300, 243-303.
Tyystjärvi E. & Aro E. M. (1996). The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proceedings of the National Academy of Sciences of the United States of America, 93, 2213-2218.
Vass I. (2011). Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiologia Plantarum, 142, 6-16.
Vass I. (2012). Molecular mechanisms of photodamage in the Photosystem II complex. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817, 209-217.
Vass I. & Cser K. (2009). Janus-faced charge recombinations in photosystem II photoinhibition. Trends in Plant Science, 14, 200-205.
Vass I., Styring S., Hundal T., Koivuniemi A., Aro E. M. & Andersson B. (1992). Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proceedings of the National Academy of Sciences of the United States of America, 89, 1408-1412.
Wagner H., Jakob T., Lavaud J. & Wilhelm C. (2016). Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Photosynthesis Research, 128, 151-161.
Wissler L., Codoñer F. M., Gu J., Reusch T. B., Olsen J. L., Procaccini G. & Bornberg-Bauer E. (2011). Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evolutionary Biology, 11, 8.
Yadav D. K. & Pospíšil P. (2012). Evidence on the formation of singlet oxygen in the donor side photoinhibition of photosystem II: EPR spin-trapping study. Plos One, 7, e45883.
Yang X. Q., Zhang Q. S., Zhang D. & Sheng Z. T. (2017). Light intensity dependent photosynthetic electron transport in eelgrass (Zostera marina L.). Plant Physiology & Biochemistry, 113, 168-176.
Zavafer A., Cheah M. H., Hillier W., Chow W. S. & Takahashi S. (2015). Photodamage to the oxygen evolving complex of photosystem II by visible light. Scientific Reports, 5, 16363.
Zavafer A., Koinuma W., Chow W. S., Cheah M. H. & Mino H. (2017). Mechanism of photodamage of the oxygen evolving Mn cluster of photosystem II by excessive light energy. Scientific Reports, 7, 1-8.
Zhang Z., Jia Y., Gao H., Zhang L., Li H. & Meng Q. (2011). Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889.