References
Ananyev G., Gates C. & Dismukes G. C. (2016). The O2 quantum yield in
diverse algae and cyanobacteria is controlled by partitioning of flux
between linear and cyclic electron flow within photosystem II.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1857, 1380-1391.
Ananyev G., Gates C., Kaplan A. & Dismukes G. C. (2017). Photosystem
II-cyclic electron flow powers exceptional photoprotection and record
growth in the microalga Chlorella ohadii. Biochimica et Biophysica Acta
(BBA) - Bioenergetics, 1858, 873-883.
Aro E. M., Virgin I. & Andersson B. (1993). Photoinhibition of
Photosystem II. Inactivation, protein damage and turnover. Biochimica et
Biophysica Acta (BBA) - Bioenergetics, 1143, 113-134.
Barber J. & Andersson B. (1992). Too much of a good thing: light can be
bad for photosynthesis. Trends in Biochemical Sciences, 17, 61-66.
Brestic M., Zivcak M., Kalaji H. M., Carpentier R. & Allakhverdiev S.
I. (2012). Photosystem II thermostability in situ: Environmentally
induced acclimation and genotype-specific reactions in Triticum aestivum
L. Plant Physiology & Biochemistry, 57.
Bricker T. M. & Frankel L. K. (2008). The psbo1 Mutant of Arabidopsis
Cannot Efficiently Use Calcium in Support of Oxygen Evolution by
Photosystem II. Journal of Biological Chemistry, 283, 29022-29027.
Callahan F. E. & Cheniae G. M. (1985). Studies on the photoactivation
of the water-oxidizing enzyme : I. Processes limiting photoactivation in
hydroxylamine-extracted leaf segments. Plant Physiology, 79, 777-786.
Croce R. & Van Amerongen H. (2014). Natural strategies for
photosynthetic light harvesting. Nature Chemical Biology, 10, 492.
Dall’osto L., Cazzaniga S., Bressan M., Paleček D., Židek K., Niyogi K.
K., Fleming G. R., Zigmantas D. & Bassi R. (2017). Two mechanisms for
dissipation of excess light in monomeric and trimeric light-harvesting
complexes. Nature Plants, 3, 17033.
Eberhard S. & Finazzi Gwollman F. A. (2008). The dynamics of
photosynthesis. Annual Review of Genetics, 42, 463-515.
Farquhar G. D., Von Caemmerer S. V. & Berry J. A. (1980). A biochemical
model of photosynthetic CO2 assimilation in leaves of C3 species.
Planta, 149, 78-90.
Feikema W. O., Marosvölgyi M. A., Lavaud J. & Gorkom H. J. V. (2006).
Cyclic electron transfer in photosystem II in the marine diatom
Phaeodactylum tricornutum. BBA - Bioenergetics, 1757, 829-834.
Fristedt R., Willig A., Granath P., Crèvecoeur M., Rochaix J.-D. &
Vener A. V. (2009). Phosphorylation of photosystem II controls
functional macroscopic folding of photosynthetic membranes in
Arabidopsis. The Plant Cell, 21, 3950-3964.
Gao J., Li P., Ma F. & Goltsev V. (2013). Photosynthetic performance
during leaf expansion in Malus micromalus probed by chlorophyll a
fluorescence and modulated 820 nm reflection. J Photochem Photobiol B,
137.
Garmier M., Carroll A. J., Delannoy E., Vallet C., Day D. A., Small I.
D. & Millar A. H. (2008). Complex I dysfunction redirects cellular and
mitochondrial metabolism in Arabidopsis. Plant Physiology, 148,
1324-1341.
Goltsev V., Zaharieva I., Chernev P. & Strasser R. J. (2009). Delayed
fluorescence in photosynthesis. Photosynthesis Research, 101, 217.
Gururani M. A., Venkatesh J. & Tran L. S. P. (2015). Regulation of
photosynthesis during abiotic stress-induced photoinhibition. Molecular
Plant, 8, 1304-1320.
Hakala M., Tuominen I., Keränen M., Tyystjärvi T. & Tyystjärvi E.
(2005). Evidence for the role of the oxygen-evolving manganese complex
in photoinhibition of Photosystem II. Biochimica et Biophysica Acta
(BBA) - Bioenergetics, 1706, 68-80.
Hall J., Renger T., Müh F., Picorel R. & Krausz E. (2016). The
lowest-energy chlorophyll of photosystem II is adjacent to the
peripheral antenna: Emitting states of CP47 assigned via circularly
polarized luminescence. Biochimica Et Biophysica Acta, 1857, 1580-1593.
Havurinne V. & Tyystjärvi E. (2017). Action spectrum of photoinhibition
in the diatom Phaeodactylum tricornutum. Plant & Cell Physiology, 58,
2217-2225.
Hideg , Spetea C. & Vass I. (1994). Singlet oxygen and free radical
production during acceptor- and donor-side-induced photoinhibition.
Studies with spin trapping EPR spectroscopy. Biochimica et Biophysica
Acta (BBA) - Bioenergetics, 1186, 143-152.
Horton P., Ruban A. & Walters R. (1996). Regulation of light harvesting
in green plants. Annual Review of Plant Physiology and Plant Molecular
Biology, 47, 655-684.
Hughes N. M., Morley C. B. & Smith W. K. (2010). Coordination of
anthocyanin decline and photosynthetic maturation in juvenile leaves of
three deciduous tree species. New Phytologist, 175, 675-685.
Ivanov A. G., Sane P. V., Hurry V., quist G. & Huner N. P. A. (2008).
Photosystem II reaction centre quenching: mechanisms and physiological
role. Photosynthesis Research, 98, 565-574.
Jiang M., Ren L., Lian H., Liu Y. & Chen H. (2016). Novel insight into
the mechanism underlying light-controlled anthocyanin accumulation in
eggplant (Solanum melongena L.). Plant Science, 249, 46-58.
Johnson G. N., Rutherford A. W. & Krieger A. (1995). A change in the
midpoint potential of the quinone QA in Photosystem II associated with
photoactivation of oxygen evolution. Biochimica et Biophysica Acta (BBA)
- Bioenergetics, 1229, 202-207.
Jorrin-Novo J. V. (2014). Plant proteomics methods and protocols.
Methods in Molecular Biology, 1072, 3-13.
Keren N. & Krieger-Liszkay A. (2011). Photoinhibition: molecular
mechanisms and physiological significance. Physiologia Plantarum, 142,
1-5.
Kirk J. T. O. (2010). The nature of the underwater light field.
Lavaud J. (2007). Fast regulation of photosynthesis in diatoms:
mechanisms, evolution and ecophysiology. Functional Plant Science and
Biotechonology, 1, 267-287.
Li L., Aro E. M. & Millar A. H. (2018). Mechanisms of photodamage and
protein turnover in photoinhibition. Trends in Plant Science, 23,
667-676.
Li Y. Y., Mao K., Zhao C., Zhao X. Y., Zhang R. F., Zhang H. L., Shu H.
R. & Hao Y. J. (2013). Molecular cloning and functional analysis of a
blue light receptor gene MdCRY2 from apple (Malus domestica). Plant Cell
Reports, 32, 555-566.
Makarova V. V., Kosourov S., Krendeleva T. E., Semin B. K., Kukarskikh
G. P., Rubin A. B., Sayre R. T., Ghirardi M. L. & Seibert M. (2007).
Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants
with impaired photosystem II photochemical activity. Photosynthesis
Research, 94, 79-89.
Mano J. I., Eva H. & Asada K. (2004). Ascorbate in thylakoid lumen
functions as an alternative electron donor to photosystem II and
photosystem I. Archives of Biochemistry & Biophysics, 429, 71-80.
Marri L., Zaffagnini M., Collin V., Issakidis-Bourguet E., Lemaire S.
D., Pupillo P., Sparla F., Miginiac-Maslow M. & Trost P. (2009). Prompt
and easy activation by specific thioredoxins of Calvin cycle enzymes of
Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular
complex. Molecular Plant, 2, 259-269.
Melis A. (1999). Photosystem-II damage and repair cycle in chloroplasts:
what modulates the rate of photodamage in vivo? Trends in Plant Science,
4, 130-135.
Millar A. H., Mittova V., Kiddle G., Heazlewood J. L., Bartoli C. G. &
Theodoulou (2003). Control of ascorbate synthesis by respiration and its
implications for stress responses. Plant Physiology, 133, 443-447.
Miyake C., Yonekura, K., Kobayashi, Y., & Yokota, A (2002). Cyclic
electron flow within PSII functions in intact chloroplasts from spinach
leaves. Plant and Cell Physiology, 43, 951-957.
Miyata K., Noguchi K. & Terashima I. (2012). Cost and benefit of the
repair of photodamaged photosystem II in spinach leaves: roles of
acclimation to growth light. Photosynthesis Research, 113, 165-180.
Nikkanen L., Toivola J. & Rintamäki E. (2016). Crosstalk between
chloroplast thioredoxin systems in regulation of photosynthesis. Plant
Cell & Environment, 39, 1691-1705.
Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth
A. R. & Jahns P. (2010). Identification of a slowly inducible
zeaxanthin-dependent component of non-photochemical quenching of
chlorophyll fluorescence generated under steady-state conditions in
Arabidopsis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797,
466-475.
Nishiyama Y., Allakhverdiev S. I. & Murata N. (2011). Protein synthesis
is the primary target of reactive oxygen species in the photoinhibition
of photosystem II. Physiologia Plantarum, 142, 35-46.
Ohnishi N., Allakhverdiev S. I., Takahashi S., Higashi S., Watanabe M.,
Nishiyama Y. & Murata N. (2005). Two-step mechanism of photodamage to
photosystem II: step 1 occurs at the oxygen-evolving complex and step 2
occurs at the photochemical reaction center. Biochemistry, 44, 8494-9.
Olsen J. L., Rouzé P., Verhelst B., Lin Y. C., Bayer T., Collen J.,
Dattolo E., De P. E., Dittami S. & Maumus F. (2016). The genome of the
seagrass Zostera marina reveals angiosperm adaptation to the sea.
Nature, 530, 331-335.
Peng T. & Moriguchi T. (2013). The molecular network regulating the
coloration in apple. Scientia Horticulturae, 163, 1-9.
Popelkova H., Boswell N. & Yocum C. (2011). Probing the topography of
the photosystem II oxygen evolving complex: PsbO is required for
efficient calcium protection of the manganese cluster against
dark-inhibition by an artificial reductant. Photosynthesis Research,
110, p.111-121.
Porra R., Thompson W. & Kriedemann P. (1989). Determination of accurate
extinction coefficients and simultaneous equations for assaying
chlorophylls a and b extracted with four different solvents:
verification of the concentration of chlorophyll standards by atomic
absorption spectroscopy. Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 975, 384-394.
Pospíšil P. (2016). Production of reactive oxygen species by photosystem
II as a response to light and temperature stress. Frontiers in Plant
Science, 7, 1950.
Schubert N., Ia M., Colombo-Pallota F. & Iquez S. E. (2015). Leaf and
canopy scale characterization of the photoprotective response to
high-light stress of the seagrass Thalassia testudinum: High-light
response in a seagrass. Limnology & Oceanography, 60, 286-302.
Soitamo A., Havurinne V. & Tyystjärvi E. (2017). Photoinhibition in
marine picocyanobacteria. Physiologia Plantarum, 161, 97-108.
Strasser B. J. (1997). Donor side capacity of Photosystem II probed by
chlorophyll a fluorescence transients. Photosynthesis Research, 52,
147-155.
Strasser R. J., Tsimilli-Michael M., Qiang S. & Goltsev V. (2010).
Simultaneous in vivo recording of prompt and delayed fluorescence and
820-nm reflection changes during drying and after rehydration of the
resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta
(BBA) - Bioenergetics, 1797, 1313-1326.
Tóth S. Z., Nagy V., Puthur J. T., Kovács L. & Garab G. (2011). The
physiological role of ascorbate as photosystem II electron donor:
protection against photoinactivation in heat-stressed leaves. Plant
Physiology, 156, 382-392.
Tóth S. Z., Puthur J. T., Nagy V. & Garab G. (2009). Experimental
evidence for ascorbate-dependent electron transport in leaves with
inactive oxygen-evolving complexes. Plant Physiology, 149, 1568-1578.
Thompson L. K. & Brudvig G. W. (1988). Cytochrome b-559 may function to
protect photosystem II from photoinhibition. Biochemistry, 27,
6653-6658.
Tyystjärvi E. (2008). Photoinhibition of Photosystem II and photodamage
of the oxygen evolving manganese cluster. Coordination Chemistry
Reviews, 252, 361-376.
Tyystjärvi E. (2013). Photoinhibition of photosystem II. Int Rev Cell
Mol Biol, 300, 243-303.
Tyystjärvi E. & Aro E. M. (1996). The rate constant of photoinhibition,
measured in lincomycin-treated leaves, is directly proportional to light
intensity. Proceedings of the National Academy of Sciences of the United
States of America, 93, 2213-2218.
Vass I. (2011). Role of charge recombination processes in photodamage
and photoprotection of the photosystem II complex. Physiologia
Plantarum, 142, 6-16.
Vass I. (2012). Molecular mechanisms of photodamage in the Photosystem
II complex. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817,
209-217.
Vass I. & Cser K. (2009). Janus-faced charge recombinations in
photosystem II photoinhibition. Trends in Plant Science, 14, 200-205.
Vass I., Styring S., Hundal T., Koivuniemi A., Aro E. M. & Andersson B.
(1992). Reversible and irreversible intermediates during photoinhibition
of photosystem II: stable reduced QA species promote chlorophyll triplet
formation. Proceedings of the National Academy of Sciences of the United
States of America, 89, 1408-1412.
Wagner H., Jakob T., Lavaud J. & Wilhelm C. (2016). Photosystem II
cycle activity and alternative electron transport in the diatom
Phaeodactylum tricornutum under dynamic light conditions and nitrogen
limitation. Photosynthesis Research, 128, 151-161.
Wissler L., Codoñer F. M., Gu J., Reusch T. B., Olsen J. L., Procaccini
G. & Bornberg-Bauer E. (2011). Back to the sea twice: identifying
candidate plant genes for molecular evolution to marine life. BMC
Evolutionary Biology, 11, 8.
Yadav D. K. & Pospíšil P. (2012). Evidence on the formation of singlet
oxygen in the donor side photoinhibition of photosystem II: EPR
spin-trapping study. Plos One, 7, e45883.
Yang X. Q., Zhang Q. S., Zhang D. & Sheng Z. T. (2017). Light intensity
dependent photosynthetic electron transport in eelgrass (Zostera marina
L.). Plant Physiology & Biochemistry, 113, 168-176.
Zavafer A., Cheah M. H., Hillier W., Chow W. S. & Takahashi S. (2015).
Photodamage to the oxygen evolving complex of photosystem II by visible
light. Scientific Reports, 5, 16363.
Zavafer A., Koinuma W., Chow W. S., Cheah M. H. & Mino H. (2017).
Mechanism of photodamage of the oxygen evolving Mn cluster of
photosystem II by excessive light energy. Scientific Reports, 7, 1-8.
Zhang Z., Jia Y., Gao H., Zhang L., Li H. & Meng Q. (2011).
Characterization of PSI recovery after chilling-induced photoinhibition
in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889.