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Summary

In this paper, authors introduce the generalized Bessel-Maitland transform whose
kernel is the generalized Bessel-Maitland function. New identities are obtained for
special cases of the generalized Bessel-Maitland function. Using these relations, sev-
eral identities are obtained for generalized Bessel-Maitland integral transform. It is
shown that some special cases of them are related with the Laplace transform and the
Hankel transform. Also, some examples are given as representations of the outcomes

presented here.
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1 | INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Special functions and integral transfoms are frequently used in many mathematics, physics and engineering applications. Gen-
erally, integral transforms, which are one of the solution methods and special functions that are the solution of certain types
of differential equations, are studied in many disciplines today. Bernoulli gave series solutions of Bessel differential equations
in 1703. This solutions are called Bessel functions. Bessel functions were seen in many studies like astronomy, mechanics and
physics in the eighteenth century >3l In the literature, integral transforms whose kernel involving the Bessel functions are called
the Hankel transform, the Bessel transform, the Y and I transforms. There are also integral transforms such as Laplace and
Mellin transforms, which are frequently seen in the literature. In 1933, E. M. Wright introduced Wright function and investi-
gated its asymptotic behaviour and a generalization of the Wright function, known as the Bessel-Maitland function was defined
i~ In 2011, Singh® defined a generalized Bessel-Maitland function as follows:
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where Hllz1 is the Fox H —function defined in®, 41, v,y € C; Re (4) > 0,Re (v) > —1,Re(y) > 0, p € (0,1)UN and (y), = 1,

g}
Ppn = % Also, Singh® EaG-29)-p-130 proved that the generalized Bessel-Maitland function (I) has following integral

14

representation:

res)ry -
J%Y (Z):LL./MZ_SC{S, (|argz| <7T), (2)
v T()27i ) TA+0—ps)
L

where p,v,y € C; Re(u) > 0,Re(v) > —1,Re(y) > 0 and p € (0,1) UN. The contour of integration L, lies from s = —ico

. + . .
to s = +ioco, separates poles of integrand at s = —n (n € No) to the left and at s = L2 (n € No) to the right. He examined

certain properties of this function which got a number of results including differentiation and integration formulas®Z,

The aim of this paper is to first find some new features of the generalized Bessel Maitland function and then to examine the
properties of the integral transform, whose kernel involving the Generalized Bessel-Maitland function, so-called the Generalized
Bessel Maitland integral transform.

Now, let us start with basic definitions and properties of special functions and integral transforms to be used in the rest of the
article. The Gamma function is defined by

o

['(z) = / #ledt, Re(z) > 0. 3)
0
The basic properties of the Gamma function were given in® P-3.

Pochammer symbol is defined by the following relation,

a(a+1)..(a+n-1), n=1,2,3...
(@), = @D o=l @
1, n=0
where a € R,
The relationship between the Pochammer symbol and the Gamma function is given by
I'(a+ n)
=—", 0,1,2,... 5
(@), @ a# &)
The Beta function is defined by the following formula®,
oo 1
B(z,v) = / Ldt— /tz‘1 1-0)""dt 6)
' (1+1"*= '
0 0
where for Re (z) > 0,Re (v) > 0,.
The relationship between the Beta function and the Gamma function is given by
I'zr
Bz = —2LW) ™)
T(z+v)
The generalized hypergeometric series is defined by®
> (a ay) ..(a) on
F A Oy @y | :z( 1)”( 2),, ( )nz_' 8)
ﬂ]&ﬂZ"“vﬁs n=0 (ﬁ])n (ﬂz)n (ﬁs)n n:
where r,s € Z* U {0} and a; , f; #0,-1,-2,.. (1 <i <r, 1 < j <)
The Fox-Wright function is a generalization of the hypergeometric function and defined as'%:
¥ (al,al) , (az,az) e (ap,ap) _ i F(al +a1n)F(a2+a2n) I (ap+apn) " ’ ©
PR (b1, By) s (2. 8s) s (g By) &1 (by + pyn) T (by + fyn) ..T (b, + p,n) 1!
where p,q € Z* U {0},a;,b; € Cand a;, , ER(1 <i<p, 1 <j<q).
The Bessel-Maitland function, which is also known as Wright function, is defined as the following series form“>:
AR T i 2 ) I N (10)
v S nll'(un+v+1) v+ 1w
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2 2v
where ¥, is the Fox-Wright function. If we set 4 = 1 and z = % in the Bessel-Maitland function and multiply with <§) ,
we obtain the first kind of Bessel functions as follow:

3 it =" Z\ 2V
10=2 e (3) an

The Hankel transform whose kernel involving Bessel functions defined as follow! PXi:

M, A{f @)= / o023, f 0 dt, (12)
0
where Re y > 0.
The Laplace transform defined by P-127
LA{f@®);s}= /e“”f(t)a’t, Res > 0. (13)
0

2 | IDENTITIES FOR THE SPECIAL CASES OF BESSEL-MAITLAND FUNCTION

In this section, we will consider some new conclusions and their special cases for the generalized Bessel-Maitland function (T)).
The special cases of the generalized Bessel-Maitland function (I are given by
1

Tor =177 (14)
Jg, @ =e", (15)
lez”ll (zz) =sinz, (16)
lez’ll (=z*) =sinhz, (17)

o (27) = cos z, (18)

0211( -z ) cosh z, (19)

J,

@ 0y< ) . @), (20)
z v 1. ZZ _

sm(;tv) [ < >COS(7W) <2) J—VJ,/O <I>] =Y, (2, 21

where J, is the first kind1# FaG53-6.0.2-337 and ) is the second kind of Bessel function'}# Fa(543.1). p.568

Lemma 1. The following identity holds true
)p HZ

JL (@) (22)

1 (v
Jvl;y (z) = ;jvﬂy (2)+ vip
for u,v,y € C;Re(u) >0,Re(v) > —1,Re(y) >0and p € (0,1) U N, m e N.

Proof. We have the following identities® F4(5-2.1.1-2). p.127_

T8 @) = I g Tt (23)
TE @ =+ DI @)+ uze Tl (@) 24)

If we put m = 1 in (23) and make a simple change of variables from v to v — 1, where v = v — 1 in (24)), we arrive at the relation

22). O

v—1
Remark 1. Substituting y = 1, p =0, z = z?/4 in 22), multiplying by (g) and using the special case (20), we obtain

J @) =J1 @D+ Tp1(2), (25)
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where was obtained earlier in'# Ed(56).p-12,

Theorem 1. The following identity holds true

L (2amr @) =2, @, (26)

for u,v,y € C;Re(u) > 0,Re(v) > —1,Re(y) >0,p € (0,1)UN and m € N.
Proof. Using the series representation (I)), we find

dm
dm

[ 1 m
I L LY P

< vjw(zﬂ)> C(unt v+ 1) dz"

n=0

i =" () pn e
nC(un+v—-—m+1)

n=0
= 2R ().
O
Theorem 2. The function J; ,’,7 (z) has the following integral representations,
1
It ()= —p— / D R AN C L @7
r (E + U) 0
/2
2
TN (z) = — / sin®’ 93”1§2p (zcos™ ) do , (28)
r (— + u)
2
where u, v,y € C;Re(u) > 0,Re(v) > —1/2,Re(y) > 0and p € (0,1) UN.
Proof. Using the series representation (I, the relation (7) and the definition of Beta function (6), we get
o (2"
Jiy @)= 11 2 — B(%”’%“‘”)
r (5 + v) n=0 pl[" <§ + ,un)
(1—1)¥1/2 °° (=t"2)" (1) pn
/ nyE dt. (29)

n=0 n'l“(%+/m)

Now, using the series representation (I}), we obtain integral representation (27). Making the change of variable 1 — ¢ = sin® § in

(27), we arrive at (28). O
Remark 2. Substituting u = 1, p = 0, z = z? /4 into (27), multiplying by <§) and making the change of variable ¢ = u?, we get

1

v 2 v 2,2
z wi{z\_(z 2 V=172 1, u-z
(5) 75 (5) =) —F— [ 0=y Pty (5 )

r (z + V> 0
cos ()14 EaG6). 12 we find the known formula of Bessel

Using the relation (20) and the known formula J_, , (z) =

2
1/2,1/2
xl/2z
131 Eq(53.3.2), p.555

function as follows:

1
J, (2)= <§)U n-r;l/ (1 —uz)v_l/z cos(uz)du , (30)
0
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where Re (v) > —1/2. Applying similar calculations in (28), we find the known formula of Bessel function' Ea(33:3:3).p.355 a4

follows:
/2

v 2 .
J,(2)= z —/smzvecos(zcose)dﬂ, 3D
) Var (v+1) ]

where Re (v) > —1/2.

3 | GENERALIZED BESSEL-MAITLAND INTEGRAL TRANSFORM

In this section, generalized Bessel-Maitland Integral transform will be introduced and some basic properties of it will be given.

Definition 1. The , M}, —transform is defined as follows:

aH(Zg {(f@®;s}= /(Sf)a Jvl’l;}’ (st) f (1) dt, (32)
0

where a, yt,v,7,s € C; Re(a) > 0,Re(u) > 0,Re(y) >0,Re(v) > —-1,Re(s) >0,and p € (0,1) UN.
Lemma 2. The following identities,

Moy [ D35} = "L ()35} (33)

1 r
v 1Hj;5{f(r>;s2}=—Hv{f<z>;s}, (34)
274 s \/5

hold true, provided that the integrals involved converge absolutely, where £ is the Laplace transform'2 P127 and 7, is the Hankel
transform‘L: P-xi,

Proof. Settingv = 0,y = 1 into the definition of the generalized Bessel-Maitland function (I)) and using the definition of Laplace
transform and (32)), we obtain (33). Secondly, making the change of variable ¢ = u? /4 on the right hand side of (32), we have

T @)5) = / <S”ZZ> Jh (su;) f <u22> %du. (35)

0
Making the change of variables s = s? , a = % - i into (35) and using the special case of the generalized Bessel-Maitland
function (20), we obtain (34). O
Lemma 3. The following identities,
JUGAS O+ g5} = HIT{S @5} + T {g @5}, (36)
U @ss) == e {F ;) G37)
v,p a v,p a

hold true, provided that the integrals involved converge absolutely.

Proof. Using the DefinitionI]of the generalized Bessel-Maitland integral transform and the linearity of the integral, we obtain
(36). Making the change of variable at = u in relation (32), we arrive at (37). O

Lemma 4. The following equations hold true,

HETALL @55} =577 g T Lf (055}, (38)
‘ﬂ us™ ()
MU @5} = T (g1 05} + =L MU S (0)5s) (39)

where a, f, u, v, 7, s € C;Re(a+ f) > —1,Re(4) > 0,Re(y) > 0,Re(v) > —1,Re(s) > 0 and p € (0, 1) UN, provided that
the integrals involved converge absolutely.
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Proof. We obtain (38) easily using the Definitior(I] Similarly, using the relation (22) of Lemmd]and the linearity of the integral,
we arrive at (39). O

Remark 3. Setting f = —%, fo=r (2\/; > in (39), and using the relation (34), we obtain the known following relation

2
Hv{ Vf(’);s} = SH, ([ (5} +5Hyw (£ (0):5) . (40)

where H, is the Hankel transform' Ea®): p-3,

Theorem 3. The following identities for the generalized Bessel-Maitland integral transform,

HETS 05} =S<i—a> a_lﬂi"y{f(t);s}——,, HYT Af 03} 1)

),
HET L) s}—s<() AL ) HEE S @5y = (52) o1, (03] 42)

hold true, provided that the integrals involved converge absolutely, where a, f, u,v,y,s € C; Re(u) > 0, Re(y) > 0, Re (v) >
—1,Re(s)>0and p € (0,1) UN.

Proof. Using the definition (32)), integration by parts and the relation (23)) for m = 19 Ea5-2D-P127 '\ye arrive at {@T). Substituting

(21) into @T), we obtain @2). O

Remark 4. Changing the variable from 7 to 2\/; and setting p =0, u = 1 and s = s? in #2), we find

1 i 2\/; 2 2 @ 2
g PO ooy e (i) (2) i [ i)}

On the other hand, setting f (f) = f (2\/;) ,B=-1/2,p=0,u=1and s = s in (35), we get

aH\}:g K\/;/;); sPp=s a—1/szlfg {f’ <2\/;) ;Sz} . (44)

Using (@3) and (@4) together, we have

£ (2vr
o CO 1) i i)} () o [ )

Setting a = % + i in (@5) and using the relation (34), we obtain the known following relation,

1 1
H,{2vf @5} =5 (v=5) Hot (F @i5h =5 (v 3 ) Kooy ( 035) (46)
where H, is the Hankel transform!}! Ea10).p6,

Theorem 4. The following identities for the aHa ’If—transform,
d )
= (HE T O35)) = S M F @5} = =L L HIT A @3}, 7)
d
= (HE T O35Y) = @ HE AL 035) = (), UL 0351, 48)

hold true, provided that the integrals involved converge absolutely, where a, 8, u, v,7,s € C; Re (u) > 0, Re(y) > 0, Re (v) >
—1,Re(s) > 0and p € (0, 1) UN.

Proof. Using the definition of (32), changing the order of integration and derivation and making use of the relation 22), we
obtain (7). Setting # = 1 in (38) and using the relation [@7), we arrive at #8). 0O
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Corollary 1. The following identity holds true for the ,H}’y —transform,

dm , N s (m\ED O T@ry .
i (PG 0351) = §<k> Tl m— k=1 o ey @351 (49)

Proof. Using the definition of (32)) and the Leibniz derivative formula? Ea0:1089p3 'we obtain [@9). O

4 | ILLUSTRATIVE EXAMPLES

In this section, we will give some illustrative examples of the generalized Bessel-Maitland integral transform. The results of
the examples in this section are obtained using the integral representation of the generalized Bessel-Maitland function (2)) and
different advanced methods such as residue calculus.

Example 5. We show that

1 ma®'s® (r.2p),(1, 1) 2.2
HHY —_—iy == ¥ —a’s
@ vp {a2+t2 } 2COS<”_(X)F(]/)2 2 l(l+va2ﬂ)’(l’2)
2
a qa+l
L s z%l +p2p. 0D ‘_0252]
2n () L@ +er 2. 22

_ S lp (7_pa+P92p), (1’1)
sin(za)T () 2 2| A+v—pa+pu,2p), 2-a,2)

- azszl , (50)
where Rea > 0 and ,"¥, is the Fox-Wright function (9).

Proof. Setting f (t) =

(Rea > 0) in (32) and using the definition of generalized Bessel-Maitland transform (32)) and

a+1?
integral representation of generalized Bessel-Maitland function (), we obtain
ico o
T ()T (y — pu) s*~ au
aHM'y{f(t);S}ZL./ Wy =pw)s / L _ar|du. 51)
VP 2zi J T +v— pu) a? + 12
Using the formula of Mellin transform'4 E4(1D-p-309 "anq the known property of Gamma function® F4®):P3 we have
HHY ;;S =L / gy du= Z Res (g(u),u;) , (52)
e @+ 12 27i - !

where

T@I (y — pu) s a® 41 7 T
g = (
ropra+v—uu 2
which has poles at u; = —nand u, = a — 1 — 2n(n € N). The residues of g(u) at u; = —n(n € N) are
_ (_1)" F(]/ + pn) aa+n—lsa+n P

T
Res{g W.u) = = o T+ v+ amnl ESCC<§(“+”)>’ (53)

where we have for k € N,
(=¥ sec (%) , n=2k

sec<£(a+n)>= .
2 (—1)k+1csc<%), n=2k+1

The residues of g(u) atu, = a — 1 —2n(n € N) are

p (=)™ (y — pa + p + 2pn) a2+
sin(a) T(HTR—-a+20)T A +v—pa+p+2un)
Substituting (53)) and (54)) into (32) and using the definition of the Fox-Wright function (9)), we obtain (50). O

Res{g (u),u,} = (54)
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Example 6. We show that

o { 1 's} _ a1 () 1
LA +an) TP ()sin(z (B - )
(.p),(a+1,1)
X 2% l(1+v,,u),(2—ﬂ+a,1)
N al (s 'z
'(PI(y)sin(z (- a))

|

(}’—p(—ﬂ+a+1),l)),(ﬂ,l) S
X ¥ =1, 55
: 2l(1+v—u(—ﬂ+a+1),u),(ﬁ—a,1) a] e
where 0 < Res < Rep, |arga| < 7 and ,¥, is the Fox-Wright function (9).
Proof. Setting f (t) = ﬁ in (32) and using the definitions (2)) and (6) and property of beta function (7)), we have
+ at
HHY ;; sy = 1 / gwdu= Z Res (g(u),u) , (56)
P+ an 2zi - ’
where
W = T (y —puw)T (@ —u+1)s*Hgltu—a n
sW= FrOrmrd+v—ulR-p+a—-wsin(x(f—-a+u—1)’
which has poles at u; = —nand u, = —f + a + 1 — n(n € N). The residues of g(u) at u; = —n(n € N) are

ST (y+pn)T(@+n+ D) mese(m (f—a—1))

Res{g (u),u;} = — . 67
at=-1r(Hrpmlrd+v+um)'Q—-p+a+n)n!
The residues of g(u) atu, = —f+a+1—n(n €N) are
p—l+n —p(— _
Res{g (), u,} = Sy —p(—p+a+ 1)+ pn)T (B +n)mesc(x (B — a)) (58)

P D (DTN —a+mT(+v—p(—f+atD)+pun)
Setting and (58)) in (36) and using the definition (9), we arrive at (33). O

Example 7. We show that

Wy f,—at. O\
aHv’p {e ,s}—

a

s¢ ¥ ,p),(@+1,1)
T (y) 2! A+ v, p)

‘—S] , (59)

where Rea > 0 and , ¥, is the Fox-Wright function (9).

Proof. Setting f (f) = e~ in (32) and using the definitions (Z) and (3) and property of Gamma function B4 P3| we have

_a 1
HET {5 ) = P / gw)du= Z Res (g(u),u;), (60)

where
Frwr'ty—pwy'lea —u+1) s+«

TrMHTA+v—pu) qe-u+l’
which has poles at u = —n (n € N). The residues of g(u) at u = —n(n € N) are
D'T(y+pn)T(@+n+1) sotn
') +v+ un)n! qun+l’
Substituting (61I) into (60), we arrive at (59). O

Example 8. We show that

g =

Res{g (u),u} =

(61)

(s

s IF'+pml(a+n+1) s\" z
aa+lr(y)z AT (1 + v+ pn) (") C°S<5(”+“+1)) (62)

Hy Lol =
aHv’p {cos(at);s} = p;
n=0
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and
o0

s I'+pn'(@a+n+1) s\" . (=
aa+1r(y)Z AT+ v+ pn) (7) Sm<5(”+“+1)>’ (63)

aHfj {sin(at);s} =
’ n=0
where Rea > 0.

Proof. Changing the parameters in (59) from a to ia, where a — ia and se-parating the relation into real and imaginary parts,

we obtain (62)) and (63), respectively. O
Example 9. We show that
« sin(z (B/2 —a)) (r.p),(@a+1F8/2,1)| s
HHT s == y ’ 21, 64
Ity ) {Tp (ar): s} ga+1 2L (r) 301 (1+ o, ) a e

where a > 0, —Re (f) < Re (s) < 3/2 and ;¥, is the Fox-Wright function (9).

Proof. Setting f (1) = J, (2\/5) in (32) and using the definition (2), we get

: A [T —pu)s™™ .
“way{:’ﬂ (2\/5)”}_ 2z / ()T +v— ) /t Ty (2at) dt | du. (65)
0

—ico

12 Eq(1), p326 52 Eq(5), p-207

Using the relations , which are given for the Mellin integral transform, we have

oo} -7

, (66)
a’’ é —-s+1
2
where —Re (f) < Re (25) < 3/2. Using the relation (66) and (63)) together, we obtain
1
T {J,, (2\/5) ,s} - / g () du= Z Res (g(u),u;) , 67)
where a — /2 ¢ N and
W) = sin(z(B2—a—-u) Ty —pw)T(@—u+1+4/2)T(A-B/2+a—u) s*
sl= sin (7zu) TA-0 )T +v— ) geurl’
which has the pole at u = —n (n € N). The residues of g(u) atu = —n (n € N) are
i 2— r r 1 QI -p4/2 atn
Res{g(u),u}:sm(”(ﬁ/ Nl +p))l@+n+1+p/2)T(1-F/2+a+n) s 68)
z Frad+mr@rad+v-—un) gatntl
Putting (68) into (67), we obtain (64). O

S | APPENDIX-I

Using the definition of generalized Bessel-Maitland transform (32)) and integral representation of generalized Bessel-Maitland

function (2) and the residue theorem, we obtain (AI-T) and (AI-3). Using the equation (38) in (AI-1), (39), (62), (63), (©4).
respectively, we arrive at (AI=2)),((AT=4)-(AL=7).

oHT {15}

_ @+ DIy —pla+1)1

T 4+v—p@+1)s
aH”Z’{tﬂ;s}:F(a+ﬂ+l)r(y_p(a+ﬂ+l))L. (AL2)
v IrMHrd+v—pu(a+p+1) s+

(AI-1)
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'3 LA 7 (as)" .p)
aHél,g{a_H,S} S wmz@rD)gp l(l F o as]
U (r —pa,p), (1,1)
G l<1+u—u,m, (1-a1) “S]' (AL-3)
PP RS S .p.(@+p+1D|_s ]
Hy e s} =Ty 2 l 1400 |- (AL-4)

[s)

s ZF(y+pn)F(a+ﬁ+n+l)
a**+P+IT (y) n'T (1 + v+ un)

T {1’ cos(ar);s} =

n=0
x (—i) cos<§(n+a+ﬁ+ 1)). (AL-5)
_ @ oL +p(a+pf+n+1)
H:T P 15} = —>
My 1 sin(an; s aa+ﬂ+|l—‘(y)r§ Il (1 +v + un)
x (—2) sin<§(n+a+ﬁ+1)). (AL-6)
wr | o s® sin(z (f/2 —a —6))
aHv,p {t ‘7/3 <2\/5> ’S} qa+o+l 7z (y)
(r.p),(@+6+1Fp/2,1)|s
x ;¥ = AlL-7
o (1 +0.0) a (AP
6 | APPENDIX-II
Using the identity 33) for @ = 0 in (ALI), we get (AI-I)2EAD-p133 Using the identity (33) @ = 0 in
(AT-Z), we have (ATI2)T2Ea-p137 Using the identity (34) for § = —1/4 and f = f/4, respectively, we obtain

(AT-3) and (ATI-Z)LL Ea®). p72and Ea.p22 Using the identity (33) in (AI3), we get (AI3)12 EAD-p137 Using the iden-
tity (34) for a = a&?/4 in (AI-3), we obtain (AI-G) Ea@D.4=3/24=0.p24  Using the identity (G3) in (GO for a =
1, we have (AI-7)'2Fa®.p138 Taking @ = a?/4 in (30) and using the identity (34), we arrive at (AII-8)3 P43,
Using the identity 33) in ®3) for ¢ = 1l/a,a = v -1, = v-1/2and a = 1/a,a = v —
I, f = v + 1/2, respectively, we have (AII-9) and (AT-T0)2 Ea@0-@D.p13  Using the identity (34) in (G3) for
a=4/da% = p+1, we get (AITT) Ba@D. 4=3/2.24 Firgtly, using the identity (33) in (59), we get (AI-12)2 Ea®). 144 then
taking @ = 0 and a = 1, respectively, we obtain (AII-13) and (ATI-14)2 Ea(). p143 and Eq) p.144 {Jsing the identity (34) in (AT-4)
for a = 4a, p = p/2 — 1/4, we have (AI-15)L FaGO. P30 Using the identity (33) for @ = 0 in (62) and (B3), respectively, we
obtain (ATI-16) and (ATI-17)2 Ea3). p154and Ba(). 150 Using the identity (33) in (62) and (63), respectively, we obtain (ATI-18)
and (ATI-19)/12 FaG8), p-157 and Bq(15), 145 {sing the identity (34) in (AI-5) and (AI-6), respectively, fora = 4a, f = —1/4,f = 1/4
and f = v/2 — 1/4, res-pectively, we obtain (AII-20)-(AT[-25)1L EaG8)-(40), p.38 and Eq(131-(15), 34 Using the identity (33) in (&4)
fora = p—1,p =2v, we get (AII-26), for a = u — 1/2, = 2v, we have (AII-27), for « = v/2 + n, p = v, we obtain (AII-28),
fora =v/2 -1, f =2v, we arrive at (AII-29), for a = —v /2,8 = v, we get (AII-30), for a = v/2, f = v, we have (AII-3T), for
a=—1/2,p = v, we obtain (AII-32), for & = 1/2, f = 1, we get (AII-33)), for @ = 0, f = v, we get (AII-34)/12 Ea26)-(33). p.185-186
Using the identity (34) in (AI-7), we obtain (ATI-33).

£{lis}=1,  Res>0. (AII-1)
N
I'(p+1)
c{t’;s} = iT Res > 0. (AII-2)
H, {1} =572, Rev > —1, s > 0. (AII-3)
PI2T(B/24v/2+3/4

s T (v/2—B/2+1/4)
—Rev—3/2<Reu<—1/2,5> 0. (ATI-4)
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z:{ ! ;s} =T (a+1)a%e®T (—a,as),

a+t
|argal < #,Rea > —1,Res > 0. (AII-5)
11
1 a”_55”+§1“<§+%>1“<—§+i> ,
H, ;S p = OFI(_ 1+ &)
a? + 12 2041 (1 + v) 4
F(E—l)s
2 4 v as
1 F2<1,2+5 —5+§;;),
vy 5)932
F<2+4>2/
Rea > 0,—Rev < 3/2,s > 0. (AII-6)
1 T
L = V,.1(2s,0), Rev> 0,Res > 0. All-7
{1+12} Sn a1y o @50, Rev es (AIL7)
5 1
" 16 .\ _ ra” 2572
v 4a4+t4’ 3 vz
sin( (5 +3)) 227

Hlw

2
ZF(l+U+n)nt< ) cos ﬂ<§+ +§>)

4n
N 7rs3\/§ i - <as>
sin<n<’1+§>)n= F( +L +2n> (Z—§+2n) V2
|argal < z/4,Rev > =3/2. (AII-8)
=212 (v) ¥/ 2 '1/2D Y (\/2(1S>,

)
Rev > 0, |arga| < z,Res > 0. (AIl-9)
L {L s} =2"T'(v) a_]/ze‘”/zD_ZV (\/2_as> s
Rev > 0, |arga| < z,Res > 0. (AII-10)
} a—2ﬂ+v—l/2sv+l/2r<§+§>F(ﬁ_§+i)
2T (B+ DL (v+ )

3 . 3 L a2s?
1F2<—+9,1+ ,Z+2—ﬁ,%)
1

§14209-3/2-2p <_ +U ﬂ)
2
+

F(§+§+ﬂ)

.5 v 5 v . a’s?
X B (P+124tep I-teptt),

—Ref <3/2 <2Reu +7/2,Rea > 0,s > 0. (AII-11)
r 1
L{re s} = (a—+)1,Rea > —1,Res > —Rea. (AII-12)
(a + 5)*F
L = , Res > —Rea. AlI-13
{e s} p S es ea ( )
L{te s} = Res > —Rea. (AII-14)
(a+ s)
s”+1/2l“(5+5+i> I
" {I”_l/ze_at2'5}= 27272 §+§+5 s
v ’ 2v+lau/2+;4/2+1/21"(1 +0) 171 1+v 4a |’

Rea > 0,Re(v + pu) > —1,5 > 0. (AII-15)
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L {cos(at);s} = 2+ -, Res > |[Ima].
L {sin(at);s} = = +32’ Res > |[Ima].
_ I'(v) 1
v—1 . —
L cos(an;:s) = — [(s “ia) " (s +ia)

Rev > 0,Res > |Ima].

rof 1
2i |(s—ia)" (s+ia)
Re > —1,Res > |Ima]|.

s o) <3y (5 (104)-£) % (),
2

a>0,Rev > —1.

H, {r"/?sin(at*);s} = —\/:sm(g <§+ %) - %)Jz <§>,
2

a> 0,Rev > -3.

1/2.3/2
H, {tl/2 cos (ar);s} = 5 (sin <‘—2 - ”V> T,

L {t”‘l sin (at);s} =

= 1
2343/2 8a 4 >3
52 v 52
reos(5-%) 70,1 (£ )
272
a> 0,Rev > -2.
212302 ) )
1/2 .: _ K v K
Hv{t/ s1n(at) s} W (8__T>J§_% (g)
2 v 52
—sin (5= 5) 7o, (2
272

a> 0,Rev > —4.

1/2
H, {tv“/z cos (at?);s} = A sin (i _ H) i

211+1au+l 4a 2
—1<Rev<1/2.
v+1/2 5
VH1/2 __S s _
H, {1t sin (ar®) 55} = SorT g €08 (4a > ),
—2<Rev<1/2

st D(L+20) V[ 1420

e {7, (2var) s} = L LAY g lvw

Re(v + u) > 0,Res > 0.

C(u+1/24v)e /2
E{t” I/ZJ (2 t>;s}= (u / v)e M V(2>,
(14 2v)al/2sm #
Re(v + u) > —1/2,Res > 0.

v/2
£{IV/2+nJ <2 /at>;s}:n! a e—a/SL\/ (2>’
v Sv+n+1 n\s
Re(v) +n > 0,Res > 0.
C {tv/z—ljv <2w/at> ;s} =qv/? y <U; 2) ,Rev > 0,Res > 0.
S
-v/2 —a/s‘
E{I_V/ZJV<2\/at>;s}=e’ vl ( ) Res > 0.
sl-v F(v) S
v/2
L {tV/2Jv <2\/at> 7s} = al+v _a/b Rev > —I,ReS > 0.
V1
C {t—l/zjv (2\/(11) ;s} = £e_a/2‘g Iv/z ( ) Rev > —1,Res > 0.
512 2s

(ATI-16)
(AII-17)

(ATI-18)

(AII-19)

(AT1-20)

(AII-21)

(AI1-22)

(AI1-23)

(ATI-24)

(AI1-25)

(AT1-26)

(ATI-27)

(ATI-28)
(AI1-29)

(AII-30)

(AIL-31)

(AI1-32)
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c {tl/zjl (2\/5) ;s} = ¢'252e75,  Res > 0. (ATI-33)
c {:/v (2\/5) ;s} Lo, Resso. (AIL-34)
S
1
svH+1/29-24 I (V - A+ E)

H, {7127 (at); s} =

v=2A+1
av=si F</1+%>F(v+1)

1 1 52
X 2F1 <U—/1+§,—),+§;1+V;;>,

Rev+1/2>Red>—-1/2,a> 0,5 > 0. (AII-35)

References

10.

11.

12.

13.

14.

. Wright EM. On the coefficents of power series having exponential singularities. Proc. London Math, Soc.. 1933;(8):71-79.

Dutka J. On the Early History of Bessel Functions. Arch. Hist. Exact Sci.. 1995;49(2):105-134.

. Watson GN. A treatise on the theory of Bessel functions. 2eds., Cambridge University Press; 1966.

Marichev Ol. Handbook of Integral Transform and Higher Transcendental functions, Theory and algorithm tables. New
York: Ellis Horwood, Chichester [John Wiley and Sons]; 1983.

Rusev P, Dimovski I, Kiryakova V. Transform Methods and Special Function. (Proc. Sec. Int. Workshop, August
1996),Institute of Mathematics and Informatics, Bulg. Acad. Sciences, Sofia; 1998.

Singh M. On Some Problems Of Polynomials and Fractional Calculus. Aligarh Muslim Univercity, India; 2011.

Singh M, Khan MA, Khan AH. On Some Properties of a Generalization of Bessel-Maitland Function. International Journal
of Mathematics Trends and Technology. 2014;14(1):46-54.

Fox C. The G and H-functions and symmetrical Fourier kernels. Trans. Amer. Math. Soc.. 1981;98:395-429.

Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG. Higher Transcendental Functions I. New York Toronto and London:
McGraw-Hill; 1954. Reprinted: Krieger, Melbourne-Florida 1981.

Wright EM. The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc..
1935;10(4):286-293. [doi=10.1112/jlms/s1-10.40.286.

Erdélyi A, Magnus W, Oberhettinger F., Tricomi F. G.. Tables of Integral Transforms. Vol. Il. New York-Toronto-London:
McGraw-Hill Book Company, Inc.; 1954.

Erdélyi A, Magnus W, Oberhettinger F., Tricomi F. G.. Tables of Integral Transforms. Vol. I. New York-Toronto-London:
McGraw-Hill Book Company, Inc.; 1954.

Oldham KB, Spanier J, Myland J. An atlas of functions. 2eds., Springer; 2010.

Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG. Higher Transcendental Functions II. New York Toronto and London:
McGraw-Hill; 1954. Reprinted: Krieger, Melbourne-Florida 1981.


doi=10.1112/jlms/s1-10.40.286.

4| Durmus Albayrak ET AL

AUTHOR BIOGRAPHY

Durmus Albayrak received his Ph.D. degree in Special Functions and Integral Transforms in 2020
from Marmara University, Istanbul, Turkey. His primary areas of research are special functions, integral
transforms, fractional calculus and g-analysis.

Ahmet Dernek is a retired professor from Mathematics Department of Marmara University, Istanbul. He
was vice dean of Arts and Sciences Faculty between 1998 and 2005 and the head of Mathematics department
between 2004 and 2016. He received his PhD from Istanbul University in 1984. His research interests include
complex analysis, integral transforms and fractional calculus.

Nese Dernek Nese Dernek is a professor at Mathematics Department of Marmara University, Istanbul and
was the head of the department between 2017 and 2020. She received her PhD from Istanbul University in
1984. Her research interests include integral transforms, special functions and fractional calculus.

Faruk Ucar received his Ph.D. degree in Univalent functions in 2004. He is working as a Professor of
mathematics in the Department of Mathematics at Marmara University, Istanbul. He has published research
papers in National and International peer reviewed journals so far. His research interest includes Univalent
Functions, Fractional Calculus, Special Functions, Integral Transforms, g-Fractional Calculus.

How to cite this article: D. Albayrak, A. Dernek, N. Dernek, and F. Ugar (2020), New intregral transform with Generalized
Bessel-Maitland function kernel and its applications, Mathematical Methods in the Applied Sciences, 20xx;00:0-?.




	New intregral transform with Generalized Bessel-Maitland function kernel and its applications
	Abstract
	Introduction, Definitions and Preliminaries
	Identities for the special cases of Bessel-Maitland Function
	Generalized Bessel-Maitland Integral Transform
	Illustrative Examples
	Appendix-I
	Appendix-II
	References
	Author Biography


