
Convergence of approximate solutions for singular

difference systems with maxima

Xiang Liu1, Christopher S. Goodrich2, Peiguang Wang3 ∗

1 School of Mathematical Sciences,

Hebei Key Laboratory of Computational Mathematics and Applications,

Hebei Normal University, Shijiazhuang, 050024, China
2 School of Mathematics and Statistics, UNSW Sydney,

Sydney, NSW 2052, Australia
3 College of Mathematics and Information Science, Hebei University,

Baoding, 071002, China

Abstract In this paper, by introducing a new singular fractional difference comparison

theorem, the existence of maximal and minimal quasi-solutions are proved for the singular

fractional difference system with maxima combined with the method of upper and lower

solutions and the monotone iterative technique. Finally, we give an example to show the

validity of the established results.

Keywords Singular fractional difference systems; Maxima; Extremal solutions; Iterative

technique; Delay equations.

2000 Mathematics Subject Classification 39A12, 39A70.

1 Introduction

Since Rosenbrock [1] introduced the concept of singular systems in 1974, which have

been widely used to describe some problems in practical fields, such as optimal con-

trol problems, constrained control problems, some population growth models and so on.

Therefore, the theory of singular differential systems [2, 3] has more significance than

the theory of ordinary differential equations. In this paper, we consider the following

∗Corresponding author: pgwang@hbu.edu.cn
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nonlinear singular fractional difference system with “maxima” Ea∇ν
h,∗x(t) = f

(
t, x(t), max

s∈(hN)t
t−τ(t)

x(s)
)
, t ∈ (hN)a+n0h

a+h ,

x(t) = ϕ(t), t ∈ (hN)aa−mh,
(1.1)

where E is a singular n×n matrix, x ∈ Rn, f : (hN)a×Rn×Rn → Rn, ϕ : (hN)aa−mh → Rn,

τ : (hN)a+h → (hN)h, a − mh := mint∈(hN)a+h(t − τ(t)), m and n0 are fixed positive

constants. Moreover, in (1.1) the operator a∇ν
h,∗ is the Caputo-type fractional h-difference

operator – see Section 2 for details. Due, therefore, to the fractionally of the operator

problem (1.1) is nonlocal. Note that in (1.1) and throughout we use the notation

(hN)a := {a, a+ h, a+ 2h},

for h > 0 and a ∈ R.

The discrete fractional calculus in recent years has attracted much attention as a new

area of research within the larger arena of difference calculus. One reason for this is due

to the inherently nonlocal structure of the fractional difference and sum (no matter the

underlying definition used). This nonlocal nature imparts significantly enhanced difficulty

in the analysis of such difference operators.

For example, the analysis of initial and boundary value problems is more complicated

(see, for example, representative papers by Atici and Eloe [4–6], Dahal and Goodrich

[7], Ferreira [8], and Goodrich [9]), and, similarly, the connections between the sign of a

fractional difference and the monotone or convex behavior of the underlying function is

exquisitely complex (see, for example, representative papers by Abdeljawad and Abdalla

[10], Du, Jia, Erbe, and Peterson [11], Goodrich and Lizama [12, 13], Goodrich, Lyons,

and Velcsov [14], Goodrich, Lyons, Velcsov, and Scapellato [15], Goodrich and Muellner

[16], and Jia, Erbe, and Peterson [17–19]). Consequently, there is mathematical value

in continuing to develop our understanding of these types of nonlocal operators. We

should also like to note that, increasingly, fractional difference operators have been used

in applications such as tumor modeling [20–22], cryptography [23], and image processing

[24].

The method of upper and lower solutions combined with monotone iterative [25] has

been widely used to prove the existence of extremal solutions on nonlinear problems.

Previous studies have mainly focused on the nonlinear differential systems [26–29] and

nonlinear singular differential system [30–32]. However, we notice that this method for

nonlinear singular difference system has been studied very rare, due to the memory of the

fractional difference operator and the weak singularity of the kernel.

In the current paper, we extend this method to nonlinear singular difference system

with “maxima”, we give a variable initial condition rather than fixed initial condition.
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Further, we give a new singular fractional difference comparison principle, which will be

used in our main results. Then, by means of upper and lower solutions and monotone

iterative technique, existence of maximal and minimal quasi-solutions are proved. Finally,

an example is given to illustrate Theorem 3.1 is attainable. While the first author has

studied a problem similar to (1.1) recently [33, 34], in neither of these papers is the

inclusion of a singular matrix E considered as in (1.1). In fact, in neither [33] nor [34] is

a matrix coefficient considered. Therefore, this distinguishes the study here from earlier

works and, moreover, requires a somewhat different approach.

2 Preliminaries

We begin with basic definitions which will be necessary for the following proof. The

recent textbook by Goodrich and Peterson [35] can be consulted for a wealth of additional

information on the discrete fractional calculus. We begin by recalling the definition of the

Caputo h-difference operator – see, for example, [33, pp. 816–818] for additional details.

Definition 2.1. Let ν ∈ (n− 1, n], where n ∈ N, and put µ := n− ν. Then the Caputo

h-difference operator, denoted a∇ν
h,∗ of order ν for a function u : (hN)a → R is defined

by (
a∇ν

h,∗u
)
(t) :=

h

Γ(µ)

t
h
−µ∑

s= a
h

(
t− (s+ 1)h

)µ−1

h

(
∇n
hu
)
(sh), t ∈ (hN)a+µh,

where ∇n
h is the n-fold composition of the backwards h-difference defined by(

∇hu
)
(t) :=

u(t)− u(t− h)

h
, t ∈ (hN)a,

and t
(ν)
h denotes the h-factorial function defined by

tνh := hν ·
Γ
(
t
h

+ ν
)

Γ
(
t
h

)
for any t, ν ∈ R such that

t

h
+ 1 /∈ {· · · ,−2,−1, 0}.

Remark 2.1. Let Z− denote the nonpositive integers. Then as is the standard convention

we take tνh := 0 whenever
t

h
+ ν ∈ Z− and

t

h
/∈ Z−.

Throughout this paper, we will use the following notation (See [29])

(zi, [x]pi , [y]qi) =


(x1, x2, · · · , xi−1, zi, xi+1, · · · , xpi+1︸ ︷︷ ︸

pi

, ypi+2, · · · , yn︸ ︷︷ ︸
qi

) for pi > i ,

(x1, x2, · · · , xpi︸ ︷︷ ︸
pi

, ypi+1, · · · , yi−1, zi, yi+1, · · · , yn︸ ︷︷ ︸
qi+1

) for pi < i ,
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where pi and qi are nonnegative integers such that pi + qi = n − 1, i = 1, 2, · · · , n. It

follows from [36] that the pair (E,A) is regular and impulse-free. Then there exist two

nonsingular matrices M , N such that

MEN =

(
Ir 0

0 0

)
.

Then the system (1.1) is equivalent to
a∇ν

h,∗x
(1)(t) = M1f

(
t, x(t), max

s∈(hN)t
t−τ(t)

x(s)
)

= g(1)
(
t, x(t), max

s∈(hN)t
t−τ(t)

x(s)
)
,

0 = M2f
(
t, x(t), max

s∈(hN)t
t−τ(t)

x(s)
)

= g(2)
(
t, x(t), max

s∈(hN)t
t−τ(t)

x(s)
)
, t ∈ (hN)a+n0h

a+h ,

x(t) = ϕ(t), t ∈ (hN)aa−mh,

(2.1)

where N−1x(t) = col(x(1)(t), x(2)(t)), x(1) ∈ Rr, x(2) ∈ Rn−r. And M = (MT
1 ,M

T
2 ),

M1 ∈ Rr×n, M2 ∈ R(n−r)×n, N = (NT
1 , N

T
2 ), N1 ∈ Rn×r, N2 ∈ Rn×(n−r). According to the

above notations, the system (2.1) can be written as

a∇νh,∗xi(t) = gi

(
t, xi, [x]pi , [x]qi , max

s∈(hN)t
t−τ(t)

xi(s),
[

max
s∈(hN)t

t−τ(t)

x(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

x(s)
]
qi

)
,

i = 1, · · · , r,
0 = gi

(
t, xi, [x]pi , [x]qi , max

s∈(hN)t
t−τ(t)

xi(s),
[

max
s∈(hN)t

t−τ(t)

x(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

x(s)
]
qi

)
,

i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

xi(t) = ϕi(t), t ∈ (hN)aa−mh.
(2.2)

Definition 2.2. The function α0, β0 : (hN)a+n0h
a−mh → Rn is called a couple of lower and

upper quasi-solutions of the system (2.1) if the following inequalities are satisfied:

a∇νh,∗α0i(t) ≤ gi
(
t, α0i, [α0]pi , [β0]qi , max

s∈(hN)t
t−τ(t)

α0i(s),
[

max
s∈(hN)t

t−τ(t)

α0(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

β0(s)
]
qi

)
,

i = 1, · · · , r,
0 ≤ gi

(
t, α0i, [α0]pi , [β0]qi , max

s∈(hN)t
t−τ(t)

α0i(s),
[

max
s∈(hN)t

t−τ(t)

α0(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

β0(s)
]
qi

)
,

i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

a∇νh,∗β0i(t) ≥ gi
(
t, β0i, [β0]pi , [α0]qi , max

s∈(hN)t
t−τ(t)

β0i(s),
[

max
s∈(hN)t

t−τ(t)

β0(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

α0(s)
]
qi

)
,

i = 1, · · · , r,
0 ≥ gi

(
t, β0i, [β0]pi , [α0]qi , max

s∈(hN)t
t−τ(t)

β0i(s),
[

max
s∈(hN)t

t−τ(t)

β0(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

α0(s)
]
qi

)
,

i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

α0i(t) ≤ ϕi(t), t ∈ (hN)aa−mh
β0i(t) ≥ ϕi(t), t ∈ (hN)aa−mh.

(2.3)
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Remark 2.2. When the system (2.1) is a scalar case, i.e., n = 1, p1 = q1 = 0, the couple

of lower and upper quasi-solutions of the system (2.1) are said to be lower and upper

solutions of the system (2.1).

Remark 2.3. The function of α0, β0 : (hN)a+n0h
a−mh → Rn is said to be a couple of quasi-

solutions of the system (2.1), if the inequalities (2.3) are satisfied as equalities.

We give the following sets for convenience.

S(α0, β0) = {u : (hN)a+n0h
a−mh → Rn | α0(t) ≤ u(t) ≤ β0(t), t ∈ (hN)a+n0h

a−mh }.

Lemma 2.1. (See [37]) Let (X, ‖ · ‖) be a Banach space and T : X → X be a contraction

mapping. Then T has a unique fixed point in X.

In our further investigations, we will need some results on linear singular difference

inequalities and systems. Consider the following singular fractional difference system with

“maxima”
a∇ν

h,∗xi(t) + Aixi(t) +Bi max
s∈(hN)t

t−τ(t)

xi(s) = σi(t), i = 1, · · · , r,

Aixi(t) +Bi max
s∈(hN)t

t−τ(t)

xi(s) = σi(t), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

xi(t) = ϕi(t), t ∈ (hN)aa−mh,

(2.4)

where Ai, Bi are positive constants.

Lemma 2.2. Assume that the function xi : (hN)a+n0h
a−mh → R, and Λ = max

{
(n0h)νh
Γ(ν+1)

(Ai +

Bi),
Bi
Ai

}
< 1. Then the system (2.4) has a unique solution for t ∈ (hN)a+n0h

a−mh .

Proof. Let X be the space of real-valued functions defined on (hN)a+n0h
a−mh . Then we define

a norm ‖ · ‖ on X by ‖x‖ = max{|x(t)| : t ∈ (hN)a+n0h
a−mh } so that the pair (X, ‖ · ‖) is a

Banach space. Now we define the map T : X → X by Tx = (T1x, T2x), where T1 and T2

are defined as follows

T1xi(t) = xi(a) + a∇−νh
[
− Aixi(t)−Bi max

s∈(hN)t
t−τ(t)

xi(s) + σi(t)
]
, i = 1, · · · , r,

T2xi(t) = −Bi

Ai
max

s∈(hN)t
t−τ(t)

xi(s) +
1

Ai
σi(t), i = r + 1, · · · , n, t ∈ (hN)a+n0h

a+h ,

xi(t) = ϕi(t), t ∈ (hN)aa−mh.

(2.5)

Next, we will show that T is a contraction map. For t ∈ (hN)a+n0h
a−mh , and xi, yi ∈ X, we

have

|T1xi − T1yi| =
∣∣∣
a
∇−νh

[
− Ai(xi(t)− yi(t))−Bi( max

s∈(hN)t
t−τ(t)

xi(s)− max
s∈(hN)t

t−τ(t)

yi(s))
]∣∣∣
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≤ a∇−νh (Ai +Bi)‖xi − yi‖

≤ (n0h)νh
Γ(ν + 1)

(Ai +Bi)‖xi − yi‖, i = 1, · · · , r,

|T2xi − T2yi| =
∣∣∣− Bi

Ai
max

s∈(hN)t
t−τ(t)

xi(s) +
Bi

Ai
max

s∈(hN)t
t−τ(t)

yi(s))
∣∣∣

≤ Bi

Ai
‖xi − yi‖, i = r + 1, · · · , n, t ∈ (hN)a+n0h

a+h .

It follows that

d(Txi, T yi) = d
(
(T1xi, T2xi), (T1yi, T2yi)

)
≤ Λd(xi, yi), t ∈ (hN)a+n0h

a+h .

Hence, by Lemma 2.1, the operator T has a unique fixed point – that is, the system (2.1)

has a unique solution. The proof is complete.

Lemma 2.3. Assume that the function m : (hN)a+n0h
a−mh → Rn satisfy the inequalities

a∇ν
h,∗mi(t) ≤ −Aimi(t)−Bi min

s∈(hN)t
t−τ(t)

mi(s), i = 1, · · · , r,

0 ≤ −Aimi(t)−Bi min
s∈(hN)t

t−τ(t)

mi(s), i = r + 1, · · · , n, t ∈ (hN)a+h,

mi(t) ≤ 0, t ∈ (hN)aa−mh,

(2.6)

where Ai, Bi are positive constants, and Ai > Bi. Then the inequality mi(t) ≤ 0 for

t ∈ (hN)a+n0h
a−mh .

Proof. Since the operator a∇−νh is positive, it follows that the inequality (2.6) is equiv-

alent to
mi(t)−mi(a) ≤ a∇−νh

[
− Aimi(t)−Bi min

s∈(hN)t
t−τ(t)

mi(s)
]
, i = 1, · · · , r,

0 ≤ −Aimi(t)−Bi min
s∈(hN)t

t−τ(t)

mi(s), i = r + 1, · · · , n, t ∈ (hN)a+h,

mi(t) ≤ 0, t ∈ (hN)aa−mh.

(2.7)

By induction, when t = a+ h, from the assumption Ai > Bi, we obtain
mi(a+ h) ≤ a∇−νh

[
− Ai

(
mi(a+ h)− min

s∈(hN)a+h
a+h−τ(t)

mi(s)
)]
, i = 1, · · · , r,

0 ≤ −Ai
(
mi(a+ h)− min

s∈(hN)a+h
a+h−τ(t)

mi(s)
)
, i = r + 1, · · · , n, t ∈ (hN)a+h,

mi(t) ≤ 0, t ∈ (hN)aa−mh.

(2.8)
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Since mi(a+ h)− min
s∈(hN)a+h

a+h−τ(t)

mi(s) > 0, so we have m(a+ h) ≤ 0. Now, we assume that

mi(t) ≤ 0 for t ∈ (hN)a+nh
a−mh. We will show that mi(a+ (n+ 1)h) ≤ 0. From the inequality

(2.6), we have

mi(a+ (n+ 1)h) ≤ a∇−νh
[
−Ai

(
mi(a+ (n+ 1)h)− min

s∈(hN)
a+(n+1)h
a+(n+1)h−τ(t)

mi(s)
)]
,

i = 1, · · · , r,
0 ≤ −Ai

(
mi(a+ (n+ 1)h)− min

s∈(hN)
a+(n+1)h
a+(n+1)h−τ(t)

mi(s)
)
, i = r + 1, · · · , n, t ∈ (hN)a+h,

mi(t) ≤ 0, t ∈ (hN)aa−mh.
(2.9)

Similarly, we have mi(a + (n + 1)h) ≤ 0. Thus, we conclude that mi(t) ≤ 0 for

t ∈ (hN)a+n0h
a−mh . The proof is complete.

3 Monotone iterative technique

Here we develop the monotone iterative technique for nonlinear singular fractional dif-

ference system with maxima which yields monotone sequences converging to the extremal

solutions of the system (2.1).

Theorem 3.1. Assume that the following conditions hold.

(A3.1) The functions α0, β0 : (hN)a+n0h
a−mh → Rn are a couple of lower and upper quasi-

solutions of the system (2.1) respectively, and α0(t) ≤ β0(t) for t ∈ (hN)a+n0h
a−mh .

(A3.2) There exists a function g : (hN)a+n0h
a+h × Rn × Rn → Rn such that gj(t, x, y) =

gj(t, xj, [x]pj , [x]qj , xj, [x]pj , [x]qj) is monotone nondecreasing with respect to [x]pj , [y]pj ,

and monotone nonincreasing with respect to [x]qj , [y]qj , and for x, y ∈ S(α0, β0), y(t) ≤
x(t) the following inequality holds:

gi

(
t, xi, [x]pi , [x]qi , max

s∈(hN)t
t−τ(t)

xi(s),
[

max
s∈(hN)t

t−τ(t)

x(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

x(s)
]
qi

)
− gi

(
t, yi, [x]pi , [x]qi , max

s∈(hN)t
t−τ(t)

yi(s),
[

max
s∈(hN)t

t−τ(t)

x(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

x(s)
]
qi

)
≥ −Ai(xi(t)− yi(t))−Bi

(
max

s∈(hN)t
t−τ(t)

xi(s)− max
s∈(hN)t

t−τ(t)

yi(s)
)
, i = 1, 2, · · · , n,

(3.1)

where Ai and Bi are positive constants, and Bi < Ai ≤
Γ(ν + 1)

2(n0h)νh
.
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Then there exist sequences {αn(t)}, {βn(t)} which converge uniformly and monoton-

ically to ρ(t) and r(t), where ρ and r are minimal and maximal quasi-solutions of the

system (2.1) respectively. Moreover, if x(t) is a solution of the system (2.1) such that

α0(t) ≤ x(t) ≤ β0(t), then ρ(t) ≤ x(t) ≤ r(t) for t ∈ (hN)a+n0h
a−mh .

Proof. For functions µ, ν ∈ S(α0, β0) and consider the following singular fractional dif-

ference system with “maxima”
a∇ν

h,∗xi(t) + Aixi(t) +Bi max
s∈(hN)t

t−τ(t)

xi(s) = σi(t, µ, ν), i = 1, · · · , r,

Aixi(t) +Bi max
s∈(hN)t

t−τ(t)

xi(s) = σi(t, µ, ν), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

xi(t) = ϕi(t), t ∈ (hN)aa−mh,

(3.2)

where

σi(t, µ, ν) = gi

(
t, µi, [µ]pi , [ν]qi , max

s∈(hN)t
t−τ(t)

µi(s),
[

max
s∈(hN)t

t−τ(t)

µ(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

ν(s)
]
qi

)
+ Aiµi(t) +Bi max

s∈(hN)t
t−τ(t)

µi(s).

By Lemma 2.2, the system (3.2) has a unique solution. Suppose that for the couple µ,

ν ∈ S(α0, β0) there exist two distinct solutions x(t) and y(t) of the system (3.2). Define

a function m(t) = x(t)− y(t) for t ∈ (hN)a+n0h
a−mh , m(t) =

(
m1(t),m2(t), · · · ,mn(t)

)
. Then

mj(t) (j = 1, 2, · · · , n) satisfy the inequalities

a∇ν
h,∗mi(t) = a∇ν

h,∗xi(t)− a∇ν
h,∗yi(t)

= −Ai(xi(t)− yi(t))−Bi

(
max

s∈(hN)t
t−τ(t)

xi(s)− max
s∈(hN)t

t−τ(t)

yi(s)
)

≤ −Aimi(t)−Bi min
s∈(hN)t

t−τ(t)

mi(s), i = 1, · · · , r,

0 = −Ai(xi(t)− yi(t))−Bi

(
max

s∈(hN)t
t−τ(t)

xi(s)− max
s∈(hN)t

t−τ(t)

yi(s)
)

≤ −Aimi(t)−Bi min
s∈(hN)t

t−τ(t)

mi(s), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

mi(t) ≤ 0, t ∈ (hN)aa−mh.

In view of Lemma 2.3, we have xi(t) ≤ yi(t), t ∈ (hN)a+n0h
a−mh . Similarly, we can show that

yi(t) ≤ xi(t), t ∈ (hN)a+n0h
a−mh . So, we obtain that the system (3.2) has a unique solution.

Define the map A : S(α0, β0) × S(α0, β0) → S(α0, β0) by A (µ, ν) = x, where

x = (x1, x2, · · · , xn) and xi(t) is the unique solution of system (3.2) for the function-

s µ, ν ∈ S(α0, β0). We shall now show that α0(t) ≤ A (α0(t), β0(t)). Define α1(t) =
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A (α0(t), β0(t)), p(t) = α0(t) − α1(t) for t ∈ (hN)a+n0h
a−mh , p(t) = (p1(t), p2(t), · · · , pn(t)).

Using the assumption (A3.2), we have

a∇ν
h,∗pi(t)

= a∇ν
h,∗α0i(t)− a∇ν

h,∗α1i(t)

≤ gi

(
t, α0i, [α0]pi , [β0]qi , max

s∈(hN)t
t−τ(t)

α0i(s),
[

max
s∈(hN)t

t−τ(t)

α0(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

β(0)(s)
]
qi

)
+ Aiα1i(t) +Bi max

s∈(hN)t
t−τ(t)

α1i(s)− σi(t, α0, β0),

≤ −Ai(α0i(t)− α1i(t))−Bi

(
max

s∈(hN)t
t−τ(t)

α0i(s)− max
s∈(hN)t

t−τ(t)

α1i(s)
)

≤ −Aipi(t)−Bi min
s∈(hN)t

t−τ(t)

pi(s), i = 1, · · · , r,

and that

0 ≤ gi

(
t, α0i, [α0]pi , [β0]qi , max

s∈(hN)t
t−τ(t)

α0i(s),
[

max
s∈(hN)t

t−τ(t)

α0(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

β0(s)
]
qi

)
+ Aiα1i(t) +Bi max

s∈(hN)t
t−τ(t)

α1i(s)− σi(t, α0, β0),

= −Ai(α0i(t)− α1i(t))−Bi

(
max

s∈(hN)t
t−τ(t)

α0i(s)− max
s∈(hN)t

t−τ(t)

α1i(s)
)

≤ −Aipi(t)−Bi min
s∈(hN)t

t−τ(t)

pi(s), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

and that

pi(t) ≤ 0, t ∈ (hN)aa−mh.

Consequently, by Lemma 2.3, we have α0(t) ≤ α1(t) for t ∈ (hN)a+n0h
a−mh . Similarly, we can

show that α1(t) ≤ β0(t) for t ∈ (hN)a+n0h
a−mh .

Let µ, ν ∈ S(α0, β0) be such that µ(t) ≤ ν(t) for t ∈ (hN)a+n0h
a−mh . From the definition

of A and Lemma 2.3, it follows that the inequality A (µ, ν) ≤ A (ν, µ) is valid.

Define the sequences of functions {αn(t)} and {βn(t)} by the equalities

αn+1(t) = A (αn(t), βn(t)), βn+1(t) = A (βn(t), αn(t)).

By induction, we have

α0(t) ≤ α1(t) ≤ ... ≤ αn(t) ≤ βn(t) ≤ ... ≤ β1(t) ≤ β0(t), for t ∈ (hN)a+n0h
a−mh .

Using the Arzelà-Ascoli theorem, thus both sequences {αn(t)} and {βn(t)} are uniformly

convergent on (hN)a+n0h
a−mh . Then there exist functions ρ(t) and r(t) such that

lim
n→∞

αn(t) = ρ(t), lim
n→∞

βn(t) = r(t).
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From the uniform convergence and the definition of the functions αn(t) and βn(t), it

follows that
a∇ν

h,∗αn,i(t) + Aiαn,i(t) +Bi max
s∈(hN)t

t−τ(t)

αn,i(s) = σi(t, αn−1, βn−1), i = 1, · · · , r,

Aiαn,i(t) +Bi max
s∈(hN)t

t−τ(t)

αn,i(s) = σi(t, αn−1, βn−1), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

αn,i(t) = ϕi(t), t ∈ (hN)aa−mh,

(3.3)

and
a∇ν

h,∗βn,i(t) + Aiβn,i(t) +Bi max
s∈(hN)t

t−τ(t)

βn,i(s) = σi(t, βn−1, αn−1), i = 1, · · · , r,

Aiβn,i(t) +Bi max
s∈(hN)t

t−τ(t)

βn,i(s) = σi(t, βn−1, αn−1), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

βn,i(t) = ϕi(t), t ∈ (hN)aa−mh,

(3.4)

From the systems (3.3) and (3.4) as n approaches infinity we obtain that the functions

(ρ, r) is a couple of quasi-solutions of the system (2.1).

In the next step, we will show that (ρ, r) are minimal and maximal quasi-solutions of

the system (2.1). Let (z, u) ∈ S(α0, β0) be quasi-solutions of the system (2.1). Suppose

that for some n, αn(t) ≤ z(t) ≤ βn(t), αn(t) ≤ u(t) ≤ βn(t), t ∈ (hN)a+n0h
a−mh . Put

p(t) = αn+1(t)− z(t) so that αn+1(t) ≤ z(t) on (hN)aa−mh. For t ∈ (hN)a+n0h
a+h , we wish to

prove that αn+1(t) ≤ z(t) on (hN)a+n0h
a+h . From the condition (A3.2), we deduce that

a∇νh,∗pi(t) = a∇νh,∗αn+1,i(t)− a∇νh,∗zi(t)

= −Aiαn+1,i(t)−Bi max
s∈[t−h,t]

αn+1,i(s) + σi

(
t, αn(t), max

s∈(hN)t
t−τ(t)

βn(s)
)

− gi
(
t, zi(t), [z]pi , [u]qi , max

s∈(hN)t
t−τ(t)

zi(s),
[

max
s∈(hN)t

t−τ(t)

z(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

u(s)
]
qi

)
= −Ai(αn+1,i(t)− αn,i(t))−Bi

(
max

s∈(hN)t
t−τ(t)

αn+1,i(s)− max
s∈(hN)t

t−τ(t)

αn,i(s)
)

+Ai(zi(t)− αn(t)) +Bi

(
max

s∈(hN)t
t−τ(t)

zi(s)− max
s∈(hN)t

t−τ(t)

αn(s)
)

= −Ai(αn+1,i(t)− zi(t))−Bi
(

max
s∈(hN)t

t−τ(t)

αn+1,i(s)− max
s∈(hN)t

t−τ(t)

zi(s)
)

≤ −Aipi(t)−Bi min
s∈(hN)t

t−τ(t)

pi(s), i = 1, · · · , r,

and that

0 = −Aiαn+1,i(t)−Bi max
s∈(hN)t

t−τ(t)

αn+1,i(s) + σi(t, αn, βn)

− gi
(
t, αn,i, [αn]pi , [βn]qi , max

s∈(hN)t
t−τ(t)

αn,i(s),
[

max
s∈(hN)t

t−τ(t)

αn(s)
]
pi
,
[

max
s∈(hN)t

t−τ(t)

βn(s)
]
qi

)
,
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= −Ai(αn+1,i(t)− zi(t))−Bi
(

max
s∈(hN)t

t−τ(t)

αn+1,i(s)− max
s∈(hN)t

t−τ(t)

zi(s)
)

≤ −Aipi(t)−Bi min
s∈(hN)t

t−τ(t)

pi(s), i = r + 1, · · · , n, t ∈ (hN)a+n0h
a+h ,

and that

pi(t) ≤ 0, t ∈ (hN)aa−mh.

By Lemma 2.3, we have p(t) ≤ 0, showing that αn+1(t) ≤ z(t) for t ∈ (hN)a+n0h
a+h . This

proves that αn+1(t) ≤ z(t), t ∈ (hN)a+n0h
a−mh . Using a similar argument we can prove that

z(t) ≤ βn+1(t) and αn+1(t) ≤ u(t) ≤ βn+1(t) for t ∈ (hN)a+n0h
a−mh . Thus we conclude

that αn(t) ≤ z(t), u(t) ≤ βn(t) on (hN)a+n0h
a−mh for all n ∈ N. Now as n → ∞ yields

ρ(t) ≤ z(t), u(t) ≤ r(t), t ∈ (hN)a+n0h
a−mh , which shows that (ρ, r) are minimal and maximal

quasi-solutions of the system (2.1) respectively.

Let x ∈ S(α0, β0) be a solution of the system (2.1). The functions (x, x) is a couple of

quasi-solutions of the system (2.1), from the above discussion, we have ρ(t) ≤ x(t) ≤ r(t)

for t ∈ (hN)a+n0h
a−mh . The proof is complete.

When n = 1 and p1 = q1 = 0, we could obtain the following corollary.

Corollary 3.1. Assume that the following conditions hold.

(A3.3) The functions α0, β0 : (hN)a+n0h
a−mh → R are lower and upper solutions of the

system (2.1) respectively, and α0(t) ≤ β0(t) for t ∈ (hN)a+n0h
a−mh .

(A3.4) There exists a function g : (hN)a+n0h
a+h ×R×R→ R such that for x, y ∈ S(α0, β0),

y(t) ≤ x(t) the following inequality holds

g
(
t, x, max

s∈(hN)t
t−τ(t)

x(s)
)
− g
(
t, y, max

s∈(hN)t
t−τ(t)

y(s)
)

≥ −A(x(t)− y(t))−B
(

max
s∈(hN)t

t−τ(t)

x(s)− max
s∈(hN)t

t−τ(t)

y(s)
)
,

(3.5)

where A and B are positive constants, and Bi < Ai ≤
Γ(ν + 1)

2(n0h)νh
.

Then there exist sequences {αn}, {βn} which converge uniformly and monotonically

to ρ(t) and r(t), where ρ and r are minimal and maximal quasi-solutions of the system

(2.1) respectively. Moreover, if x(t) is a solution of the system (2.1) such that α0(t) ≤
x(t) ≤ β0(t), then ρ(t) ≤ x(t) ≤ r(t) for t ∈ (hN)a+n0h

a−mh .

4 Application

Now we will give an example to illustrate that the above suggested method is attain-

able.
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Example 4.1. Consider the following singular fractional difference system with “maxi-

ma” 
a∇ν

h,∗x1(t) =
1

1− x1(t)
− 2 max

s∈(hN)t
t−τ(t)

x1(s)− 1,

0 = x2
2(t)− max

s∈(hN)t
t−τ(t)

x2(s), t ∈ (hN)5
1,

x1(t) = x2(t) = 0, t ∈ (hN)0
−1,

(4.1)

where ν = 0.5, h = 1, a = 0, τ(t) = 1 for t ∈ (hN)5
−1. It is easy to check that the system

(4.1) has a zero solution. α0(t) =
(
−1

4
,−1

4

)T
is a lower solution and β0(t) =

(
1
4
, 1

4

)T
is an

upper solution of the system (4.1). We will construct sequences of functions that converge

uniformly to 0.

Now we can construct a increasing sequence, which converge to 0. It is easy to see

that the matrices L1 and L2 can be chosen as(
−2 0

0 −1

)
,

(
8 0

0 29
4

)
,

respectively. Choose k01 = 4
5
, k02 = 4

5
, and consider the following singular fractional

difference system

a∇ν
h,∗x1(t) =

1

1 + 1
4

+ 2× 1

4
− 1 + 2

(
x1(t) +

1

4

)
− 8

(
max

s∈(hN)t
t−τ(t)

x1(s) +
1

4

)
= 2x1(t)− 8 max

s∈(hN)t
t−τ(t)

x1(s)− 6

5
,

0 =

(
−1

4

)2

−
(
−1

4

)
+

(
x2(t) +

1

4

)
− 29

4

(
max

s∈(hN)t
t−τ(t)

x2(s) +
1

4

)
= x2(t)− 29

4
max

s∈(hN)t
t−τ(t)

x2(s)− 5

4
, t ∈ (hN)5

1,

x1(t) = −k01

4
, x2(t) = −k02

4
, t ∈ (hN)0

−1.

(4.2)

Then the system (4.2) has an exact solution α1(t) =
(
−1

5
,−1

5

)T
.

Choose k11 = 29
36

, k12 = 101
125

and consider the following singular fractional difference
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system

a∇ν
h,∗x1(t) =

1

1 + 1
5

+ 2× 1

5
− 1 + 2

(
x1(t) +

1

5

)
− 8

(
max

s∈(hN)t
t−τ(t)

x1(s) +
1

5

)
= 2x1(t)− 8 max

s∈(hN)t
t−τ(t)

x1(s)− 29

30
,

0 =

(
−1

5

)2

−
(
−1

5

)
+

(
x2(t) +

1

5

)
− 29

4

(
max

s∈(hN)t
t−τ(t)

x2(s) +
1

5

)
= x2(t)− 29

4
max

s∈(hN)t
t−τ(t)

x2(s)− 101

100
, t ∈ (hN)5

1,

x1(t) = −k11

5
, x2(t) = −k12

5
, t ∈ (hN)0

−1.

(4.3)

Then the system (4.3) has an exact solution α2(t) =
(
− 29

180
,−101

625

)T
.

Analogously, we will construct a decreasing sequence that uniformly converges to 0.

Choose p01 = 8
9
, p02 = 44

50
, and consider the following singular fractional difference system

a∇ν
h,∗x1(t) =

1

1− 1
4

− 2× 1

4
− 1 + 2

(
x1(t)− 1

4

)
− 8

(
max

s∈(hN)t
t−τ(t)

x1(s)− 1

4

)
= 2x1(t)− 8 max

s∈(hN)t
t−τ(t)

x1(s) +
4

3
,

0 =

(
1

4

)2

− 1

4
+

(
x2(t)− 1

4

)
− 29

4

(
max

s∈(hN)t
t−τ(t)

x2(s)− 1

4

)
= x2(t)− 29

4
max

s∈(hN)t
t−τ(t)

x2(s) +
11

8
, t ∈ (hN)5

1,

x1(t) =
p01

4
, x2(t) =

p02

4
, t ∈ (hN)0

−1.

(4.4)

Then the system (4.4) has an exact solution β1(t) =
(

2
9
, 11

50

)T
.

Choose p11 = 37
42

, p12 = 6017
6875

, and consider the following singular fractional difference
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system

a∇ν
h,∗x1(t) =

1

1− 2
9

− 2× 2

9
− 1 + 2

(
x1(t)− 2

9

)
− 8

(
max

s∈(hN)t
t−τ(t)

x1(s)− 2

9

)
= 2x1(t)− 8 max

s∈(hN)t
t−τ(t)

x1(s) +
74

63
,

0 =

(
11

50

)2

− 11

50
+

(
x2(t)− 11

50

)
− 29

4

(
max

s∈(hN)t
t−τ(t)

x2(s)− 11

50

)
= x2(t)− 29

4
max

s∈(hN)t
t−τ(t)

x2(s) +
6017

5000
, t ∈ (hN)5

1,

x1(t) =
2

9
p11, x2(t) =

11

50
p12, t ∈ (hN)0

−1.

(4.5)

Then the system (4.5) has an exact solution β2(t) =
(

37
189
, 6017

31250

)T
.

Obviously, we can see that α0(t) < α1(t) < α2(t) < x(t) = 0 < β2(t) < β1(t) < β0(t)

on (hN)5
−1. So, Example 4.1 illustrates that the Theorem 3.1 is feasible.
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