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Mathematical modeling of tumor surface
growth with necrotic kernels

Hua Zhanga, Jianjun Paul Tianb, Ben Niuc∗†, Yuxiao Guoc

A two-dimensional tumor-immune model with the time delay of the adaptive immune response is considered in this paper.

The model is designed to account for the interaction between cytotoxic T lymphocytes (CTLs) and cancer cells on the

surface of a solid tumor. The model considers the surface growth as a major growth pattern of solid tumors in order

to describe the existence of necrotic kernels. We conduct detailed qualitative analyses. The system has three equilibria.

Both zero and maximum tumor volume equilibria are unstable, while the behavior of the positive equilibrium is closely

related to the ratio of the immune killing rate to tumor volume growth rate. The positive equilibrium is more likely to be

locally asymptotically stable when the ratio is smaller than a critical value, and unstable otherwise. The analysis about

the distribution of eigenvalues yields conditions to guarantee the existence of Hopf bifurcation at the positive equilibrium.

Applying the center manifold reduction and normal form method, we obtain explicit formulas to determine the properties

of Hopf bifurcations. The global continuation of local Hopf bifurcation is investigated based on the coincidence degree

theory. The results reveal that the time of the adaptive immune system taking to response to tumors can lead to oscillation

dynamics. We also carry out detailed numerical analysis for parameters and numerical simulations to illustrate our qualitative

analysis. Numerically, we find that a shorter immune response time leads to a longer patient survival time and the period

and amplitude of a stable periodic solution increase with the immune response time. When CTLs recruitment rate and death

rate vary, we observe how the ratio of the immune killing rate to tumor volume growth rate and the first bifurcation value

of the immune response time change numerically, which yields further insights to the tumor-immune dynamics. Copyright
c⃝ 2018 John Wiley & Sons, Ltd.
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1. Introduction

Cancer, an unnatural growth phenomenon of cell numbers, remains mostly intractable disease despite the fact that tremendous

advances have been made in treatment techniques and medicine ([1, 2]). Finding effective strategies for tumor control and

therapies is significant for public health, as well as for economic resources. However, it is a great challenge since the growth and

control of tumors involve a considerable number of biological mechanisms and dynamical processes that are too complicated to

be fully captured. As studies of complexities in physics, tumor-associated responses can be better approached by establishing

mathematical models with some appropriate simplified assumptions than via experimental procedures alone ([3, 4, 5, 6]).

Tumor immunology, over the last two decades, has attracted remarkable attention and various mathematical models have been

developed to understand the interaction between cancer and immune cells. A review of early works concerning tumor-immune

system interaction can be found in [7, 8]. Given the complexity of this process, many models include four or more variables or

equations. For example, Kuznetsov et al. ([9]) proposed a system with five equations to investigate the mediated response to

growing tumor mass, which can be applied to the tumor dormancy. However, in order to better recognise the main response

mechanism between immune cells and tumor mass, some simplifications are excepted. As in [10], authors presented a coupled

ordinary equation system to account for the role of cytotoxic T lymphocytes (CTLs) in solid tumors growth, where CTLs can

recognize and kill the cancer cells in a tumor, recruit other immune cells to the tumor site ([11]). The structure of a tumor in
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[10] was supposed to be a sphere with a inner shell representing a necrotic kernel, and the active cellular division only occurred

on the surface of the tumor sphere, which is shown in Figure 1. Similar idea was also proposed in [12].

Figure 1. A tumor with a necrotic kernel and surface tumor-immune interaction.

It is well-known that there are two immune systems, the innate immune system and adaptive immune system, and they

have different response dynamics in cancer immune interactions ([13]). The innate immune response functions as the first

line of defence against infection. It consists of soluble factors, such as complement proteins, and diverse cellular components

including granulocytes (basophils, eosinophils and neutrophils), mast cells, macrophages, dendritic cells and natural killer cells.

The adaptive immune response is slower to develop, but manifests as increased antigenic specificity and memory. It consists

of antibodies, B cells, and CD4+ and CD8+ T lymphocytes. Natural killer T cells and γδ T cells are cytotoxic lymphocytes

that straddle the interface of innate and adaptive immunity ([14]). Clearly, the adaptive immune system takes some time to

response to cancer cell growth. CTLs belong to the adaptive immune system. To appropriately model CTLs-mediated immune

response to tumor cells, the time delay of the adaptive immune response should not be ignored. Besides, numerous results, such

as [15, 16, 17] have demonstrated that the time delay can produce rich dynamics in a system, such as the stability switches and

periodic oscillations. [15] incorporated three delays required for tumor cells proliferation, effector cells growth and the immune

effector cells differentiation and obtained stable interval of every delay.

A solid tumor grows from a slow avascular growth period due to the nutrient limitation. Interested by the CTLs-mediated

immune response on this stage, the authors in [10] proposed the following model:{
V̇ (t) = ρrtV

2/3(t)− ρkV 2/3(t)C(t),
Ṅ(t) = ρrcV

2/3(t)N(t)− dcN(t).
(1.1)

Here, V (t) and N(t) stand for the volume of the tumor mass and the number of CTLs with ability to attack the tumor cells

at time t, respectively. It is assumed that the tumor has a spherical shape and the radius changes when tumor grows. So the

tumor surface area is proportional to ρV 2/3(t), where ρ is the dimensionless shape factor changing with the tumor volume. rc is

the CTLs’ recruitment rate and rt is the growth rate of tumor volume. The death rate of CTLs is denoted by dc and the rate

at which cancer cells are killed by CTLs is k. A dimensionless function, C(t), was introduced to stand for the fraction of the

attacked surface area. All parameters in system (1.1) are positive.

Note that the term V 2/3(t)N(t) is a functional response with fractional powers. This type of response functions has been

widely used (see [18, 19, 20] and references therein). The authors in [20] proposed that it was better to use surface area than

volume when modeling the prey in groups. They further verified that the fractional term significantly affected the existence of

interior equilibrium and periodic solutions. The authors in [18] presented stable oscillations induced by time delay as well pointed

out that small fractional orders was better for system to remain stable.

The logistic function is one common choice for model species growth. Thus, in this paper, we use it to describe the growth of

tumor in the absence of CTLs. In addition, the Holling II response function is used to model tumor-CTLs interaction. It is more

practical to use a discrete time delay to reflect the time for the adaptive immune system to response to the tumor. Accordingly,

we propose a two-compartment model as{
dT (t)
dt
= rT 2/3(t)

[
1− T (t)

Tm

]
− kT 2/3(t) N(t)

N(t)+β
,

dN(t)
dt
= ρT 2/3(t − τ)N(t − τ)− dN2(t),

(1.2)

where r is the growth rate of the tumor, Tm is the maximum volume of a tumor, d stands for the death rate of the CTLs, and

ρ is the recruitment rate of CTLs. The parameters k is defined as that in model (1.1). The last term in the second equation

indicates that the death of CTLs is nonlinear ([21]). The parameters and their values are summarized in Table 1.1.
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Table 1.1. Common ranges and units for parameters in system (1.2)

Parameter Description Biological ranges and unit Reference

ρ CTLs’ recruitment rate 0− 0.48 day−1 [22]

r Tumor’s growth rate 0− 0.33 day−1 [23]

k CTLs’ killing rate for tumor 0− 0.9 day−1 [24]

d CTLs’ death rate 0− 0.38 day−1 [23]

The main goal of this paper is to study the effect of adaptive immune response delay on the stability of system (1.2). In

particular, we intend to seek some conditions such that system (1.2) undergoes Hopf bifurcation at positive equilibrium induced

by delay. We are further going to analyse the properties of bifurcating periodic solutions in local and global range. In fact, the

center manifold method and normal form theory presented by [25, 26] are two useful tools for this problem and they have been

applied by many literatures (see [27, 30] and many others). Biologically, the Hopf bifurcation phenomenon implies that the tumor

and CTLs interaction in a periodical fashion, and the tumor mass can never be eradicated. It is also noticed that when the time

required by CTLs to response to the tumor is less than branching value, the tumor and CTLs can coexist, which implies the

tumor can be controlled. Moreover, following the global Hopf bifurcation theory given in [28], we verify the global continuation

of local Hopf bifurcation. Understanding how the parameters in model, especially the delay τ , affect the solutions is helpful for

successful treatment.

The rest of this paper is organized as follows. In Section 2, we investigate the existence and stability of equilibria, establish

the conditions for Hopf bifurcations, and obtain explicit formulas to determine the direction of Hopf bifurcation and the stability

of the periodic solutions. In Section 3, we discuss the global existence of Hopf bifurcation. In Section 4, we carry out some

numerical simulations to illustrate our analytical results and exhibit the effects of other parameters in model on the bifurcation

parameter. Finally, we give a brief conclusion in the last section.

2. Basic analysis

In this section, we provide basic analysis, such as the local stability of trivial and boundary equilibria, existence of positive

equilibrium and its local stability. Moreover, the properties of Hopf bifurcation occurring at positive equilibrium are demonstrated.

2.1. Local stability of trivial and boundary equilibria

Clearly, the system (1.2) always has two equilibria: E0 = (0, 0) and E1 = (Tm, 0). Due to the term of T
2/3, the local stability of

E0 cannot be obtained by the distribution of corresponding eigenvalues. In order to remove fractional power, it is common

to rescale T by T = x3. However, such a rescalling cannot cover the dynamics near E0. Motivated by [19], we assume

0 ≤ T (θ), N(θ) ≤ δ, θ ∈ [−τ, 0] for a sufficiently small constant 0 < δ ≪ 1. Then around the origin, the system becomes
dT (t)

dt
≈ rT 2/3(t),

dN(t)

dt
≈ ρT 2/3(t − τ)N(t − τ).

(2.1)

This implies dT (0)dt > 0, dN(0)dt > 0. Following from the continuity of T (t) and N(t) near the origin, T (t) and N(t) both increase

with respect to t around E0. Therefore, the solutions of system (1.2) initiating from a small neighborhood of E0 ultimately

depart from it. Thus, E0 is always unstable.

In the following, the boundary equilibrium E1 is analysed. For simplification, a new variable x(t) = T
1/3(t) is introduced, and

the substitution is  ẋ(t) =
r

3

[
1− x3(t)

Tm

]
− k

3

N(t)

β + N(t)
,

Ṅ(t) = ρx2(t − τ)N(t − τ)− dN2(t).
(2.2)

Further, make the following dimensionless: x(t) = T
1/3
m x̂(t), N(t) = βN̂(t), r̂ = r

3T
−1/3
m , k̂ = k

3T
−1/3
m , ρ̂ = ρT

2/3
m , d̂ = dβ and

drop the hats, then system (2.2) is converted to ẋ(t) = r [1− x3(t)]− k N(t)

1 + N(t)
,

Ṅ(t) = ρx2(t − τ)N(t − τ)− dN2(t).
(2.3)

The boundary equilibrium (Tm, 0) becomes (1, 0). It is easy to get that the characteristic equation of the linearization associated

with system (2.3) at (1, 0) is

(λ+ 3r)(λ− ρe−λτ ) = 0. (2.4)
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Apparently, the stability of (1, 0) depends on roots of

λ− ρe−λτ = 0. (2.5)

In the case of τ = 0, it can be solved λ = ρ > 0, which implies (1, 0) is unstable; For τ > 0, we can check that λ = 0 is not a root

of Eq. (2.5), moreover, although λ = iρ is a root of Eq. (2.5) at τ = τk =
1
ρ

(
π
2
+ 2kπ

)
, k = 1, 2, ... but Re

(
dλ(τ)
dτ

)∣∣∣
τ=τk

= 0,

thus, (1, 0) keeps unstable. Consequently, (Tm, 0) is unstable.

Summarizing the discussions above, we state the stability of E0 and E1 in the following theorem.

Theorem 2.1 For system (1.2), the trivial equilibrium E0 and boundary equilibrium E1 are both unstable.

Remark 2.1 It’s clear that the ideal case that tumor doesn’t appear in the body and the worst case that adaptive immune

system doesn’t work and tumor grows to it’s maximum volume are easily effected by external factors.

2.2. Existence and local stability of positive equilibrium

We next turn to the coexistence state of CTLs and tumor. Note that the possible positive equilibrium (T∗, N∗) of system (1.2)

becomes E∗ = (x∗, N∗) of system (2.3) after the transformation above. Further, the system (2.3) has identical dynamics with

the system (1.2) at E∗, thus, we only need to consider system (2.3) in later discussions.

Some trivial calculations give the existence and uniqueness of positive equilibrium E∗.

Lemma 2.1 System (2.3) always has a unique positive equilibrium E∗ = (x∗, N∗) with N∗ =
ρx2∗
d
and x∗ being the positive

solution of ρx5 + dx3 − ρ(1− k
r
)x2 − d = 0.

Proof Assume that (x, N) is a positive solution for system (2.3). It is easy to get N = ρx2

d
from the second equation of system

(2.3). Substituting it into the first equation, we have

ρx5 + dx3 − ρ(1− k

r
)x2 − d = 0. (2.6)

Denote

H(x) = ρx5 + dx3 − ρ(1− k

r
)x2 − d. (2.7)

Taking derivatives of both sides of equation (2.7) with respect to x yields

H′(x) = 5ρx4 + 3dx2 − 2ρ(1− k

r
)x. (2.8)

Case I: If 1− k
r
≤ 0, obviously, H′(x) ≥ 0 for x ≥ 0. Furthermore, H(0) = −d < 0, and lim

x→∞
H(x) =∞, which implies that

H(x) = 0 has a unique solution for x ∈ (0,∞);
Case II: If 1− k

r
> 0, let G(x) = 5ρx3 + 3dx − 2ρ(1− k

r
). Thus, H′(x) = xG(x). Since G ′(x) > 0, G(0) < 0 and lim

x→∞
G(x) =

∞, there is a unique root for G(x) = 0, we set it as x1. Hence, H′(x) < 0 for x ∈ (0, x1); H′(x) ≥ 0 when x > x1. We also notice
that H(x1) < H(0) = −d < 0 and lim

x→∞
H(x) =∞. Thus, there exists a unique zero for H(x) = 0 when x ∈ (x1,∞). The proof

is completed. �
Linearizing system (2.3) at E∗ leads to ẋ(t) = −3rx2∗ x(t)−

k

(1 + N∗)2
N(t),

Ṅ(t) = −2dN∗N(t) + 2ρx∗N∗x(t − τ) + ρx2∗N(t − τ).
(2.9)

The corresponding characteristic equation of (2.9) is

λ2 + Aλ+ B + (Cλ+D)e−λτ = 0, (2.10)

with A = 2dN∗ + 3rx
2
∗ , B = 6rdx

2
∗N∗, C = −ρx2∗ , D = 2ρkx∗N∗

(1+N∗)2
− 3rρx4∗ .

Naturally, we have the following result describing the stability of E∗ in the case of τ = 0.

Theorem 2.2 E∗ is locally asymptotically stable for τ = 0.
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Proof When τ = 0, the Eq.(2.10) becomes

λ2 + (A+ C)λ+ (B +D) = 0. (2.11)

It can be easily verified that

A+ C = (ρ+ 3r)x2∗ > 0, B +D = 3rρx4∗ +
2ρkx∗N∗
(1 + N∗)2

> 0.

The Routh-Hurwitz criterion shows that all characteristic roots of Eq.(2.11) have negative real parts. The proof is completed.

�
For τ > 0, let iω (ω > 0) be a root of (2.10), then we have

−ω2 + iAω + B + (iCω +D)e−iωτ = 0.

Separating the real and imaginary parts gives

D cosωτ + Cω sinωτ = ω2 − B,
D sinωτ − Cω cosωτ = Aω.

Adding the square of both sides of above two equations yields

ω4 + (A2 − C2 − 2B)ω2 + (B2 −D2) = 0,

and

ω2 =
C2 + 2B − A2 ±

√
(A2 − C2 − 2B)2 − 4(B2 −D2)

2
.

According to the expressions of A, B and C, we have

A2 − C2 − 2B = (2dN∗ + 3rx2∗ )2 − ρ2x4∗ + 12rdx2∗N∗ = 3ρ2x4∗ + 9rx4∗ > 0.

Assume

(H1) : B < D

is satisfied, then we obtain

ω0 =

√
2

2

√
C2 − A2 + 2B +

√
(C2 − A2 + 2B)2 − 4(B2 −D2). (2.12)

Further, we can derive that

τj =


1

ω0

[
arccos

D(ω20 − B)− ACω20
C2ω20 +D

2
+ 2jπ

]
, cosω0τ > 0,

1

ω0

[
π − arccos

(
− D(ω20 − B)− ACω20

C2ω20 +D
2

)
+ 2jπ

]
, cosω0τ < 0, j = 0, 1, 2....

(2.13)

Let λ = α(τ) + iω(τ) be a root of (2.10) satisfying α(τj) = 0 and ω(τj) = ω0. Some calculations yield the following result.

Lemma 2.2 If the assumption (H1) holds, then Re
(
dλ
dτ

)
|τ=τj> 0.

Proof Differentiating both sides of (2.10) with respect to τ gives

dλ(τ)

dτ
=

(Cλ+D)λ

(2λ+ A)eλτ + C − (Cλ+D)τ .

It follows that, [dRe(λ(τ))
dτ

]−1
= Re

[
(2λ+ A)eλτ + C

(Cλ+D)λ

]
,

then we obtain [dRe(λ(τ))
dτ

]−1
|τ=τj =

Dω0(A sinω0τj + 2ω0 cosω0τj)− Cω20(A cosω0τj − 2ω0 cosω0τj + C)
C2ω4 +D2ω2

=
A2 − C2 − 2B + 2ω20

C2ω20 +D
2

.

Again, using A2 − C2 − 2B > 0, we have A2−C2−2B+2ω20
C2ω20+D

2 > 0, which completes the proof. �
According to the results in [29, 30], we arrive at the following results.
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Lemma 2.3 For system (2.3), we have

(i) If assumption (H1) is not satisfied, then all roots of Eq.(2.10) have negative real parts for all τ ≥ 0;
(ii) If (H1) holds, then we can find a sequence of values of τ : 0 < τ0 < τ1 < · · · < τj < · · · such that all eigenvalues have negative
real parts when τ ∈ [0, τ0); Eq.(2.10) has 2(j + 1) roots with positive real parts when τ ∈ (τj , τj+1], j = 0, 1, 2, ...; For τ = τj ,
j = 0, 1, 2, ..., Eq.(2.10) has exactly a pair of simple imaginary roots ±iω0.

Now, based on the fundamental Hopf bifurcation theorem in [31], we have the following stability results at E∗ and the existence

of Hopf bifurcations.

Theorem 2.3 For system (2.3), the following results hold true.

(i) Assume (H1) is not satisfied, the positive equilibrium E∗ is locally asymptotically stable for τ ≥ 0;
(ii) Assume (H1) holds true, then E∗ is locally asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0. Furthermore, a Hopf
bifurcation takes place at E∗ when τ = τj , j = 0, 1, 2, ....

Remark 2.2 Noticing that all results obtained above are closely related to (H1), thus, we a give brief discussion about it.

Denote (x, N) be the positive equilibrium of (2.3), then we have N = ρx2/d . By the expressions of B and D, we have

B −D = ρrx3
[
9x −

2ρd k
r

(d + ρx2)2

]
Clearly, B −D is monotone increasing with respect to x . Meanwhile, max

{
0,
(
1− k

r

)1/3}
< x < 1 is satisfied. As a result, if

k
r
≤ 1, we have

ρrx3
[
9x(d + ρx2)2 − 2ρd k

r

]
> 9ρr

(
1− k

r

)4/3[
d + ρ

(
1− k

r

)2/3]2
,

> 0,

which means B > D always holds when k
r
≤ 1. In fact, we also know B < D implies k

r
> 1. In terms of biology, when the CTLs

killing rate is less than tumor growth rate, the tumor is stable and will not be easily influenced by some external factors. In later

study, we will give some numerical simulations to illustrate how other factors impact (H1) and the existence of Hopf bifurcation

on k − r plane.

2.3. Properties of Hopf bifurcation

In the previous subsection, we have obtained a sufficient condition to guarantee system (2.3) to undergo Hopf bifurcations.

According to the center manifold theorem, we know that the projection of periodic solution bifurcating from the first bifurcation

value τ0 on the center manifold has the same stability with that of system (2.3). Therefore, we shall study the direction of Hopf

bifurcation and the stability of bifurcating periodic solutions with the center manifold theory and normal form method given in

[25]. The details will be provided in Appendix, and the consequence is stated as the following theorem.

Theorem 2.4 Suppose that the assumption (H1) is satisfied. In the neighborhood of the bifurcation value, the Hopf bifurcation

at E∗ is supercritical (subcritical) if Re(c1(0)) < 0 (> 0).

The expression of c1(0) is deduced in Appendix, we shall carry out some numerical simulations to illustrate our theoretical

analysis in section 4.

3. Global existence of periodic solutions

In this section, we always assume all solutions of system (2.3) are nonnegative and (H1) is true, and consider the global existence

of Hopf bifurcation at the point (E∗, τj), j = 0, 1, 2, ..., by applying the global bifurcation result developed by [28].

Let R2+ = {(x, N) ∈ R2, x > 0, N > 0}, C = C([−τ, 0],R2+) and vt = (xt , Nt) ∈ C with vt(θ) = v(t + θ) for t ≥ 0, θ ∈ [−τ, 0].
System (2.3) can be abstracted as the following functional differential equation

v̇(t) = F (vt , τ, s) (3.1)

where

F (Ψ, τ, s) =

(
r(1− ψ31(0))− kψ2(0)

1+ψ2(0)

ρψ21(−τ)ψ2(−τ)− dψ22(0)

)
,

and Ψ = (ψ1, ψ2) ∈ C. The mapping F : C × R+ × R+ → R2+ is completely continuous. To restrict F onto the subspace of C
composed by all constant functions, we define the mapping F̂ = F |R2+×R+×R+ : R

2
+ × R+ × R+ → R2+. Obviously,

F̂ (v, τ, s) =

(
r(1− x3)− kN

1+N

ρx2N − dN2
)
. (3.2)
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Denote constant mapping v0 ∈ C by v ∗. The point (v ∗, τ∗, s∗) is said to be a stationary solution of (3.1) if F̂ (v ∗, τ∗, s∗) = 0.
Therefore, we get

(A1) F̂ ∈ C2(R2+ × R+ × R+,R2+).
Furthermore, under assumption (H1), we have

det(Dv F̂ (v, τ, s) |v=v∗) = det
(
−3x2∗ − k

(1+N∗)2

2ρx∗N∗ ρx2∗ − 2dN∗

)
< 0.

Thus, we have

(A2) Dv F̂ (v, τ, s) at the positive equilibrium v ∗ is an isomorphism on R2+;
It is also clearly that

(A3) F (Ψ, τ, s) is differentiable with respect to Ψ.

At any stationary solution (v ∗, τ∗, s∗), the corresponding characteristic matrix is

∆(v ∗, τ∗, s∗)(λ) = λI−DΨF (v ∗, τ∗, s∗)(eλ·I),

namely,

∆(v ∗, τ∗, s∗)(λ) =

(
λ+ 3x2∗

k
(1+N∗)2

−2ρx∗N∗e−λτ λ− ρx2∗ e−λτ + 2dN∗

)
,

then we obtain that

det(∆(v ∗, τ∗, s∗)(λ)) = λ2 + Aλ+ B + (Cλ+D)e−λτ , (3.3)

where A, B, C, D are defined as in (2.10).

The stationary solution (v ∗, τ∗, s∗) is called a center if

det
(
∆(v ∗, τ∗, s∗)

(
n
2πi

s

))
= 0

for some integer n. A center (v ∗, τ∗, s∗) is said to be isolated if it is the only center in some neighborhood of (v ∗, τ∗, s∗). It can

be easily verified that
(
v ∗, τj ,

2π
ω0

)
, j = 0, 1, 2, ... are isolate centers based on the analysis in section 2. We also know that there

exist η > 0, ξ > 0 and a smooth curve λ : (τj − η, τj + η)→ C, such that

det(∆(v ∗, τ∗, s∗)(λ(τ))) = 0, (3.4)

| λ(τ)− iω0 |< ξ for all τ ∈ [τj − η, τj + η] and λ(τj) = iω0, dRe(λ)
dτ
|τ=τj> 0.

Define

Ωξ, 2πω0
=

{
(u, s) : 0 < u < ξ, | s − 2π

ω0
|< ξ

}
.

Then the following hypotheses can be proved on (τj − η, τj + η)×Ωξ, 2πω0
.

(A4) det
(
∆(v ∗, τ∗, s∗)

(
u + i 2π

s

))
= 0 if and only if u = 0, τ = τj and s =

2π
ω0
, j = 0, 1, 2, ....

In what follows, we define

Σ(F ) = Cl{(v, τ, s) ∈ C× R+ × R+ : vt+s = ut},

N(F ) = {(v ∗, τ, s) ∈ R2+ × R+ × R+ : F (v ∗, τ, s) = 0},

and let D
(
v ∗, τj ,

2π
ω0

)
be the connected component for the center

(
v ∗, τj ,

2π
ω0

)
of (3.1) in Σ(F ). Then the following lemma holds.

Lemma 3.1 D
(
v ∗, τj ,

2π
ω0

)
is unbounded for each center

(
v ∗, τj ,

2π
ω0

)
.

Proof As in [28], we define

H±
(
v ∗, τj ,

2π

ω0

)
(u, s) = det

(
∆
(
v ∗, τj ± η,

2π

ω0

)(
u + i

2π

s

))
.

Assumption (A4) indicates that H±
(
v ∗, τj ,

2π
ω0

)
(u, s) ̸= 0 for (u, s) ∈ Ωξ, 2πω0

, then the first crossing number γ
(
v ∗, τj ,

2π
ω0

)
is

γ
(
v ∗, τj ,

2π

ω0

)
= degB

(
H−
(
v ∗, τj ,

2π

ω0

)
,Ωξ, 2πω0

)
− degB

(
H+
(
v ∗, τj ,

2π

ω0

)
,Ωξ, 2πω0

)
= −1.
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Consequently, we have ∑(
v∗,τj ,2π/ω0

)
∈D(v∗,τ,s)∩N(F )

γ(v ∗, τ, s) < 0, (3.5)

Besides, D(v ∗, τ, s) is nonempty.

From the theorem 3.3 in [28], it follows that D
(
v ∗, τj ,

2π
ω0

)
is unbounded. The proof is completed. �

Lemma 3.2 All the periodic solutions of system (2.3) are uniformly bounded in R2+.

Proof Let (x(t), N(t)) be a nonconstant periodic solution of system(2.3) in R2+. Set

M1 =max{x(t)|t ≥ 0} = x(η1), M2 = max{N(t)|t ≥ 0} = N(η2),
m1 =min{x(t)|t ≥ 0} = x(ξ1), m2 = min{N(t)|t ≥ 0} = N(ξ2).

Due to the assumption that N(t) ≥ 0 for all t ≥ 0, we have

0 = r(1−M31)−
kN(η1)

1 + N(η1)
≤ r(1−M31),

0 = r(1−m31)−
kN(ξ1)

1 + N(ξ1)
≥ r(1−m31)− k.

Then, it’s easy to obtain

max
{
0,
(
1− k

r

)1/3}
≤ m1 ≤ M1 ≤ 1, (3.6)

Meanwhile, we note that

0 = ρx2(η2 − τ)N(η2 − τ)− dM22 ≤ ρM21N(η2 − τ)− dM22 ,

0 = ρx2(ξ2 − τ)N(ξ2 − τ)− dm22 ≥ ρm21N(ξ2 − τ)− dm22.

A direct calculation yields

ρm21
d
≤ m2 ≤ M2 ≤

ρM21
d
. (3.7)

This shows the periodic solutions of system (2.3) in the first quadrant is uniformly bounded. The proof is completed. �
We comment that the bounded solutions to system (2.3) represents the tumor mass cannot grow unrestrictedly. This means

that we may control the tumor volume.

Lemma 3.3 The system (2.3) has no τ − periodic solution under the assumption

(H2) ρ ≤ 3r.

Proof Let (x(t), N(t)) be a periodic solution to (2.3) with period τ . Then it also is a periodic solution for the following ODE

system  ẋ(t) = r [1− x3(t)]− kN(t)

1 + N(t)
,

Ṅ(t) = ρx2(t)N(t)− dN2(t).
(3.8)

Let (f (x, N), g(x, N)) be the vector filed of (3.8), then for all (x, N) ∈ R2+, we have

∂f

∂x
+
∂g

∂N
= (ρ− 3r)x2 − 2dN. (3.9)

Under the condition (H2), we have
∂f
∂x
+ ∂g

∂N
< 0. By the classical Bendixson’s negative criterion [32], it can be claimed that the

system (3.8) has no nonconstant periodic solutions lying entirely in the first quadrant. �

Proposition 1 Suppose (H2) is true, then system (2.3) has no periodic solutions.

Theorem 3.1 Suppose that all solutions of system (2.3) are nonnegative, (H1) and (H2) hold, then system (2.3) has at least j

positively periodic solutions when τ > τj , j = 1, 2, ... with τj defined in (2.13).
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Proof According to the discussion in the beginning of this section, we know that
(
v ∗, τj ,

2π
ω0

)
is isolate centers. Then

D
(
v ∗, τj ,

2π
ω0

)
is unbounded following Lemma 3.1. Meanwhile, Lemma 3.2 suggests that the projection of D

(
v ∗, τj ,

2π
ω0

)
onto

v−space is bounded. From Proposition 1, one knows the projection of D
(
v ∗, τj ,

2π
ω0

)
onto τ−space is bounded below.

By the definition of τj in (2.13), one know that 2π < τjω0 < (2j + 1)π for j ≥ 1, then

τj
j + 1

<
2π

ω0
< τj . (3.10)

Employing Lemma 3.3, it is clear that if (v, τ, s) ∈ D
(
v ∗, τj ,

2π
ω0

)
, then τ

j+1 < s < τ . This implies that the projection of

D
(
v ∗, τj ,

2π
ω0

)
onto the τ−space has to be unbounded so that D

(
v ∗, τj ,

2π
ω0

)
can be unbounded. As a result, the projection

of D
(
v ∗, τj ,

2π
ω0

)
onto the τ−space covers [τj ,∞). Thus, for each τ > τj , system (2.3) has j nonconstant periodic solutions.

Based on Lemma 3.2, one can get the positivity of these periodic solutions. The proof is completed. �

Remark 3.1 Since 0 < ω0τ0 < 2π, we have τ0 <
2π
ω0
<∞. It has been known that the projection of D

(
v ∗, τj ,

2π
ω0

)
onto the

v−space is bounded. Thus, for (v, τ, s) ∈ D
(
v ∗, τj ,

2π
ω0

)
, the unboundedness of D

(
v ∗, τj ,

2π
ω0

)
yields that the projection of

D
(
v ∗, τj ,

2π
ω0

)
onto the s−space or τ−space may be unbounded. This indicates that the projection of D

(
v ∗, τj ,

2π
ω0

)
onto the

τ−space may not cover [τ0,∞). If we can further verify that the periods of periodic solutions bifurcating from (E∗, τ0) is bounded,
then under conditions (H1) and (H2), system (2.3) has at least j + 1 positively periodic solutions for τ > τj , j = 0, 1, 2, ....

4. Numerical simulations

In this section, some numerical simulations are conducted to support the previous theoretical analysis. In particular, we numerically

study the ratio of the immune killing rate to tumor volume growth rate, behaviors of Hopf bifurcations, and functional relations

between the first bifurcation value of the immune response time and other parameters. Considering Table 1.1, we choose the

following parameter values:

Tm = 0.5, r = 0.29, k = 0.9, d = 0.5 , ρ = 0.24, β = 0.11

4.1. The effect of the killing rate and growth rate

We show the stability change of positive equilibrium driven by the ratio k
r
. In Figure 2(a), the black line is denoted by

P (r, k) = 9rx∗ − 2kρ
d(1+N∗)2

and the red line stands for k = r . It can be checked that the points satisfying B < D are in the

part above the black line. The region under the red line holds k < r and B > D, which indicates that the coexisting state of

tumor and CTLs is stable when the growth rate of tumor is greater than the killing rate of CTLs. As the ratio increases and

crosses the black line, the result in Theorem 2.5 shows the stability of positive equilibrium switches and a family of periodic

solutions appear. In addition, oscillations of immune cell number have been observed in some clinical contexts, for example [6].

It is clear that there is a critical value of the ratio, below which the positive equilibrium is locally asymptotically stable and above

which periodic solutions appear. Understanding how the CTLs recruitment and death rate affect k
r
inspires our interest since the

a)
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Figure 2. (a):the black and red lines are determined by P (r, k) = 9rx∗ − 2kρ

d(1+N∗)2
= 0 and k = r , respectively. P (r, k) < 0 above the black line and P (r, k) > 0

below the black line; (b): the effect of d on k
r
; (c): the effect of ρ on k

r
.

ratio determines the competition outcome between CTLs and tumor cells. As illustrated in Figure 2(c), CTLs recruitment has

a negative effect on the ratio. While the ratio first rapidly decreases then gradually increases as CTLs death speed goes up, as

shown in 2(b). We also know that it is more possible for the system (2.3) to undergoes the Hopf bifurcation with a large value
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of k
r
. Therefore, when more CTLs die or less CTLs are activated, the stable coexistence of tumor and CTLs will be broken and

the volume of the tumor changes in period.

In view of the first equation of system (1.2), we find 0 ≤ T (t) ≤ Tm. This means a solid tumor cannot grow infinitely. It is
known that the size of a tumor indicates the grade malignancy of a tumor, if the tumor volume reaches certain size, the patient

will die. In this study, we have found that the tumor volume may change periodically when the immune response time is long.

Once the volume is greater than a specific value, the patient can not be cured and such oscillations disappear. Suppose that

the critical value is T0 = 3× 106µm3. Define surv ival time by the first time that the tumor size reaches to T0. We numerically
explore the effect of immune delay on the survival time, which is shown in Figure 3. It is clear that shorter response time of the

adaptive immune system leads to longer survival time for the patient. Further, the survival time will not decrease to zero and it

has a minimum value, which is reasonable clinically.
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e

 

 

Figure 3. Survival time varies with immune delay when initial values are T (t) = 0.01, N(t) = 0.82.

4.2. Numerical simulations of Hopf bifurcation

With the same group of parameter values, some calculations show that the unique positive equilibrium is (0.3968, 0.4238) and

the condition B < D is satisfied. Furthermore, we obtain the first Hopf bifurcation value τ0 ≈ 13.4, and ω0 ≈ 0.07. Applying
Theorem 2.3, E∗ is locally asymptotically stable when τ ∈ [0, τ0). When τ passes through τ0, E∗ loses its stability and a family
of periodic solutions appear if τ > τ0.

Next, we consider the properties of Hopf bifurcations at the first Hopf bifurcation value. It can be calculated that: g02 ≈
−50.1279− 15.5860i , g20 ≈ −50.1279 + 15.5860i , g11 ≈ 47.2462− 10.7824i , g21 ≈ −2291.2983− 7694.8892i . Moreover,
we obtain c1(0) ≈ −1779.8039− 7729.1143. Thus, µ2 ≈ 7.7066, β2 ≈ −3559.6078, T2 ≈ 7537.1536. Obviously, µ2 > 0,
β2 < 0 and T2 > 0, which imply that Hopf bifurcation is forward; the periodic solutions are asymptotically stable and their

periods increase with time delay. The above results are illustrated in Figure 4 and Figure 5.
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Figure 4. The positive equilibrium of system (2.3) is locally asymptotically stable when τ = 9 ∈ [0, τ0). (The red curve represents CTL cells and the blue one
is about tumor cells.)
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Figure 5. When τ = 17 > τ0, there is a stable periodic solution bifurcating from the positive equilibrium. (The red curve represents CTL cells and the blue one

is about tumor cells.)

With the same parameters, we simulate the global behavior of solutions. The Hopf bifurcation diagrams are shown in Figure

6. We see that there is a global continuation of periodic solution bifurcating from Hopf bifurcation when τ > τj , j ≥ 1. Besides,
the amplitude of the periodic solution raises with the parameter τ increasing.
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Figure 6. The amplitudes of the first two branches of periodic solutions with the initial value (0.3968, 0.4328).

4.3. Numerical simulations concerning other parameters

The earlier a tumor is detected, the easier it is cleared out. In this subsection, we numerically explore how other factors in the

system (2.3) affect the adaptive immune response time, namely the first bifurcation value τ0.

It is natural that the amount of CTLs has relations with τ0. Assume that all other parameters remain fixed, then we find that

the first bifurcation value τ0 increases with the CTLs death rate, see Figure 7(a), which suggests that the immune response

time increases when more CTLs cells die. In this case, we may claim that the tumor and immune cells easily attain a periodical

interacting fashion. Furthermore, we find that the immune response time becomes smaller as the recruitment rate increases, as

shown in Figure 7(b). This is easy to understand. In fact the larger recruitment rate means more immune cells are recruited to

the cancer site, which is beneficial to the coexistence of tumor and CTLs cells.

The paper [10] and the assumption (H1) in this paper both point out that the ratio
k
r
mostly reflects on the tumor-CTLs

interaction dynamics. When other parameters remain unaltered, it can be found that the value of τ0 is large if tumor growth is

fast, which is shown in Figure 8(a). In Figure 8(b), we can see the change of τ0 is affected by the tumor growth together with

CTLs killing action. The joint effect of growth rate and killing rate is presented in Figure (9).

5. Conclusion

In this work, a two-dimensional tumor-immune model with the time delay of the adaptive immune response is studied from the

point of view of bifurcation analysis. The avascular growth of a spherical solid tumor is achieved by the proliferating layer cells

which is restricted by nutrient supply, thus the tumor has a finite final size. However, we find both zero and maximum tumor

volume equilibria are unstable. Inspired by the fact that dead cells form the necrotic core inside the tumor, we propose the surface

Math. Meth. Appl. Sci. 2018, 00 1–16 Copyright c⃝ 2018 John Wiley & Sons, Ltd. 11
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences H. Zhang, JP. Tian, B. Niu AND Y. Guo

a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

d 

τ 0

b)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

ρ

τ 0

Figure 7. (a): The variation of τ0 with CTL death rate d . (b): The variation of τ0 with CTL recruitment rate ρ.
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Figure 8. (a): Numerical simulation of τ0 for varying growth rate r . (b): Numerical simulation of τ0 for varing killing rate k.
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Figure 9. Numerical simulation of τ0 affected by k and r together.

growth idea. If the immune system can recognize and attack the tumor in this phase, then it’s possible to control the growth of

a tumor. We assume the immune response only occurs on the surface of a tumor, so the response function includes the tumor
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surface area.

For model (2.3), we confirm that there is a unique coexistent equilibrium and its dynamical behavior is roughly determined by

the ratio of the immune killing rate to tumor volume growth rate. The positive equilibrium is locally asymptotically stable when

the ratio is smaller than a critical value, and unstable otherwise. The adaptive immune response time delay significantly impacts

the stability of the positive equilibrium, which drives the system to undergo Hopf bifurcations under certain conditions. We obtain

explicit formulas to determine bifurcation direction and stability of bifurcating periodical solutions. We show the global existence

of Hopf bifurcation.

Numerically, we find that a shorter immune response time leads to a longer patient survival time and the period and amplitude

of a stable periodic solution increase with the immune response time. When CTLs recruitment rate and death rate vary, we

observe how the ratio of the immune killing rate to tumor volume growth rate and the first bifurcation value of the immune

response time change numerically, which yields further insights to the tumor-immune dynamics.

It is known that the innate immune system serves as a first defense line. The innate immune system may have different effect on

tumor growth [33]. We only consider the adaptive immune response mediated by CTLs in this work. It is necessary to incorporate

the innate immune response into modeling of tumor-immune interaction in order to achieve a complete understanding. We plan

to consider both innate immune response and adaptive immune response in our future study.
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Appendix

In this section, we choose τ as a bifurcating parameter and derive the explicit formulas determining the properties of Hopf

bifurcation under the assumption (H1). The techniques to be used are normal form method and the centre manifold theory

presented in [25, 26].

Without loss of generality, write τ = τ̃ + µ, then µ = 0 is a Hopf bifurcation point for system (2.3). Let x1(t) = x(tτ)−
x∗, x2(t) = N(tτ)− N∗, system (2.3) becomes

ẋ1(t) = (τ̃ + µ)

[
r(1− (x1(t) + x∗)3)−

k(x2(t) + N∗)

1 + x2(t) + N∗

]
,

ẋ2(t) = (τ̃ + µ)

[
ρ(x1(t − 1) + x∗)2(x2(t − 1) + N∗)− d(x2(t) + N∗)2

]
.

(5.1)

For φ = (φ1, φ2)
T ∈ C([−1, 0], R2), let

Lµφ = (τ̃ + µ)B1φ(0) + (τ̃ + µ)B2φ(−1),

with B1 =

(
−3rx2∗ −k

(1+N∗)2

0 −2dN∗

)
, B2 =

(
0 0

−2ρx∗N∗ −ρx2∗

)
. And

f (µ,φ) = (τ̃ + µ)

(
kφ22(0)

(1+N∗)3
− kφ32(0)

(1+N∗)4
− 3rx∗φ21(0)− rφ31(0) +O(4)

ρφ21(−1)φ2(−1) + ρN∗φ21(−1)− dφ22(0) + 2ρx∗φ1(−1)φ2(−1)

)
. (5.2)

By the Riesz representation theorem, there is a function η(·, µ) : [−1, 0]→ R2 of bounded variation, such that

Lµφ =

∫ 0
−1
dη(θ, µ)φ(θ), f or φ ∈ C([−1, 0], R2).

In fact, η(·, µ) can be taken as

η(µ, θ) =


(τ̃ + µ)B1, θ = 0,

0 θ ∈ (−1, 0),
(τ̃ + µ)B2, θ = −1,
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For φ ∈ C1([−1, 0],R2), define

A(µ)φ(θ) =

{
dφ(θ)
dθ
, θ ∈ [−1, 0),∫ 0

−1 dη(µ, θ)φ(θ), θ = 0,
, R(µ)φ(θ) =

{
0, θ ∈ [−1, 0),
f (µ,φ), θ = 0.

Then, system (2.3) is equivalent to the following abstract form

ẋt = A(µ)xt + R(µ)xt . (5.3)

with x = (x1, x2)
T , xt(θ) = x(t + θ), θ ∈ [−1, 0]. For ψ ∈ C1([0, 1], R2), denote the adjoint operator of A(µ) by

A∗(µ)ψ(s) =


− dψ(s)
ds

, s ∈ (0, 1],∫ 0
−1
ψ(−t)dη(t, s), s = 0.

The discussion at the beginning of section 2 implies that ±i τ̃ω0 are eigenvalues of A(0) and they are also eigenvalues of
A∗(0). Let q(θ) = (1, P )T e iω0 τ̃θ, q∗(s) = E(Q, 1)e−iω0 τ̃ s be the corresponding eigenvectors of A(0) and A∗(0), respectively.

Then, using the following bilinear form

⟨ψ,φ⟩ = ψ̄(0)φ(0)−
∫ 0
−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ,

with φ ∈ C1([−1, 0],R2), ψ ∈ C1([1, 0],R2) and η(θ) = η(θ, 0), we have

P = − (3rx
2
∗ + iω0)(1 + N∗)

2

k
, Q =

(iω0 − 2dN∗ + ρx2∗ e iω0 τ̃)(1 + N∗)2

k
.

E =
[
(Q+ P̄ ) + e iω0 τ̃ τ̃(2ρx∗N∗ + ρx

2
∗ P̄ )

]−1
.

In what follows, we applying the notations in [25]. Based on the center manifold theorem, we set W (t, θ) = W (z(t), z̄(t), θ)

on the center manifold C0 with

W (z, z̄ , θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ ...,

The solution xt of system (5.1) at µ = 0 can be written as

xt = 2Re(z(t)q) +W (z(t), z̄(t))

where z(t) = ⟨q∗, xt⟩. We further have

ż(t) = iω0τ̃z + q̄
∗(θ)f (0, w(z, z̄ , θ) + 2Re(zq(θ)))

= iω0τ̃z + q̄
∗(0)f (0, w(z, z̄ , 0) + 2Re(zq(0)))

= iω0τ̃z + q̄
∗(0)f0.

(5.4)

Rewrite it as

ż(t) = iω0τ̃z(t) + g(z, z̄), (5.5)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z2

2
+ g21

z2z̄

2
+ · · · .

Therefore,

g20 = 2Ēτ̃(Q̄, 1)

(
kP 2

(1+N∗)3
− 3rx∗

ρN∗e
−2iω0 τ̃ − dP 2 + 2ρx∗Pe−2iω0 τ̃

)
,

g11 = Ēτ̃(Q̄, 1)

(
2kP P̄
(1+N∗)3

− 6rx∗
2ρN∗ − 2dP P̄ + 2ρx∗(P + P̄ )

)
,

g21 = 2Ēτ̃(Q̄, 1)

(
m11 +m12 +m13

m21 +m22 +m23 +m24

)
,

(5.6)
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where

m11 =
k

(1 + N∗)3

[
W
(2)
20 (0)P̄ + 2W

(2)
11 (0)P

]
, m12 = −3rx∗

[
W
(1)
20 (0) + 2W

(1)
11 (0)

]
,

m13 = −
3kP P̄

(1 + N∗)4
− 3r, m22 = ρN∗

[
W
(1)
20 (−1)e

iω0 τ̃ + 2W
(1)
11 (−1)e

−iω0 τ̃
]
,

m21 = 2ρx∗

[
e iω0 τ̃

(
W
(1)
20 (−1)P̄ +W

(2)
20 (−1)

)
+ e−iω0 τ̃

(
W
(1)
11 (−1)P +W

(2)
11 (−1)

)]
,

m23 = −d
[
W
(2)
20 (0)P̄ + 2W

(2)
11 (0)P

]
, m24 = ρ(2P + P̄ )e

−iω0 τ̃ .

Note that the value of g21 depends on W20(θ) and W11(θ), hence, we need also to compute W20(θ) and W11(θ). In view of (5),

it follows that

Ẇ = ẋt − żq − ˙̄zq̄ =
{
A(0)W − 2Re(q̄∗(0)f0q(θ)), θ ∈ [−1, 0),
A(0)W − 2Re(q̄∗(0)f0q(0)) + f0, θ = 0

def
= A(0)W +H20(θ)

z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ ...

. (5.7)

Due to the chain rule

Ẇ =
∂W (z, z̄)

∂z
ż +

∂W (z, z̄)

∂z̄
˙̄z,

then

(A(0)− 2iω0τ̃)W20(θ) = −H20(θ), A(0)W11(θ) = −H11(θ). (5.8)

Note that for θ ∈ [−1, 0),
H(z, z̄ , θ) = −q∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ),
this leads to

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ), θ ∈ [−1, 0). (5.9)

From (5.8), we have

W20(θ) =
ig20
ω0τ̃

q(0)e iω0 τ̃θ +
i ḡ02
3ω0τ̃

q(0)e−iω0 τ̃θ +M1e
2iω0 τ̃θ,

W11(θ) = −
ig11
ω0τ̃

q(0)e iω0 τ̃θ +
i ḡ11
ω0τ̃

q̄(0)e−iω0 τ̃θ +M2,

(5.10)

where M1 and M2 are both 2-dimension vectors.

As θ = 0 in (5.7) and (5.8), together with the definition of A, we have

H20(0) = −g20q(0)− ḡ02q̄(0) +
(

2kP 2

(1+N∗)3
− 6rx∗

2ρN∗e
−2iω0 τ̃ − 2dP 2 + 4ρx∗Pe−2iω0 τ̃

)
,

H11(0) = −g11q(0)− ḡ11q̄(0) +
(

2kP P̄
(1+N∗)3

− 6rx∗
2ρN∗ − 2dP P̄ + 2ρx∗(P + P̄ )

)
.

(5.11)

It follows that (
2iω0 + 3rx

2
∗

k
(1+N∗)2

−2ρx∗N∗e−2iω0 τ̃ 2iω0 − ρx2∗ e−2iω0 τ̃ + 2dN∗

)
M1 =

(
2kP 2

(1+N∗)3
− 6rx∗

2ρN∗e
−2iω0 τ̃ − 2dP 2 + 4ρx∗Pe−2iω0 τ̃

)
. (5.12)

and (
3rx2∗

k
(1+N∗)2

−2ρx∗N∗ −ρx2∗ + 2dN∗

)
M2 =

(
2kP P̄
(1+N∗)3

− 6rx∗
2ρN∗ − 2dP P̄ + 2ρx∗(P + P̄ )

)
(5.13)

Now W20(θ) and W11(θ) could be obtained and g21 could be presented explicitly. Consequently, c1(0) and other quantities could

be directly expressed in terms of parameters and delay mentioned in (5.1).

c1(0) =
i

2ω0τ̃

(
g11g20 − 2 | g11 |2 −

| ḡ20 |2

3

)
+
g21
2
,

µ2 = −
Re(c1(0))

Re(λ0
′(τ̃))

,

β2 = 2Re(c1(0)),

T2 = −
Im(c1(0)) + µ2Im(λ0

′(τ̃))

ω0
.

. (5.14)

According to the general Hopf bifurcation theory (see [25]), it is known that µ2 determines the direction of Hopf bifurcation:

if µ2 > 0 (µ2 < 0), then a branch of periodic solutions appear for τ > τ̃ (τ < τ̃); β2 determines the stability of the bifurcating

periodic solutions: the bifurcating periodic solutions in the center manifold are stable (unstable) if β2 < 0 (β2 > 0); T2 determines

the period: the period increases (decreases) if T2 > 0 (T2 < 0).
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