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Abstract

In this paper, a fourth-order accurate conservative finite difference scheme for solving
the coupled nonlinear Schrédinger (CNLS) equations is proposed. Conservation of the
discrete energy and masses, priori estimates, existence and uniqueness of numerical
solutions, convergence with second-order in time and fourth-order in space as well as
stability of the present scheme are proved by discrete energy method. A convergent
iterative method for the present scheme is developed. Numerical experiments are
given to support the theoretical analysis.
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1. Introduction

The coupled nonlinear Schrodinger (CNLS) equations are one of the most im-
portant models in quantum mechanics. This system has been used in many other
nonlinear problems such as optics, seismology, and plasma physics [1, 2]. Recently,
numerical methods for various CNLS equations have become hot topics. Many re-
searchers numerically investigated the CNLS equations by using the Galerkin method,
the finite difference method, the symplectic geometry method, the spectral method,
etc [3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16].

In this paper, we consider the following CNLS equations [2]:

ity + kge + ([u)> + Bl )u=0, zy<zr<z,, 0<t<T, (1.1)
iV + kg + (0° + Blu)v =0, =3 <zr<z,, 0<t<T, (1.2)
u(z,0) = up(x), v(z,0)=uvo(x), =z <z<ux, (1.3)
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u(zy, t) = u(z,,t) =0, o(z,t)=v(z.,t)=0, 0<t<T, (1.4)

where i = v/—1, ug(r) and vy(z) are two known smooth functions, u(x,t) and v(z,t)
are two unknown complex-value functions, k describes the dispersion in the optic
fiber, 3 is defined as birefringent optical fiber coupling parameter. When £ = =1,
this system is called the Manakov equations, and when § = 0, it is becomes the
decoupled nonlinear Schrédinger equations. In the above cases, the system (1.1)-
(1.4) is integrable. Furthermore, the system (1.1)-(1.4) satisfies the following mass
and energy conservative properties [2]:

Mi(t) = / u?|de = / luo|2da = M; (0), (1.5)

Ty Ty

My(t) = / (v?|dz = / o2 = My (0), (1.6)

Ty x

Tk 1
E(t) =/ 5 (ual” + [0 ?) = Z(jul* + o) =
x

B

;Wwﬂm

Ly 1 3
— [ 5000+ 00 = Jhul + o) = Sl o
z;

— E(0), t>0. (1.7)

For k = 1, the problem (1.1)-(1.4) is strongly CNLS equations. Six point multi-
symplectic formulations were proposed in [17, 18]. Tt has excellent long-time numerical
behaviour and energy conservation property. Ismail and Taha [19] proposed a linearly
implicit conservative method, which is second-order accurate in both time and space.
In [20, 21], a symplectic difference scheme and a two-level finite difference scheme
were developed. It was proved that both schemes are conservative, uniquely solvable,
convergent with O(72 + h?) and stable by the discrete energy method. Nonlinear and
linear compact finite difference schemes were developed by Hu and Zhang [22]. These
schemes are fourth-order accurate in space and second-order accurate in time. The
existence and uniqueness, convergence and stability of the schemes were proved by
using the matrix theory after transforming into matrix form.

For k = 1/2 or other values, Ismail and Almari [23, 24] developed a finite differ-
ence scheme and an explicit Runge-Kutta scheme. These schemes are fourth-order
accurate in space and second-order accurate in time, and were proved to be stable
by using the von Neuman stability analysis. In [25], a splitting method from class
of symplectic integrators and the multi-symplectic six-point scheme were considered
for the integration of CNLS equations with periodic solutions. Galerkin method was
proposed to solve the CNLS equations in [26]. It is unconditionally stable and second-
order accurate both in time and in space. Nonlinear implicit difference schemes and
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linear implicit difference scheme were proposed in [27, 28, 29]. Uniqueness and exis-
tence of the difference solutions and second-order convergence in L., norm were given.
In [30, 31, 32], high order compact and non-compact schemes were constructed. All
of them are conservative, convergent and stable. The Fourier psedospectral method,
the Crank-Nicolson method and leap-frog method were developed in [33]. It is energy
and mass conserved, uniquely solvable and unconditionally stable.

In this article, a new fourth-order accurate conservative finite difference scheme for
the problem (1.1)-(1.4) is proposed. This scheme is coupled two-time level nonlinear,
conserved, effective and high-order accurate. A priori estimates, convergence with
second-order in time and fourth-order in space and stability by norm || - ||, are proved
by the discrete energy method for the present scheme.

The rest of this paper are arranged as follows. In Section 2, a high-order accurate
finite difference scheme is constructed and some lemmas are given. In Sections 3-5,
discrete conservative laws, a priori estimates, existence and solvability, convergence
with O(72 + h?) and stability are proved by using the discrete energy method. In
Section 6, we give a convergent iterative algorithm for the finite difference scheme. In
Section 7, numerical examples are presented to show that computed results support
our theoretical analysis. Finally, we give some concluding remarks in the last section.

2. Construction of finite difference scheme

In this section, we propose a coupled nonlinear two-time level, conservative, and
high-order accurate finite difference scheme for the problem (1.1)-(1.4). Let h =
(xr, —x;)/J and 7 = T'/N be the space-step and time-step, respectively, where J and
N are given to be two positive integers. The point (z;,t,) is defined as ¢, = nr,
n=01,...,Nand z; = 7, + jh, j = =1,0,...,J,J + 1. We denote u} ~ u(x;,t,),
v}~ v(z;,t,) and the space of complex discrete functions

Zy={u= (u)luy=up=uy =uy_; =u;=us =0, j=-1,0,...,J,J+1}.

For any complex discrete functions u™,v" € Z9, we define the difference operators,
discrete inner product, LP-norm and maximum-norm as follows:

(u?), = Ui — Yy (u)s = uj —ujy (u) = Uiy — Ui
7 x h ) i X h 9 J x 2h 9
utt — PR ViR Ey Vi "
(W)= =—— oy =t W) = h) ufe),

J-1
P hz [P, JJu" oo =  Joax [ui|, 1<p<+oo.
j=1 e



According to the Taylor expansion, we have the following formula [34]:

4 1 d*e A
g(%)m - g(%’)* 4z (@) + O(h7),
where 9 is a smooth function. Let C' be a positive constant independing on 7 and

h, but may have different values at different occurrence. Based on the notations and
expressions, we give the following finite difference scheme:

. 4k n+2 k n+3 1 n n n n n+
i(uj): + 3( i z)m—g(uj 2)@53+§[|Uj+1|2 + |u] *+ B(lv +1|2+|U | )} =0,
1<j<J—1 0<n<N-1, (2.1)
41{7 /{7 n—+

1<j<J-1, 0<n<N-1, (2.2)
uj = uo(x;), vj =wlr;), —1<j<J+1, (2.3)
ut € Z), v eZ), 1<n<N-1 (2.4)

To analyze the discrete conservative property of the difference scheme, existence
and uniqueness of the numerical solution, convergence and stability, we need the
following lemmas.

Lemma 2.1. (See [3/]) For any discrete functions u™,v™ € Z3, we have

Re(ul,,v") = —Re(uy,vy) = Re(u™,vl.), Re(ul;,v") = —Re(ul,v}) = Re(u", v},;).

zx? T YL » Yz

Especially,
Re{uyz,u") = —|lug|?,  Re{u}

xx

u") = —[ll® gl < [l

:m:’

Lemma 2.2. For any discrete complex functions u™,v™ € Z), we have

Im<u”_ u"‘> = O7 ]m(utﬁ u”> = O, ]m<|v"|u”,un> = 0.

T’ TxT

Proof. Setting u" = a™ +ib", a”, 0" € R, we have



Il
~
3
—N—
>
<
L

[((a?>wiay + (b?)mb?) + @((b?)ma? - (a?)mb?)} }

Similarly, we have

Im(ul,,u") =0, Im{jv"|u",u")=0.

This completes the proof.

3. Discrete conservative laws and priori estimates

Theorem 3.1. The finite difference scheme (2.1)-(2.4) is conservative in the sense

Qr=Qr'=...=@), n=0,1,....N (3.1)
QG=Qr'=.. =Q) n=01,.N (3.2)
E'=F"l'=. .. =E° n=0,1,...,N, (3.3)
where Q7 = |[u™]|* and Q% = ||[v"||* are discrete masses, and
2%k k h =
E" = = (Il + 103 1F) = g (g ” + 3 1%) - 3 D (gl + oyt + 28]uf Plo )

1

<

is discrete energy.



Proof. Computing the inner product of Eq. (2.1) with "™ +u" and taking the
imaginary part by Lemma 2.2, we obtain

1 1
_(HunJrlHZ o HunHZ) 4 —Im( ‘un+1‘2 + |un|2+ﬁ(|vn+1’2+ ‘vn|2) un+%’un+1 _'_un> = 0.
T

2
(3.4)

Noticing

1 1on n
ST [l P+ BT o ) T )

1
= Im([u" P + W7 + B([" TP+ o), [u T2 ?) = 0,

we have
~(h P~ ) = 0
T 9
which implies Q7 = Q7' = ... = @Y. Similarly, we can prove Eq. (3.2).

Computing the inner product of Eq. (2.1) with u"™ — «™, the inner product of
Eq. (2.2) with v — " and taking the real part by Lemma 2.1, we obtain

Qk n n k n n 1 n n
= Sl = ) + g ™ 1P = ) + g Re( [lum 2 o+ u?

+ B0 4 o) ] uE u =y = 0, (3.5)
2k

n n k n n 1 n n
= 3 (I P = 10 IP) + oz 17 = g 1) + g Re( ([0 + o

3 T T T

+ B+ Ju )] ot E, 0 — ™) = 0. (3.6)

Noticing that

1 1 n n
SRe(lw 1 4 2 (o2 + o )ttt — )

<

-1
a2 4 g 1P+ B0+ o P) ] (2 = [uf )

1

| >

<.
Il

<

—1
[ = g+ B2 + [ P (P = a2 ). (3.7)
1

=

<.
Il



Similarly, we have

1 1 n n
§R€<[|Un+1|2+ |,Un|2_|_5(|un+1|2_|_ |un|2)]vn+2’v +1 — >

~
<
L

(o T = 071"+ B TP+ G P) (0 = o] )] (3.8)
1

<.
Il

Adding Eq. (3.5) to Eq. (3.6), and considering Egs. (3.7)-(3.8), we have

S ™0 Mo ™7 = S e ™ 1 + oz ™ 1)
p Il
_ Z (|U;L+1|4 + ’U‘;L+1‘4 4 26’u?+1|2‘1}§1+1|2>
j=1
2k n||2 n||2 k n||2 n J n|4 n|4 n|2|,n|2
= S Ulegl® + 1oz 1%) = S Uz + 19Z1°) ZZ |ug ™+ [ " + 28} [*[v] ),
which implies " = E"! = ... = E°. This completes the proof.

Lemma 3.1. (See [28]) For any discrete function u™ € ZY), we have
Il < CClug |l [ =+ flu"[]),

where o = % — ]l], p > 2, C is a constant independing on p and h.

Lemma 3.2. (See [28]) For any x >0, y > 0 and p > 1, we have
(z +y)" <277 (2P +y").

Lemma 3.3 (Discrete Sobolev’s inequality). (See [31]) For any discrete func-
tion u™ € Z%, there exist two positive constants Cy and Cy such that

[u" oo < Crfu]| + Calluz]]
Theorem 3.2. The finite difference scheme (2.1)-(2.4) satisfies

[l <, luzll <O, luleo <C, 0" <O ozl < C5 0" loo < C

Proof. It follows from Eq. (3.1) and Eq. (3.2) that ||u"] < C, [[v"] < C.
According to Eq. (3.3) and Lemma 2.1, we have

S U l® + oz 1?) < - (el + o2 1%) = 5 ezl + 11z )



1

]

([ + o7 |* + 28Jul P ?) + E°. (3.9)
=1

<

Applying Lemmas 3.1-3.2 with p = 4, we have

J-1
h n n n n
1 Z(‘u] [+ o7 * + 2815 o7 )
j=1

J-1
< T (| |+ v )
=1
< Ul flu™]® + N+ (loplls o5 + lv™[)?

<2(1+28)C" (IIUZHIIU"H3 + [l [+ [l o™ 1 + Hv"||4)

[ n n 1 n n n n
< (1+28)C" 61(||%H2+H%IIQHE(IIU 1%+ 0™ 1)+ 2(]|u"[[* + [Jv H4)}

[ n n 1
< 1+ 20)C e (lugll® + oz l*) + g(HuOH6 + [[0°11°) + 2(][”)|* + HUOH“)}
' (3.10)

for any positive constant €;. Letting e; = k/[4(1 + 25)C?], substituting Eq. (3.10) to

Eq. (3.9), we have

16(1 + 28)2C* 8(1 + 28)C 4E°
k2 k ko’

which implies ||ul]] < C, [[v?]] < C. Hence, ||[u"||o < C and ||[v"||ec < C by Lemma

3.3. This completes the proof.

[l l® + R < (1 + 1071 + (a1 + 1101 +

4. Existence

To show the existence of the numerical solution for the difference scheme (2.1)-
(2.4), we shall use the following fixed point theorem of Brouwer.

Lemma 4.1 (Brouwer theorem). (See [20, 28]) Suppose that (€, (-,-)) is a finite
dimensional Hilbert space with the inner product, || - || is the associated norm, and
F . A — I is continuous. Moreover, assume that

IA>0, Ve, |xll=X Re(F(x)x)=>0.

Then there ezists x* € F such that F(x*) =0 and [|x*|| < A
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Theorem 4.1. The solutions of the finite difference scheme (2.1)-(2.4) exist.

Proof. Suppose that «°,u!,...,u" and v°,v!, ..., v" satisfy the finite difference
scheme (2.1)-(2.4), then we prove that there exist u"™ and p"*! satisfying Eqs. (2.1)-
(2.4). For a fixed n, we rewrite Eq. (2.1) and Eq. (2.2) in the term of

4ikT ikt

2(W)y — ) = (W) )ee 5 (W))a0 — 5 [120W2); — w2 4+ us P
FBR(W); — i+ [ )] (W), =0, (1.1)
2(Wa); = ) = o (W) oo + (W), )as — o (12092, — o + 1o
FBR(WL); = w2+ Ju )] (72); = 0 (1.2

for 1 <j<J—10<n<N—1, where (Wi, Ws) = (u""2,0"+2). Let Zay = {W =
(W1, Wo)|[Wy, Wy € Z9} and define

(W, W) = (W, Wa), (W, W3)) = (Wi, W) + (W, W3), [[W]]* = [[WA ] + [ W2

Define the map .7 = (%1, .%3) : Zan — Zan by

4ikT ikt T
g](Wl) = 2(W1 - Un) - 3 (Wl)xi + ?(Wl)ifc - 5 UQWl - un|2 + ’un’2
+ B(|12W, — U"|2 + ]v"\Q)}Wl, (4.3)
4ikT ikt

§2(W2) — 2(W2 o U") _ 3 (Wz)m 4 ?(Wﬁm — % [|2W2 — U"|2 + |1)n|2

—|—5(|2W1 —u”|2—|— |Un|2>}W2, VWE ZAh' (44)
Computing the inner product of Eqs. (4.3)-(4.4) with W = (W3, W3) and taking
the real part, we have
Re(F (W), W)

= Re(ﬁl(Wl), W1> + R€<§2(Wg), W2>

= 2([W1]l* + [W2*) — 2(Re{u™, Wh) + Re(v", Wa))



" Re{‘“f 3 V1 + (021 - thr > vl + |<<Wz>j>@|2}}
e 120720, = 0512+ g+ 6(2072); = o + g P09,
. R{Thz [2072); = w3+ 7+ B(2072), =+ P,

> W = (a2 + W2 + 72 + a2

W = () + 7)) (45)

which implies Re(.Z (W), W) > 0 for VIW € Zap, when ||[W||* = ||u™|*+ ||v"]|*+ 1. By
Lemma 4.1, we conclude that there exists W* € Zaj, such that .#(W*) = 0. Hence,

there exist "t = 2IW; — u™ and v"*! = 2W; — o™ satisfying the difference scheme
(2.1)-(2.4). This completes the proof.

5. Convergence, stability and Solvability

Lemma 5.1 (Discrete Gronwall inequality). (See [34]) Suppose that {G"}5°, is
non-negative sequences and satisfies

n—1
G°<A, G'<A+BrY G, n=12,..

=0

°

where A and B are non-negative constants. Then G satisfies
G" < AP n=0,1,2,....

Lemma 5.2. (See [28]) For any discrete complex functions U™, V™ u™ v"™ € Z7, we
have

n n n n n n n n 2 n n n n
UV — funPer| < (max{[U7], V2, ], [ [1)? - (2107 = 0] + V7 — 7).
Theorem 5.1. Suppose that u(z,t),v(x,t) € ij;f, then the solutions of the finite

difference scheme (2.1)-(2.4) converge to the solutions of the problem (1.1)-(1.4) and
the rate of the convergence is O(72 + h*) by norm || - ||oe-
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Proof. Let e} = U} —uf}, fi = V» — o}, where U}' = u(w;,t,) and V" =
v(xj,t,) are the solutlons of the problem (1.1)-(1.4). Then we have the followmg

error equations as

4k k n—i—l n n .
i(e})e + 3( )Ii_g(ej iz + ()] =r), 1<j<J—1, 0<n<N-1,
(5.1)

n 4k n+i k n+3 n n .
i(f;)e ?(fg 2)r§:_§(fj ez +(g2)f =7, 1<j<J-1, 0<n<N-1,
(5.2)
e"eZy, freZ), 1<n<N, (5.4)

where

n 1 n n n n ”"'%
(91)] = 5{[|Uj PR UPE 4 BV + V],

J

s A L (A AT ) e §

n 1 n n n n n—l—%
(92)] = 5{[|Vj TR VR (U + U]V,

n n n n n+
— [l T2+ [P+ BT+ )]y 2

Using the Taylor expansion, we get || < C(7° + h') and [s}| < C(7° + h*), where
C' is a positive constant independing on 7 and h.

Computing the inner product of Eq. (5.1) with "' + ¢ and the inner product
of Eq. (5.2) with f*! + f" and taking the imaginary part, we obtain

1
—(le™ P = NlenlI?) + Im((g0)", ™™ + ) = Im (1", "™ 4 €7), (5.5)

LU — 0P + T (ga), £+ 77 = Tmds™, 4 ), (56)

Applying Lemma 5.2, we have

]. n l n n—}—l n n ’rL+
(o)) < & (HU“F I TN s S WA, 2|)

11



N

NlQ

1
(an-i-l‘ U”+2 _ ‘U;z—&-l’u?"‘z‘ + ijn|2U;L+ ‘vn‘u""‘z‘)

(max {|U7*!], \U"+2] a2, | ”+2|}) (2ler ] + el )

/N

T (e (U] U3 Jul ] R ) 2|e“|+|e”“|>)
+§((maX{W"“r U753 o 1) 2L 1)

T (mas {VIL UL o] D) 21 e r>),

then there exists a constant C such that

and

1)1 < CCle™ 1 + lle™ I* + L1 + 1117, (5.7)
I(gn)all® < CCle™ 1 + le™ 1 + L1 + [1LF™ 1
e+ leq 1 + 1L + LA (5.8)
Then we obtain
[Im((g1)", "' +e™) | < Ol (g)" 1 + le™ > + [le]?)
< C(le™ M+ [le 1P+ 1P+ L7112 (5.9)
Similarly, we have
1(g2)"II7 < CUe™ 1+ [le™ 12+ L1+ 1112, (5.10)
1(g2)2lI” < CClle™ M1+ le™ 1 + L/ + (11
e I+ Hleql® + 1L+ L) (5.11)
[Im((g2)", £+ ] < O™ P+ eI+ 1P + 117 1%)- (5.12)
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Note that
1 1
I, @ €% < [ 4+ 2l 2 4 e, (5.13)
Im(s", [ 4+ 7y < [|s"]1” + Sl 12 + Sl [ (5.14)

Substituting Eqgs. (5.9), (5.12)-(5.14) into Egs. (5.5)-(5.6) and then adding Eq. (5.5)
and Eq. (5.6) together, we have

le™ 17+ 1112 = (e 1+ 1)

< Or(lle™ P+ {lem 1P+ I+ L) + (™1 + 1s™ 1) (5.15)
Summing up Eq. (5.15) from 0 to n — 1, we have

(L= Cr)(lle™ 1+ 1%

n—1 n—1
<N+ 10N+ Cr (e + 112 + 7 D (e + 11s]1)- (5.16)
=0 =0

If 7 is sufficiently small such that 1 — C7 > 0, we have

n—1
le”[|> + 1/)1* < Cr Z(II@ZH2 + I/ + O + ), (5.17)
=0
where
n—1
7Y (2 +[Is'?) < e max ([ + ||s'?) < CT (72 + h*)2.

0<l<n—1
1=0

Applying Lemma 5.1, we obtain
le* + 1Lf71* < C(r* + hh)? - 7T < C(72 + b2,

which implies [le"]| < C(72 + h?), | "] < C(r% + h?).
Computing the inner product of Eq. (5.2) with e"™ — ¢™ and the inner product
of Eq. (5.3) with f*™! — f and taking the real part, we have

= (ez™ 1P = Nlezl®) = 5 Hez™ 1° = llez ")
= Re{(g1)", e"™' —e") — Re(r", e"™! — "), (5.18)

13



2k k
5 (AP = 12 = G 0 = A1)

= Re((g2)", [ = ") = Re(s", f*" — f"). (5.19)

From Eq. (5.1) and Lemma 2.1, we have

‘Re«gl)n,en—kl . en>‘

= |Re{(g1)", 7(e")e) |

kT pyl GkT ngl
= |Re{(q1)", %ex;” - %652 +ir(g1)" — iTTn>‘
4kt ntdl, kT n ntl n n
= | = g Im{(g)iex ) + S Im(g0) € F) = TImd(g)" ") . (5.20)
Substituting Egs. (5.7)-(5.9) into Eq. (5.20), we have
[Re(g0)", e — ™)
n n n ntg ntg n
< CT(ICgzl* + gzl + 11g)™ I + llea * 1" + lleg 211" + [1r™11%)
< Cr(I(gI* + [1g)™ 7 + ez 117 + llez I + [l711%)
< Cr(lle™ 1P+ lle™ 1+ Nlex ™ 1 + lleR Il + L1 + (11
LA+ ). (5.21)

Similarly, we have

[Red(g)™, "+ — )| < Ol P + e 2 + e 2 + 2l + L.+

P L+ L+ ™). (5.22)
Noticing that
1
|[Re(r™, et —em)| < 17 + (e P+ e 1), (5.23)
1
|Re(s™, [ = [ < [1s"1* + USSP+ 11P)- (5.24)
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Substituting Eqgs. (5.21)-(5.24) into Egs. (5.18)-(5.19) and then adding Eq. (5.18)
and Eq. (5.19), we obtain

2k

n n n n k n n n n
< (e P = el + 1A = 1A2) = 5 ez ™ I = N I+ 117 = 1217

< Cr(lle™ 2+ [le™ 1P + lled™ 1> + llepll® + 112 4 112+ 112+ 1A
+ {712 [lsm]). (5.25)
Let
A = ZX(en)? + 721) = 2 ek + 1721P),
It follows from Lemma 2.1 that

0<

Do |

(lezll® + 1211 < A™

Summing up Eq. (5.25) from 0 to n — 1, we have

n n—1

A< A+ Cr Y (1P ISP+ el + 121 + O Y (1P + [1s'1%). - (5.26)

=0 =0
Noticing that

n

Cr Y (e + 171%) < Cln+ )7 - max ([l + [/1%) < C(T +7)(7 + h)2,
=0 SIS

n—1
L2 L2 < . 112 L2 < 2 4\2
Cr 3P+ 1% < Onr - e (I + 151°) < T2+ 1.

2k k
A’ = g(!legHQ + 112117 — g(Hfi%HQ +[I/2017) < C(r* + h*)?,
then we have

k n—1
(5 = Cnlezl? + ILF1P) < C7 Yol + 1£207) + O + bty (5.27)
=0

If 7 is sufficiently small such that g — C1 > 0, we obtain

n—1

legl® +1L£21P < Cr Y (leb P + 1/ 17) + C(r* + 2. (5.28)

=0
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Applying Lemma 5.1, we have
lezl” +1f211* < C(r* + hh)? - e < O(r* + h')?,

which implies |[e?|| < C(72 + h*), ||f7|| < C(72 + h*). Hence, we obtain [[e"|s <
C(T2+ ), |f"lo < C(72 + h*) by Lemma 3.3. This completes the proof.

Using similar proof for Theorem 5.1, we can conclude Theorem 5.2 and Theorem
5.3.

Theorem 5.2. Suppose that u(z,t),v(x,t) € C’Si’, then the finite difference scheme
(2.1)-(2.4) is stable by norm || - ||co-

Theorem 5.3. The finite difference scheme (2.1)-(2.4) is uniquely solvable.

6. Iterative algorithm

For fixed n, we rewrite Eq. (2.1) and Eq. (2.2) in the following form

7(% P -uj) + ?(uj 2 )ez — g(“j *)az + 5“2%‘ R
n4+ = n n n4 =
+B(12v; 2 = o1 + i) Ju; F =0, (6.1)
?(Uj - Uj) + ?(Uj 2 )ez — g(vj ?)ss + 2 “2% ) |+ |Uj °
TL-i-l n n TL—J,-l
+B(12u;* = uf[* + o7 ) Jv; 2 =0, (6.2)

Then we provide the following iterative method to compute the solution of the finite
difference scheme (2.1)-(2.4):

2‘ nls 4k ’T'LlS k TLlS 1 nls
= Y )+ e = 2 e 20— g

7 J 3\ z R
n 1 S n 1 S
+ 812052 = n o+ )]y 2 =0, (6.3)
20, ntd(s+) oy, 4K, ntl(st1) k, ntd(s+1) I O n
n+2(s n+i(s
+B(2u) 2 — P 4 )] = o, (6.4)
for s =0,1,..., where
UTH—%(O) _ u?? n = 07 UTH‘%(O) _ ?7 n=yu,
J ) 2w =ttt n>1 I I T v I |
2% T 2% o =5 29 T 2% =+
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Theorem 6.1. Suppose that u(x,t),v(z,t) € (ij’, if T and h are sufficiently small,
then the solutions of the iterative method (6.3)-(6.4) converge to the solutions of the
finite difference scheme (6.1)-(6.2) by norm || - ||co-

1 n+i(s s n+i n+i(s
Proof. Let ggs) = u?+2 - uj+2( ), 77](' ) = vj+2 - vj+2( ). Then when n = 0, we
have
0 1
e = u? —ul (uj —u)) = S [(u; — U}) + (U} = U}) + (U) —uj)]

<O+ MY+ C(r)+0< Ot + 1Y),

and when n > 1,

0 n+3g 3 n 1 n— 1 n
e =i = () = ) = (= 20 )
1 n mn n n n— n— n n n—
:5[(%“—@“)—2( P—UN A+ (W = U + (U =207 + U

SCE+M)+CE+ M)+ CFE + 1Y)+ C(F) < C(r* + b,

where U} = u(z;,t,). Similarly, we have 77 < C(7 + k') when n = 0 and 77
C(72 + h*) when n > 1. This yield

||€(0)|| < C(T _I_ h4)’ n = 0, ||77(0)|| < C(T + h4)’ n = O,
T CE+RY), n>1, T loEr+mY, n>1

If 7 and h are sufficiently small, we have [|©|, < O, |79 ||ec < C forn =0,1,...,N.

Suppose |6 < C, 790 < C, then

*

2 oe < a2 oo + 1=l < € [0 3 oo < 0™ 2o + 1170 < €.

Substituting Eqgs. (6.3)-(6.4) from Egs. (6.1)-(6.2), we have

2Z (S+1) + 4k (€(S+1 ) o E(€(8+1)
Trr 3

Th Ty 5 e ) =0, (6.5)

2 (s4+1) 4k(n(s+l) E( (s+1)
Trr 3

P 3 Vi n; )iz + ¢V =0, (6.6)
where

o L, omgl R N TV S N T R
P§):§(|2uj PP BI20 T = 0 Py g2 - ujl’
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1

1 S nrs5(s
+ 1204 i)

s 1 n+i n n+ i n n+i 1 n+3(s) n
¢ = §(I2vj PP Bl2uy - P - 5(’2% Tk

1 1
+ ﬁ|2u}l+2(s) — u?|2)v;l+2(s).
Applying Lemma 5.2, we have

(s) n+g 9 n+3 n+1(s) 9 nt3(s)
p; | < S|l2u; * —wfuy = 2wy P =y

1
2

1
n|2 ”+§(5)
Uj| u;

Blio .+t nio n+l n+i(s)
—I—E‘\%j U7y |2v;

1 n+1 n n+i n+1(s) n n+i(s) 2 s s
gé(max{puj Pl fuy R 2wy P =l |y |}) ‘(2|25§')|+|5§')|)
5} n+s n n+3 n+3(s) n nt3(5) 112 s s
+§(max{|2“j Pl e 207 = o R '(2|277j)|+|5§)|)

< (Y + 1)
Similarly, we have
471 < CU=5" + ™).

Computing the inner product of Eq. (6.5) with e** and the inner product of
Eq. (6.6) with n(**Y and taking the imaginary part, we obtain

2
—[le=VP = = Im{p, ), (6.7)
2 (s+1) (12 (s) ,(s+1)

“ln N = = Imlg™, ). (6.8)

Adding Egs. (6.7)-(6.8) and applying the Cauchy-Schwarz inequality, we have

2 S S s s s s
Z(ICVE + D) < [Em(p, 0|+ [Tmig,+0)|

J-1
< ‘h Z pjs)€§8+1)
j=1

J—-1
s) (s+1
O
j=1
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<

-1

s+1 s+1 S s
<Oy (IEI 4+ N (1] + )
1

.
Il

S S O S S
< Cep([[e“VI1P + V1) + g(Hé( 17+ [In)1%)
(6.9)

for any positive constant e;. Let e = 1/(C7), we have

VI + (IS0 < 22X )P + 1111 < (Cm)* (e + [In)1).
(6.10)

Computing the inner product of Eq. (6.5) with —**1) and the inner product of
Eq. (6.6) with —p(*Y and taking the real part, we have

4k k. (s
S eEON? = SNV = Re(plr?, eb+0), (6.11)
s k s (s S
HU( +1)H2 _ §H +1)H2 Relq (s+1) 77( +1)>’ (6.12)

Adding Egs. (6.11)-(6.12) and applying Lemma 2.1, we obtain
(”5 (s+1) ||2 + ||77(S+1) }Re (s+1) { + |R€ (s+1)>"

Similar to Eq. (6.9), we have

S S S S O S S
N5+WF+H#+”H)SC%w5+WF+H#+”W%+5N5WF+H#WW

C s s
g(c%%y+g)méww+nwwm,

which is obtained based on Eq. (6.10). Lettiing e3 = 1/(C'1), we obtain

QC’ T 2C(CT)*

(s+1) 12 (s+1))12 <
el HD2 + [V )2 < -

N + I ©@11%).
(6.13)

D7+ [In™]?) <

According to Lemma 3.3, if 7 is sufficiently small such that 7 < we have

1 S
(3) 0= + 1) — o

when s — oo. This completes the proof.

20’

S S C
IS + 1% < —
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7. Numerical examples

In this section, numerical results are presented to test the error estimate and the
conservation laws for the finite difference scheme (2.1)-(2.4). For convenience, denote
the maximum error norms and convergence orders as

n n n n n n ||€n<h77—>HOO
l€"loc = 1U" = u™[[os  [1f"[loc = V" = v"[|oe, order 1 = log, (@— :
29

le™ (35 %) oo

\]
\‘

"(h "(h
order 2 = log, (||e (h, )HOO), order 3 = log, (L

e\, 7)lloo oo
le (s 3) oo 17 (h, )Iloo)’

order 4 = log, (M) order 5 = log, <—||f <Q’ :)”00)
len (55 Dl 175, D)oo

where U™ and V" are the solutions of the problem (1.1)-(1.4).

IR

7.1. Single soliton
Consider the parameter k = 3 and the initial conditions [29]:

up(z) = ,/ﬁ_—aﬁsech(\/ﬁx) exp (z'yx),

vo(r) = —4/ i—aﬁsech(\/ﬁx) exp (ivz),

then the problem (1.1)-(1.4) has the following exact solutions

u(z,t) = \/%sech (\/mx - yt)> exp (m - z(”; - a) t),

lféﬂsech(\/%(:p — Vt)) exp (il/x — Z(V; — a) t),

where o and v are two known constants. In this example, the parameters were chosen
as

v(z,t) = —

x=-20, z.=60, a=1 v=1, [=2/3.

The comparison of maximum error norms and convergence orders were reported in
Tables 1-3. It is easy to see that the present scheme has much higher convergence and
smaller error than the schemes in [20, 28, 29]. At the same time, the present scheme
(2.1)-(2.4) is second-order accurate in time and fourth-order accurate in space as seen
in Table 2 and Table 3. Furthermore, Q7, Q5 and E" at different times were listed in
Table 4, which support that the scheme (2.1)-(2.4) preserves the discrete conservative
properties very well. Numerical traveling solitons were showed in Fig. 1. We see that
numerical solutions agree with the exact solutions.
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7.2. Collision of two solitons

Consider the parameter £ = 1 and the initial conditions [4]:

up(x) = V2risech(rz 4 20/2) exp(iny ),

vo(x) = V2rosech(ryx — 20/2) explive),

where vy = —vy = v/4. As we know in [22], the collision of the solitary wave is elastic
when § =0 or =1 and is inelastic when g # 0 and g # 1. We analyze the collision
of two solitons by taking z; = —40, z, = 40, xy = 18, h = 0.125, 7 = h? and by

considering two scenarios for simulating the dynamics and for simulating three cases
were used to simulate the dynamics of the two solitons:

Case 1. The elastic and inelastic collision of two solitons. We take T" = 50, r; =
ro=1,vr=1,13,and 5 =0,1,2/3.

Case 2. The fusion and creation of new vector solitons. We take T' = 30, r, = 1.2,
ro=1,v=1,1.5and = 0.5, 3,5.

Case 3. The trapped and reflected solitons. We take T' = 100, r; = 1.2, rp = 1,
v =1.05,1.15 and g = 2/3.

In Case 1, we can see that the two solitons move forward without any changes in
shape and velocity after collision when v =1, § =0 and v = 1, § = 1 as shown in
Fig. 2 (a) and Fig. 2 (b), respectively. The two solitons are transient after colliding
when v = 1.3, f = 2/3 as seen in Fig. 2 (c). In Case 2, it can be seen that the two
solitons are fused into one after colliding when v = 1, 8 = 0.5 as shown in Fig. 3 (a).
The two solitons are created a new vector soliton when v = 1.5, f = 3 and two new
vector solitons when v = 1, § = 5 after colliding as seen in Fig. 3 (b) and Fig. 3 (c),
respectively. In Case 3, we can see that two solitons are trapped after colliding when
v =1.05, f = 2/3 as shown in Fig. 4 (a). Furthermore, when v = 1.15, 8 = 2/3, the
two solitons are reflected and then transient after their collision as seen in Fig. 4 (b).
In addition, Fig. 2 (b), Fig. 3, and Fig. 4 show the inelastic collision of two solitons.
We can see that a small number of radiation waves are developed after colliding. The
results of the simulations agree with those obtained in [4, 22].

8. Conclusion

In this paper, a high-order accurate conservative finite difference scheme for the
coupled nonlinear Schrédinger (CNLS) equations has been developed. It is proved
that the present scheme is conservative, uniquely solvable, stable, convergent with
fourth-order in space and second-order in time. Convergent iterative method for
the present scheme is developed and proved. Numerical experiments for the present
scheme support the theoretical analysis. Some study cases are given to investigate
the collision of two solitons.
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Table 1: The comparison of the maximum error norms and the convergence orders at T' = 10 with
h=7=0.2.

Scheme h,T h/2,7/2 h/4,7/4 h/8,7/8

Scheme in [20]  |je"[.  1.9106e-01 4.5983¢-02 1.1392e-02 2.8400e-03
order 1 — 2.0548 2.0131 2.0041

Scheme in [28]  |[€"]|o 1.9028e-01 4.5853e-02 1.1367e-02 2.8347e-03
order 1 — 2.0530 2.0121 2.0036

Scheme i [29]  ||¢"[  8.60866-01 1.9455¢-01 4.6081e-02 1.1655e-02
order 1 — 2.1456 2.0500 2.0111

Present scheme |[|e"]|oc  2.8396e-02  5.5521-03 1.1912e¢-03 2.1679¢-04
order 1 — 2.3546 2.2206 2.4581

Table 2: Errors and the temporal convergence orders of the present scheme at T = 10 with h = 0.025,
T=0.2.

h,T h,T/2 h,T/4 h,7/8
lle"|loo  2.1553e-02  5.1320e-03 1.2661e-03 3.1679e-04
order 2 — 2.0703 2.0190 1.9988
1/l 2.1553¢-02 5.1320e-03 1.2661e-03 3.1679%-04
order 3 — 2.0703 2.0190 1.9988

Table 3: Errors and the space convergence orders of the present scheme at T = 10 with h = 0.25,

T = h?.
h, T h/2,7/4  h/4,7/16  h/8,T/64
le™|eo  1.9890e-02 1.2735e-03 8.1044e-05 5.0836e-06
order 4 — 3.9652 3.9740 3.9948
|/ loc  1.9890e-02 1.2735e-03 8.1044e-05 5.0836e-06
order 5 — 3.9652 3.9740 3.9948

Table 4: Q7, Q% and E™ computed by the present scheme at different times with h = 0.25, 7 = h2.
T Qr Qs 2
0 1.69705627499030 1.69705627499030 0.281091622315605
10 1.69705627497490 1.69705627497490 0.281091622325967
20 1.69705627495949 1.69705627495949 0.281091622336329
30 1.69705627494404 1.69705627494404 0.281091622346729
40 1.69705627492861 1.69705627492861 0.281091622357112

25



14 T T T T T T T 1.4 T T T T T T T
— 70 —T0
—T=10 —T=10
12r m— T=20 1 1.2r — T=20 |
e T=30 ———T=30
——— T=40 ——— T=40
1t 4 1t g
= 0.8 B = 0.8 1
3 X
< k)
= o6} ] = o6f 1
04 1 04 —
0.2 b 0.2r q
0 0
-20 -10 0 10 20 30 40 50 60 -20 -10 0 10 20 30 40 50 60

Fig. 1: Traveling solitons of the present scheme at different times with h = 0.25, 7 = h2.
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Fig. 2: The elastic and inelastic collision of the two solitons with various v, 3.
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Fig. 3: The funsion and creation of new vector soliton with various v, 3.
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(a): v=1.05, p=2/3. (b): v=1.15, p=2/3.
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Fig. 4: The trapped and reflected solitons with various v.
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