References
[1] Amini, A. R., Laurencin, C. T., Nukavarapu, S. P., Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering 2012, 40 .
[2] Brooks, P. M., The burden of musculoskeletal disease—a global perspective. Clinical rheumatology 2006, 25 , 778-781.
[3] O’Keefe, R. J., Mao, J., Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue engineering part B: reviews 2011, 17 , 389-392.
[4] Holland, T. A., Mikos, A. G., Biodegradable polymeric scaffolds. Improvements in bone tissue engineering through controlled drug delivery. Adv Biochem Eng Biotechnol 2006, 102 , 161-185.
[5] Marolt Presen, D., Traweger, A., Gimona, M., Redl, H., Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: From Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol 2019, 7 , 352.
[6] De Witte, T.-M., Fratila-Apachitei, L. E., Zadpoor, A. A., Peppas, N. A., Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative biomaterials 2018,5 , 197-211.
[7] Vieira, S., Vial, S., Reis, R. L., Oliveira, J. M., Nanoparticles for bone tissue engineering. Biotechnology progress2017, 33 , 590-611.
[8] Bessa, P. C., Machado, R., Nürnberger, S., Dopler, D., et al. , Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. Journal of Controlled Release 2010, 142 , 312-318.
[9] Cao, L., Wang, J., Hou, J., Xing, W., Liu, C., Vascularization and bone regeneration in a critical sized defect using 2-N, 6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 2014,35 , 684-698.
[10] Li, L., Zhou, G., Wang, Y., Yang, G., et al. , Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 2015, 37 , 218-229.
[11] Zhang, S., Wang, G., Lin, X., Chatzinikolaidou, M., et al. , Polyethylenimine‐coated albumin nanoparticles for BMP‐2 delivery.Biotechnology progress 2008, 24 , 945-956.
[12] Wang, J., Liu, S., Li, J., Zhao, S., Yi, Z., Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells.Stem cell research & therapy 2019, 10 , 197.
[13] Kim, N., Yoo, J. J., Atala, A., Lee, S. J., Combination of small RNAs for skeletal muscle regeneration. FASEB J 2016,30 , 1198-1206.
[14] Dong, S., Yang, B., Guo, H., Kang, F., MicroRNAs regulate osteogenesis and chondrogenesis. Biochemical and biophysical research communications 2012, 418 , 587-591.
[15] Li, Y., Fan, L., Liu, S., Liu, W., et al. , The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials2013, 34 , 5048-5058.
[16] Qin, Y., Wang, L., Gao, Z., Chen, G., Zhang, C., Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific reports 2016, 6 , 21961.
[17] Jing, D., Hao, J., Shen, Y., Tang, G., et al. , The role of microRNAs in bone remodeling. International journal of oral science 2015, 7 , 131.
[18] Zhang, Y., Wang, Z., Gemeinhart, R. A., Progress in microRNA delivery. Journal of controlled release 2013, 172 , 962-974.
[19] Radmanesh, F., Abandansari, H. S., Pahlavan, S., Alikhani, M., et al. , Optimization of miRNA delivery by using a polymeric conjugate based on deoxycholic acid-modified polyethylenimine.International journal of pharmaceutics 2019, 565 , 391-408.
[20] Shi, C., Qi, J., Huang, P., Jiang, M., et al. , MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone 2014, 68 , 67-75.
[21] Tang, X., Lin, J., Wang, G., Lu, J., MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PloS one 2017, 12 , e0179860.
[22] Garcia-Contreras, M., Shah, S. H., Tamayo, A., Robbins, P. D., et al. , Plasma-derived exosome characterization reveals a distinct microRNA signature in long duration Type 1 diabetes.Scientific reports 2017, 7 , 5998.
[23] Li, W., Liu, Y., Zhang, P., Tang, Y., et al. , Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS applied materials & interfaces 2018, 10 , 5240-5254.
[24] Andaloussi, S. E. L., Lakhal, S., Mäger, I., Wood, M. J. A., Exosomes for targeted siRNA delivery across biological barriers.Advanced drug delivery reviews 2013, 65 , 391-397.
[25] Behera, J., Tyagi, N., Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience 2018,5 , 181.
[26] Barlow, S., Brooke, G., Chatterjee, K., Price, G., et al. , Comparison of human placenta-and bone marrow–derived multipotent mesenchymal stem cells. Stem cells and development 2008,17 , 1095-1108.
[27] Huang, L., Ying, H., Chen, Z., long Zhu, Y., et al. , Down-regulation of DKK1 and Wnt1/β-catenin pathway by increased homeobox B7 resulted in cell differentiation suppression of fetal intrauterine growth retardation in human placenta. Placenta 2019.
[28] Sung, H. J., Hong, S. C., Yoo, J. H., Oh, J. H., et al. , Stemness evaluation of mesenchymal stem cells from placentas according to developmental stage: comparison to those from adult bone marrow.Journal of Korean medical science 2010, 25 , 1418-1426.
[29] in’t Anker, P. S., Scherjon, S. A., Kleijburg‐van der Keur, C., de Groot‐Swings, G. M. J. S., et al. , Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem cells 2004, 22 , 1338-1345.
[30] Zhang, Y., Li, C.-d., Jiang, X.-x., Li, H.-l., et al. , Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl) 2004, 117 , 882-887.
[31] Youssef, A., Han, V. K. M., Regulation of osteogenic differentiation of placental-derived mesenchymal stem cells by insulin-like growth factors and low oxygen tension. Stem cells international 2017, 2017 .
[32] Wolbank, S., Peterbauer, A., Fahrner, M., Hennerbichler, S., et al. , Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue engineering 2007, 13 , 1173-1183.
[33] Wang, X., Omar, O., Vazirisani, F., Thomsen, P., Ekström, K., Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PloS one 2018, 13 , e0193059.
[34] Yoo, K. W., Li, N., Makani, V., Singh, R. N., et al. , Large-scale preparation of extracellular vesicles enriched with specific microRNA. Tissue Engineering Part C: Methods 2018, 24 , 637-644.
[35] Lee, M., Ban, J.-J., Im, W., Kim, M., Influence of storage condition on exosome recovery. Biotechnology and bioprocess engineering 2016, 21 , 299-304.
[36] Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., et al. , Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.Journal of Extracellular Vesicles 2018, 7 , 1535750.
[37] Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., et al. , DIANA-miRPath v3. 0: deciphering microRNA function with experimental support. Nucleic acids research 2015, 43 , W460-W466.
[38] Vlachos, I. S., Hatzigeorgiou, A. G., Functional analysis of miRNAs using the DIANA Tools online suite, Drug Target miRNA , Springer 2017, pp. 25-50.
[39] Maragkakis, M., Reczko, M., Simossis, V. A., Alexiou, P., et al. , DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research 2009, 37 , W273-W276.
[40] Paraskevopoulou, M. D., Georgakilas, G., Kostoulas, N., Vlachos, I. S., et al. , DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic acids research 2013, 41 , W169-W173.
[41] Reczko, M., Maragkakis, M., Alexiou, P., Grosse, I., Hatzigeorgiou, A. G., Functional microRNA targets in protein coding sequences. Bioinformatics 2012, 28 , 771-776.
[42] Vlachos, I. S., Paraskevopoulou, M. D., Karagkouni, D., Georgakilas, G., et al. , DIANA-TarBase v7. 0: indexing more than half a million experimentally supported miRNA: mRNA interactions.Nucleic acids research 2014, 43 , D153-D159.
[43] Wang, X., Liao, X., Huang, K., Zeng, X., et al. , Clustered microRNAs hsa-miR-221-3p/hsa-miR-222-3p and their targeted genes might be prognostic predictors for hepatocellular carcinoma.Journal of Cancer 2019, 10 , 2520-2533.
[44] Tang, Y.-T., Huang, Y.-Y., Zheng, L., Qin, S.-H., et al. , Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International journal of molecular medicine 2017, 40 , 834-844.
[45] Zhang, J., Li, S., Li, L., Li, M., et al. , Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, proteomics & bioinformatics 2015, 13 , 17-24.
[46] Kim, J. H., Liu, X., Wang, J., Chen, X., et al. , Wnt signaling in bone formation and its therapeutic potential for bone diseases. Therapeutic advances in musculoskeletal disease 2013,5 , 13-31.
[47] Hao, Z. C., Lu, J., Wang, S. Z., Wu, H., et al. , Stem cell‐derived exosomes: A promising strategy for fracture healing.Cell Proliferation 2017, 50 , e12359.
[48] Fang, S., Li, Y., Chen, P., Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug design, development and therapy 2019,13 , 45.
[49] Liu, J., Li, D., Wu, X., Dang, L., et al. , Bone-derived exosomes. Current opinion in pharmacology 2017, 34 , 64-69.
[50] Liu, M., Sun, Y., Zhang, Q., Emerging role of extracellular vesicles in bone remodeling. Journal of dental research 2018,97 , 859-868.
[51] Qin, Y., Sun, R., Wu, C., Wang, L., Zhang, C., Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. International journal of molecular sciences 2016, 17 , 712.
[52] Qin, Y., Wang, L., Gao, Z., Chen, G., Zhang, C., Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Scientific reports 2016, 6 , 1-11.
[53] Cui, Y., Luan, J., Li, H., Zhou, X., Han, J., Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS letters 2016, 590 , 185-192.
[54] Gao, J., Yang, T., Han, J., Yan, K., et al. , MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. Journal of cellular biochemistry 2011, 112 , 1844-1856.
[55] Kalajzic, I., Matthews, B. G., Torreggiani, E., Harris, M. A., et al. , In vitro and in vivo approaches to study osteocyte biology. Bone 2013, 54 , 296-306.
[56] Osteikoetxea, X., Balogh, A., Szabó-Taylor, K., Németh, A., et al. , Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PloS one 2015,10 , e0121184.
[57] Tokuzawa, Y., Yagi, K., Yamashita, Y., Nakachi, Y., et al. , Id4, a new candidate gene for senile osteoporosis, acts as a molecular switch promoting osteoblast differentiation. PLoS genetics 2010, 6 , e1001019.
[58] Weilner, S., Skalicky, S., Salzer, B., Keider, V., et al. , Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 2015,79 , 43-51.
[59] Meng, Y. B., Li, X., Li, Z. Y., Zhao, J., et al. , microRNA‐21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β‐catenin pathway. Journal of Orthopaedic Research 2015, 33 , 957-964.
[60] Wu, Z., Yin, H., Liu, T., Yan, W., et al. , MiR-126-5p regulates osteoclast differentiation and bone resorption in giant cell tumor through inhibition of MMP-13. Biochemical and biophysical research communications 2014, 443 , 944-949.
[61] Lv, H., Sun, Y., Zhang, Y., MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Medical science monitor: international medical journal of experimental and clinical research 2015, 21 , 1527.
[62] Jaiswal, N., Haynesworth, S. E., Caplan, A. I., Bruder, S. P., Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry1997, 64 , 295-312.