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A STRATEGY APPLIED ON WEIGHTED ENO INTERPOLATION
TO IMPROVE THE ACCURACY NEAR DISCONTINUITIES*

FUXING HUT

Abstract. A strategy is devised to make the WENO interpolation in the point values achieve
optimal accuracy near the discontinuities. The classical WENO interpolation ensures the optimal
accuracy when all stencils are smooth and ENO property when the discontinuity appears. When there
exist more than two successive smooth stencils, the maximum theoretical accuracy near discontinuity
is also preferred to be obtained. To achieve it, we divide the classical WENO algorithm into several
sub-WENO procedures. In each sub-WENO procedure, only two stencils are used and the order
of accuracy grows one at most. If both stencils are smooth, then sub-WENO procedure increases
the order of accuracy by one. If there is a stencil is smooth and the left one is non-smooth, then
algorithm conserves the order of interpolation by corresponding smooth stencil and keeps the ENO
property. If both stencils are non-smooth, then the value constructed by sub-WENO procedure will
be ignored in the latter procedures. The whole of new WENO algorithm can be expressed as a tree
structure. The indicator of smoothness of every medium stencil in the tree structure is defined by
the indicators of smoothness of corresponding stencils on the top of tree. Such definition is proved
to be capable of obtaining the optimal accuracy and keep the ENO property. And the new WENO
algorithm has almost the same computational cost as the classical WENO algorithm.

Key words. optimal order of accuracy, WENO interpolation, corner and jump discontinuity

AMS subject classifications. 41A05, 65M06, 65D05

1. Introduction. The interpolation of piecewise smooth function from the dis-
crete sample points is always an important problem of numerical computation. The
simple linear Lagrangian interpolation is suitable for a set of smooth sample points
and achieves the optimal accuracy. However, we often need to interpolate a set of
discrete points which contains corner (or jump) discontinuities. In these cases, the
Gibbs oscillations generated by linear Lagrangian interpolations around the discon-
tinuities will decrease the numerical accuracy. Then some preferred nonlinear al-
gorithms should be used to obtain stable numerical approximation. The nonlinear
essentially non-oscillatory (ENO) interpolation, which can tackle this problem well,
was first presented in [12, 11] for solving hyperbolic conservation laws. To eliminate
the effect of non-smooth parts of sample points, the ENO algorithm adaptively choos-
es the smoothest stencil from the candidates to reconstruct the piecewise function.
The indicator of smoothness of each stencil is defined as the Newton divided differ-
ence of sample points on this stencil. More information about ENO algorithm one
can refer to [22, 23, 10].

In the procedure of ENO interpolation, while the smoothness of all the candidate
stencils are measured, only the smoothest one is conserved finally even though all the
stencils are enough smooth to be used. To gather all the potential stencils, in [19], the
authors presented the weighted ENO (WENO) algorithm based on ENO. The aim of
WENO algorithm is to keep the ENO property in non-smooth regions and meanwhile
improve the order of accuracy in smooth regions. To obtain it, in the WENO algo-
rithm, each candidate stencil is distributed a nonlinear weight which measures the
contribution of this stencil for the final convex combination. The nonlinear weights
are devised to approach linear optimal weights in smooth region to improve the accu-
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2 FUXING HU

racy of interpolation. While there exist stencils cross the discontinuities, the weights
assigned to these non-smooth stencils can be ignored almost. In [16], the authors
shown new indicators of smoothness which emulate the idea of minimizing the total
variation of function. The new indicators of smoothness are defined as the Ly norm of
the derivatives of the interpolation polynomials. The indicators of smoothness in [16]
ensure the optimal order of accuracy in smooth region and ENO property when there
exist stencils contain the discontinuities. About the improvements and applications
of WENO algorithm, the interested reader can refer to [13, 8, 24, 14, 25, 18, 15, 17, 4].

Around the discontinuities, the classical WENO algorithm [16] generally only
achieves the same order of accuracy as the corresponding ENO interpolation. It was
shown in [16] for reconstructing the numerical flux at cell boundary based on the
cell averages. What lead to the degeneration of order of accuracy is the classical
WENO cannot distribute reasonable optimal weights to the smooth stencils when
the discontinuity appears. In [1], the authors proposed a power WENO algorithm
to improve the accuracy near discontinuities. However, it does not obtain the max-
imum theoretical order of accuracy. Then, the authors in [3] succeed in obtaining
the maximum theoretical accuracy close to the discontinuities by a improved WENO
algorithm (WENO-AW). Uunlike the fixed linear optimal weights proposed in [16, 7],
they devise nonlinear optimal weights to tackle this problem. The nonlinear opti-
mal weights are expressed as the nonlinear convex combination of three vectors of
linear optimal weights. Each vector of linear optimal weights is appropriate for one
special case. The proofs of maximum theoretical accuracy near discontinuities and
ENO property were presented in [3]. They also give another algorithm to raise the
accuracy of WENO algorithm for the interval which contains the corner discontinuity.
In [1, 2, 3], certain modified indicators of smoothness are used to detect the corner
and jump discontinuities. At the same time, these indicators of smoothness conserve
the optimal accuracy and ENO property. In this paper, we only consider how to
improve the order of accuracy near discontinuities by a more efficient algorithm. If
one wants to obtain the optimal accuracy in the interval containing the discontinuity,
the algorithm in [3] will be a commendable choice.

As mentioned above, the algorithm in [3] recover the optimal accuracy near discon-
tinuities by devising a set of nonlinear optimal weights. However, the new nonlinear
optimal weights are computed by an extra WENO algorithm. And in this procedure,
the indicators of smoothness of the bigger stencils are also need to be calculated. As
shown in [3], the computational costs of new WENO algorithm are more than double
when compared with the classical WENO. In this paper, we present a simple WENO
algorithm to recover the optimal accuracy near discontinuities. In order to describe
this algorithm clearly, we take the 6th-order WENO algorithm for example. To ensure
the optimal accuracy near discontinuities, the classical WENO algorithm is divided
into three sub-WENO procedures. We first construct two 5th-order WENO approx-
imations by using the former two 4-points stencils and latter two 4-points stencils,
respectively. In the next, we construct the 6th-order WENO approximation by using
two 5-points stencils and corresponding 5th-order WENO approximations which have
been obtained. From the statement above, we need three sub-WENO procedures in
this algorithm and in each sub-WENO procedure we only need information of two
stencils. Unlike the classical WENO, which direct constructs the 6th-order approxi-
mation by the nonlinear convex combination of three 4th-order approximations, the
order of accuracy of new WENO algorithm grows one by one and this nonlinear inter-
polation truly confirms the optimal accuracy near discontinuities. Since the 5-points
stencils are used in this procedure, we have to compute their indicators of smoothness.
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SUB-WENO ALGORITHM 3

To control the oscillations and reduce the computational cost, we express the indica-
tors of smoothness of 5-points stencils as the product of two corresponding 4-points
substencils. The new WENO algorithm here can be reformulate into the similar com-
pact form as the classcial WENO algorithm and no much computation is introduced.
Furthermore, it is also easy to extend the algorithm to the cases of higher order.

The organization of this paper is as follows. In section section 2, we review the
classical WENO [16] and WENO-AW [3] algorithms. In section section 3, we show
the new WENO interpolation and prove the statement of optimal order of accuracy
near discontinuity and property of ENO. In section section 5, we test the numerical
accuracy and computational costs.

2. Review of WENO algorithms. In this section, we review the classical
WENO [16] and WENO-AW algorithm [3] in point values. The interested reader can
also refer to [20, 21] for a full statement of WENO interpolations.

2.1. The classical WENO algorithm with fixed optimal weights. Let us
consider a set of sample points (x;, f;), 1 < ¢ < N, where f; = f(x;) and Az =
r; — x;_1. What we want to do is to interpolate the value in middle point Tio1 of
interval (z;_1,x;) when the discontinuity appears around this interval, but not in this
interval. As shown in [5], it is possible to locate the corner discontinuities, but it is no
hope to locate the jump discontinuities. Hence, when the corner discontinuity appears
in (z;_1,z;), the algorithm proposed in [3] can be used to tackle this problem. But,
when the jump discontinuity appears in (z;_1, z;), the order of accuracy of numerical
approximation to x;_ 1 will be affected inevitably.

Since z;_ 1 we want to approximate is in the interval (x;_1, x;), each stencil used
should contain (z;_1,z;). Let us denote by S} the stencil

{ij+i_m+1, e ,xj_l,xj, e ,Ij+i},

where the superscript of S;" denotes the number of point of this stencil contains and
the subscript denotes the number of point at the right of interval (z;_1, ;). The same
notation is also used for the interpolation polynomial p}*, indicators of smoothness
B, the weights w;" and so on. Let us take the 6th-order WENO for example to
approximate the value at T;o1 in the middle of (z;_1,z;). The 6th-order WENO
algorithm uses three 4-points stencils,

4 __

Sy =A{@j-3,xj—2,2j-1,2;},
4

St =Azj2,zj-1, 75,241},
4

Sy ={xj-1,2j, 41,2542}

On each stencil, we obtain approximation at z;
polynomial of degree 3,

1 by a Lagrangian interpolation

po(wj_1) = 15 (fi—3 = 5fj—2 + 15f;—1 +5f;),
(2.1) pil(ffjfé) = 1x (= fi—2+9fi—1+9f; — fi+1),
p3(w;_1) = 15 (5fi—1 +15f; = 5fjs1 + fir2) .

In [16], the indicators of smoothness were defined as the Lo norm of the derivatives
of the interpolation polynomials. These indicators of smoothness were proposed for
upwind methods to solve hyperbolic conservation laws with cell averages. To fit the
interpolation in point values, we adopt the one presented in [2, 15, 3],

n ) 2
(2.2) Bl o= LT (dd—;lpgl(a:)) de, i=0,1,2.
=2
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4 FUXING HU

By removing the first derivative of interpolation polynomial from formula in [16], the
modified indicators of smoothness perform well for the corner discontinuities. The
explicit forms of (2.2) of three stencils are

0 = &Bfi—s—27fj—2+30f;_1 — 11fg2) B(fi—2—2fi—1+ fj2)27
(23) Bt = 58fj—2—21fj_1+18f; —=5fj11)" + 3 ( =2fi+ fi+1)”,
3 = H(1f01 —30f; +27f11 — 8fj420)” + 1 (fj—l —2f; + fir1)?.

To ensure the optimal accuracy and ENO property, the nonlinear weights are intro-
duced by

(2.4 wio =M o U g
o0 (e+5;)

The nonlinear Weights w} > 0 and Z?:o w} = 1. The linear optimal weights d} are

chosen to be dj = d} = 10 d3 = —6 so that

16’ 16

).

The parameter € appears in denominator is used to avoid the division by zero. The
fully discusses about e can refer to [13, 6]. The exponent ¢ in (2.4) is used to in-
crease the difference of scales of weights near the non-smooth region. For high order
WENO interpolations, we generally need to choose ¢ > 2 for control the numerical
oscillations around the discontinuities [7, 9]. To imitate the 6th-order linear interpo-
lation at the smooth region and meanwhile compress the interpolation oscillations,
the approximation Fg(xjfé) of p§(x) at z;_1 is chosen to be

pg(xj—%) dopo( Tj %) dipi (= Ly %) dyps(z Tj 1

(2.5) F§(z;_ 1) = wipg(e;_ 1) + w%pzll(fjfé) + w%p%(xjfé).

At smooth regions, Taylor series expansions at ;_1 of the indicators of smooth-

ness in (2.3) can be collected to be

1
2

(2.6) g = (Aﬁfﬂ’%)Q (1+0(A22)), i=0,1,2.

Replacing 3¢ in (2.4) and taking € small enough, if f”(xjfé) # 0 the nonlinear weights
approximate linear ones by

(2.7) w} =d}+ O(Az?), i=0,1,2.

Substituting (2.7) into (2.5) gives

2
2d4 pia-g)+ X diptay)

wip}(x

N

-
Il
=]

FQG(%'—%) =

~—

M\»—A
NJ=

J

I
M
B

|

I
=
3

-
Il
=]

(wi — d})pi(x;_

M

(2.8) =

-
Il
=]

0

)+ 3 dipe, )
D) 3w
L,y — 1
+ O(Az%)

% i=0
2
1 (wi — d?)fjfé + Z d?P?(ijé)
i ) i=0
)
O(Azf).

|
Qw

1
2

.
Il

& S5
—~Q
i%

1
2

N\»—l
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SUB-WENO ALGORITHM 5

At the smooth part of discretized data, the classical 6th-order WENO algorithm has
optimal accuracy if f”(xj_%) #0.

In the next, we consider the case in which 85 and i are smooth, while 33
contains a jump discontinuity. For the corner discontinuity, we can reach the similar
conclusions. In the case of jump discontinuity, three indicators of smoothness will
take values

Bo = O0(AzY), Bf =0(Azh), By =0().

Then the corresponding weights can be expressed as

dg "
wi = (+8D7 _ dy
- d3 d? i e84\ e+83\?
i T e T sy db+al (S1) + dd (S5
= do = 4 + O(Az?)
 di+d (1 + O(Ax2)? + di(O(Axie))  dS +df ’
d4
i - <e+54> di
L= i da e+84\ ¢ 5\ 2
ey + et - (55) +ai+at (55)
d d
= oA
B110B2) +d+ (0B  drd (Az)
and
dj
e+ﬂ
'LU% = d4 ( 2) d4
e T <e+54> + T am
d4(e+zzo> (Z)*ﬁl)
e+p
= . — = O(Ax9).
di(e+ BT +di(e+ B)1 + d47(e+ﬁ°iéi;ﬁ4)

So, the contribution of stencil S3 which contains discontinuity can be ignored when
Az is small enough. It is exactly the ENO property. Generally, since

d4 4 di 4 5
d4+d4 0( ) d4+d4 1(3j )¢p1($j—

)

N

and using the similar operations in (2.8), we only obtain
(2.9) Fg(xjfé) = fj,% + O(Az?).

Finally, we consider the case of 8§ = O(Ax*), f = O(1) and 5 = O(1). That
is, the discontinuity lies in interval (x;, ;1) and only stencil B3 is smooth. Through
the similar analysis as the above cases, the same conclusion as (2.9) is achieved for
WENO approximation at Tt The idea of classical WENO algorithm is to ensure
the optimal accuracy at smooth part of discretized data and ENO property when
there exist stencils affected by discontinuity. In the second case, since 35 and (i are
both smooth, the higher 5th-order approximation using the information of stencil S?
is preferred to be reached.

This manuscript is for review purposes only.
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2.2. The WENO algorithm with adapted optimal weights. In the clas-
sical WENO algorithm [16], the optimal weights d (i = 0,1,2) in equation (2.4) are
fixed. It is considered as the primary reason of degeneration of order of accuracy
around discontinuities in [3]. The authors present the adapted optimal weights based
on the indicators of smoothness of stencils. For the 6th-order WENO-AW algorithm,
if the jump discontinuity lies in (z;41,7,42), i.e., B = O(Az?), B = O(Az?*) and
B3 = O(1), then optimal weights (2d3,d7,0), which satisfy

2dgpy(w;_ 1) + dipi(z;_1) = pi(z;_1),

are preferred to be chosen to achieve the 5th-order of accuracy. Similarly, if the
discontinuity lies in (z;_3,zj_2), i.e., B = O(1), B{ = O(Az?) and B3 = O(Azx?),
then optimal weights (0, d}, 2d3), which satisfy

déllpzll(xjfé) + 2d§p§(a?j, )= pg(‘rjf%%

1
2
are preferred to be chosen. To improve the accuracy near discontinuities, an adapted
strategy to choose the optimal weights among (2d¢, df,0), (0,d$,2d3) and (dg,d}, d3)
is proposed in [3]. In order to avoid the abrupt transition from one vector of optimal
weight to another one at the interfaces between smooth and non-smooth regions, the
nonlinear adapted optimal weights are defined as a smooth convex combination of
three vectors of optimal weights,

(2.10) (dg, dt, d3) = @} (2dg, di,0) + @§(dy, di, d3) + @5 (0, df, 2d3).

The coeflicients of three vectors of linear optimal weights are defined as

~5 ~6 ~5
0 = ai @ = a @ = Qs
1 — = ~ ~59 2 ~ ’ 2 — ~ ’
ai +as +as al +as +as ab +al + aj
where
P S| SN S L
1 — ) 2 — ) 2 .
(e+ 7)1 (e+3) (e+B3)4

After obtaining the adapted optimal weights (dg, d?, d}), inserting them into equation
(2.4) gives

4 g
(2.11) w? a 4 i

=1t ot=—"_ i=0,1,2
' 212:0 aj b (et )

In case 1: all the 4-points stencils are smooth. The nonlinear weights computed
by (2.11) satisfy
(wp, wi, wy) = (dg, di, dy) + O(Az?).

It is the sufficient condition, as shown by the Theorem 3.2 in [3], to achieve the
6th-order approximation,

2

2
F§(z;_1) = wipi(z;_1) = f;_1 + O(Az®).
=0

In case 2: the discontinuity lies in the interval (zj41,2;42), ie., B and Bf are
both smooth and 33 is non-smooth. If it is a corner discontinuity, then we have

(w5, wi, w3) = (2d5,d1,0) + (O(Az?), O(Az?), O(Az?P)) .
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SUB-WENO ALGORITHM 7

If it is a jump discontinuity, then we have
(wé,w%,wg) = (2dé,d§l,0) + (O(Az*), 0(Az?), (’)(Ax4p)) .
If the discontinuity lies in the symmetric interval (z;_s,x;_2) of (z;41,2j42), by
similar analysis we obtain
(wp, wi, w3) = (0,d],2d3) + (O(Az*?), O(Az?), O(Az?))
for the corner discontinuity and
(ki wd) = (0,1, 2d8) + (O(A™), 0(Aa), 0(As)

for the jump discontinuity. Also by the Theorem 3.2 in [3], the 5th-order approxima-
tion can be achieved,

)= fj_% + O(AJE5).

2
6 4, 4
F, (5'33'—%) = sz’pz‘ (a:j—%
i=0
In case 3: the discontinuity lies in the interval (z;,z;41), i.e., B5 is smooth and
B4 and B3 are both non-smooth. If it is a corner discontinuity, then we have

(wg, wi, w3) = (1,0,0) + O(Az??).
If it is a jump discontinuity, then we have
(wg, wi, w3) = (1,0,0) + O(Az).

If the discontinuity lies in the symmetric interval (z;_2,x;_1) of (x;, xj4+1), by similar
analysis we obtain
(wg, wi, w3) = (0,0,1) + O(Az?)

for the corner discontinuity and
(wé, wi, w%) =(0,0,1) + O(Az*)

for the jump discontinuity. Also by the Theorem 3.2 in [3], the 4th-order approxima-
tion can be achieved,

Fzﬁ(l“jfg) = wapf(xjfé) = f',% + O(Am4).

When the interval [z;_1, z;] contains the corner discontinuity, the strategy in [3] is
suggested to be used. This strategy ensures the 3rd-order of accuracy for the interval
which contains the corner discontinuity.

3. The 6th-order sub-WENO algorithm. In this section, a simple 6th-order
sub-WENO algorithm is presented, which has the same aim as the WENO-AW al-
gorithm proposed in [3], to achieve the optimal order near the discontinuities. The
second algorithm in [3] is to improve the order of accuracy of when the middle inter-
val (xj_1,2;) contains the discontinuity. As shown in subsection 2.2, the extra three
indicators of smoothness of big stencils 37, 85 and S are required to calculate the
adapted nonlinear optimal weights. The computational cost of the WENO-AW algo-
rithm in [3] is more than double when compared with the classical WENO algorithm

This manuscript is for review purposes only.
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8 FUXING HU

[16]. In the classical 6th-order WENO algorithm, the idea is to combine three 4th-
order linear interpolations to achieve 6th-order accuracy at smooth regions and the
potential Hth-order interpolations are skipped. It is the probable reason which leads
to the degeneration of algorithm near discontinuities. To recover the accuracy near
discontinuities, we divide the classical WENO into several sub-WENO procedures. In
each sub-WENO procedure, only two stencils are used. The order of accuracy grows
only one at most by combining two stencils and the ENO property is also conserved.

sS4 g4 54
N /N /S
S5 S5
N/

S5

S St S

S8

FiG. 1. The left is the tree structure of the 6th-order sub-WENQO algorithm. The right is the
tree structure of the 6th-order classical WENO algorithm.

In the 6th-order sub-WENO algorithm, there are three 4-points stencils can be
used and there will be three sub-WENO procedures as shown in Figure 1. In the first
sub-WENO procedure denoted by {S§, S{} < S?, emulating the classical WENO in
section section 2, we use the stencils S§ and S} to compute the 5th-order approxima-
tion at Ty,

(3.1) Ff’(%’—%) = wépg(%‘—

from

We extract the formulas of interpolation polynomials p}(z)(i = 0,1) at z;
(2.1),

1
2

) = %16 (fi—s —5fj—2+15f;_1 +5f;),

. i6 (=fi—2 +9fi—1+9f; — fi+1)-

~—

The nonlinear weights are computed similarly as (2.4) by

4 4

(07 [0
(3.3) Wi = — Wi =
ag +aj ag +aj

and the unnormalized weights are defined as

oy 4

(e+ g’ (e + B1)e

The linear optimal weights in (3.4) are chose to be d§ = % and d} = g to satisfy

).

The indicators of smoothness B#(i = 0,1) are extracted from (2.3), and we repeat
them for completeness of new algorithm,

(3.5) BY = E(8fjs—27fj2+30f;_1 —11f)° + B (fi_2 —2f;-1 + f;)°,
Bt = & Bfi2—21f1 +18f —5f41)  + 12 (i1 — 25 + fi+1)*

(3.4) af = af =

p?(xjfé) = dépg(xj,%) + dilpil(%f%

This manuscript is for review purposes only.
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SUB-WENO ALGORITHM 9

Up to now, the first sub-WENO procedure {Sg, Si} < S7 is completed by emulating
the classical WENO algorithm. This sub-WENO procedure can achieve 5Sth-order
approximation to f,_ 1at smooth region and keep the ENO property when there is
one non-smooth stencil. Actually, when there is one non-smooth stencil, this sub-
WENO procedure still ensure the 4th-order of accuracy. The proofs of assertions are
ignored here, since the properties of the algorithm after integrating three sub-WENO
procedures are our aims.

In the second sub-WENO procedure {S}, S5} < S5, we use the stencils S} and

S3 to obtain another 5th-order approximation to fi- 1

(3.6) FS(xj_%) Zw%p%(xj—%)‘Fw%P%(l’j—%)a

where the values of two 4th-order interpolation polynomials at z;_ 1 are

’ (1) 16 (5fj—1 +15f; = 5f511 + fiy2).

The nonlinear weights in (3.6) are computed as

4 4

« «
(3.8) w‘f:—4 ! 1 w; = 1 5 1
o +ay a7 +a;

and the unnormalized weights are defined as

(3.9) af = 7&% ad = 7%1 .
Poe B P (e+ B3

The linear optimal weights are chose to be df = % and dj = % for satisfying
).

The indicators of smoothness (i = 1,2) are also chosen from (2.3),

pg(mj,%) = dilp%(xjf%) + dép%(acj,%

(3.10) Bt = ﬁ (8fj—2 —21f;—1 + 18f; — 5fj+1)22+ % (fj=1 —2f; + fj+1)22,
B = 15 (Wf50 = 30f;+27f;41 — 8fj42)" + 1o (fic1 — 2f5 + fima)™-

The second sub-WENO procedure {St, S5} < S5 is similar to the first one but the
nonlinear interpolation is operated on the stencils St and S3. It is noted that in the
two sub-WENO procedures above, we use the several same notations, such as the
nonlinear weight w{ in (3.3) and (3.8). But these same notations are independent in
the different sub-WENO procedures.

Through the former sub-WENO procedures, we arrive the 5th-order approxima-
tions satisfying

Fi(e; ) = pile; ) + O(Aa)

Nl=

and
Fi(z,_y) = pi(a;_y) + O(Aa)

on the 5-points stencils S} and S5, respectively, when discretized data is smooth. In
the third sub-WENO procedure {S?, S5} < S§, we arrange to obtain the 6th-order
approximation to f;_1 by combination of Fl‘r’(xj_%) and Fg(xj_%),

(3.11) Ff(x;_1) = wiF} (z;

i=3

) + ngf(azj_%).
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10 FUXING HU

The nonlinear weights are defined as

5 af 5 3
(3.12) wy = ——1—, wy=-—4"2—
1 a?_i_aga 2 a?+aga

where the unnormalized weights are defined as

dy s d3
(e+ 879 (e+p3)"

The optimal weights are chosen to be dj = % and dj = % for satisfying
).

The only problem is how to choose the indicators of smoothness 47 and 85 on S3 and
S5, respectively. A natural option of 87(i = 1,2) is to use the formula (2.2)

(3.13) ol =

Q
¥

6

pZ(mj ) d1p1( jf) d2p2( Tj—

1 1
2 2

g = wa“(dw,pl ))2dm, i=12.

When the discontinuity lies in (241, 2;42) or (zj_3,x;_2), the choice of (2.2) is valid
and the final algorithm can achieve 5th-order accuracy and keep the ENO property.
However, if there exists a discontinuity appears in (z;,z;11) or (z;_a,2;_1), then S?
and S5 are both non-smooth. And in result, both stencils are distributed comparative
weights and the oscillation will be inevitable. To approach the optimal accuracy and
preserve the ENO property, the effective choices are

(3.14) B = ByBL, B3 = Biss.

Taking S} for example, since S} = S§ U St, we express the indicator of smoothness
parent stencil S? as the product of substencils Sg and S;. This option will be extended
to the higher order sub-WENO algorithms. If the discontinuity appears in (z;, ;1)
or (zj41,%j42), by using the indicators of smoothness in (3.14), the contribution of
stencil S5 can be ignored and S will dominate the final combination. The similar
result can be obtained when the discontinuity lies in (z;_3,z;_2) or (z;_2,2;_1).
In addition, the indicators of smoothness 8#(i = 0,1,2) have been obtained in the
former sub-WENO procedures and we do not need extra computational cost. For the
simplification of the equations, we replace € + 82 (i = 1,2) in denominators of (3.13)
by (e + B 1) (e + B) (i = 1,2), respectively, and (3.13) becomes

5 _ dy _ d3
19 S (R e T R (CEue Ty

The common term e + #{ will be cancelled when we substitute the unnormalized
weights into (3.12). So, we actually define the indicators of smoothness 37 and 33 as

(3.16) B =B, B3 =5

For the higher order sub-WENO algorithms, the choice of indicators of smoothness
is presented in section 4 in detail. The proofs of achieving optimal accuracy and
keeping ENO property will be shown in Theorem 3.1. Before giving this theorem, we
first simplify the sub-WENO algorithm which will facilitate the proof of Theorem 3.1.

(%28
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Inserting the weights (3.3) into (3.1) gives

(e + B1)5(x;_1) +5(e + B5)pi(2;_1)
3(e+ 1)1+ 5(e + By)a ’

(3.17) Fi(e, ) =

and similarly inserting the weights (3.8) into (3.6) gives

5(e+ B2)pi(x;_1) + 3(e + B1)p3(a;_
5(e + 33)7 + 3(e + p1)9

D=

Finally, substituting the 5th-order approximations (3.17)(3.18) into (3.11), we obtain

(3.19) Fg(xjfé) = wopg(xjfé)+w1p411(xj7%)+w2p421(xj7%)3

Through reorganization, the nonlinear weights in (3.19) are
(320) wo = oy, W1 :Oég(l —a0)+a1(1—a2), Wy = (1—0(1)(1—0[2),

where the unnormalized weights are

3
p = — | +o> .
g | o
(3.21) oy = — A
(e+BD) T (e+BD)
oy — )

1 1 :
rpiyT T (erpha

THEOREM 3.1. Suppose that the stencil S§ contains a discontinuity at most, the
exponent in unnormalized weights ¢ > 1 and € < O(Am4). Then the 6th-order sub-
WENO algorithm (3.19)(3.20)(3.21) satisfies the following three cases:

case 1: if the stencil SS is smooth, then

Fzﬁ(fcj—%) = flz;_1) + O(Az®);
case 2: if there is a discontinuity lies in (x;_3,x;_2), then

Fzﬁ(xjfé) = f(xjf )+ O(AQUS)»

Nl

or if there is a discontinuity lies in (z;41,%j42), then
F§(r;y) = fla;_y) + O(8a);
case 3: if there is a discontinuity lies in (z;_2,x;_1), then
FQG(:Cj—%) = flz;_1) + O(Ax?),
or if there is a discontinuity lies in (xj,xj41), then

Fzﬁ(xjfé) = f(xj, )+ (’)(Ax4).

1
2
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Proof. For the case 1, since the stencil S§ is smooth, we obtain
2
(3.22) g = (A:chj’LQ (1+0(A22)), i=0,1,2.
2

By Taylor analysis, the unnormalized weights in (3.21) satisfy

3

(e+B3)7 3(e + B1)1 3 2
ag = = =~ 4+ 0O(A2),
o+ o Slet B (e B)e 8
5
GEHE 5(e + B3)° 5 2
(3.23) o = L = = -+ O(Az?),
o e Ot B +3(e+ B 8
1
G (e +B3)" 1 >
ey s (CHATH(E+ AT 2

Then the weights in (3.20) satisfy

Wy = gy = 3 + O(Az?),

10 10
(3.24) wi = az(l —ag) + ar(1 - az) = 72+ O(Az?),
3
wp = (1= a1)(l - az) = 7= + O(Aa?),
By using the similar discussion as (2.8) and denoting (do,d1,d2) = (3,12, 3), we
have
6 2, 2 2
F (xjfé) = izowipi (fcj,%) - Z;O dip; (xjfé) + ;O dip! (wj,%)
2 2
2 2 )
(3.25) - ;}(wi —di)pi(x;_1) - _Z;(wz —di)fi_r + %dlp;*(x%%)
2 = i=
= Z;)(wz‘ - di)(p?(xjfé) - f‘,%) +pg(a:j7%)

Pi(a;_y) + O(Aa®)
fj_% + O(Axﬁ).

For the case 2, we only discuss the situation in which the discontinuity lies in
the interval (x;_3,2;_2) since (z;41,%;j4+2) and (z;_3,2;_2) are symmetric. We first
analyze the case of corner discontinuity which lies in (z;_3,2,;_2). At this moment
three 4-points stencils satisfy

By = O(Ax?),
(3.26) g = (AfoJ’»’,%) (1+0(Az?)),
2
i = (aetrr,) (1+0(as?).
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The unnormalized weights in (3.21) satisfy

3
GEEHE 3(e + B1)" >
ap = = = O(Az?9),
ooty e AT+ )
(GERE 5(e + B3)1 5 2
(3.27) o) = L = = -+ O(Az?),
@ ey DA+t 8
() (e+83)1 >
Qg = = = O(Az?9).
@ e (CH )T e+ )

The weights in (3.20) satisfy
wy = apaz = O(Azt),

(3.28) wr = az(l —ag) +ar(l —a2) = g + O(Az?),
wy=(1—-0a1)(1—az) = g + O(Az?).

2
Denoting (do, d1,d2) = (0, 2, 2) and one can easily verify > dipf(xjf%) = ph(x;_
i=0

),

Nl

then we have

2 2 2

Fg(%’—%) = z%wip?(l“j—%) - zjodip?(xj—%) + Zodip?(xj—%)
2 o -
= = (e )+ Y e, y)
2 2 2
(3.29) = ;}(wi —di)pi(z;_ 1) — _Z%(wi —di)fj 1+ Zbdipf(@“j—%)
5 1= 1=

= S )0 ) ~ fimy) )
pale,_y) + O(Aad)
Jicr+ O(Azd).

If there is a jump discontinuity in the interval (x;_3,x;_2), then the indicators
of smoothness satisfy

53 = O(l)v )
(3.30) sto= (aetr,) (1+0(aa?),
gt = (Aﬁf;f_%f (1+0(Ax?)).

Inserting these indicators of smoothness into the unnormalized weights in (3.21) gives

3
(e+83)1 3(e + 1)1 4
ap = = = O(Az*),
@ty e AT+ )
(GERE 5(e + B3)1 5 2
(3.31) o) = L = = -+ O(Az?),
@ ey DA+t 8
(T2 (e +83)1 "
g = = = O(Az*9).
@ e (CH)T e+ )
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Then the nonlinear weights in (3.20) satisfy
wo = apag = O(Az89),

(3.32) w1 = az(l —ag) +ai(l —az) = g + O(Az?),
wy=(1-0)(1—ag) = g + O(Ax?).

Repeating (3.29) shows the same result,
(3.33) F26($j_%) = fioi+ O(Az®).

Finally, we consider the case 3, in which the discontinuity lies in interval (z;_o,z;_1)f
or (zj,xj4+1). Again we only analyze the situation of the discontinuity lies in interval
(xj_2,xj—1) since (x;,x;4+1) and (x;_2,x;—1) are symmetric. we take into account
the corner discontinuity which lies in (z;_2,2;_1), then the indicators of smoothness
achieve

By = O(Ax?),
(3.34) B = O(Az%),
go= (asr,) (1+0@a?),

1
2

Substituting the indicators of smoothness into the unnormalized weights in (3.21)
shows

_ 3
N - N (R L
ﬁ —; ﬁ 3(e+ BT+ 5(e + Bi)a
(e+BD 5(e + B)a ,
(3.35) a1 = 5 1 3 = v - — O(Am q)’
ij 5(e + B3)7 + 3(e + B}
1 .
an = TR _ (e +53) N

1 1 1 1
@epr terar ((HO) e+ 5K)
Then the nonlinear weights in (3.20) satisfy
wo = apaz = O(Az29),

(3.36) w1 = az(l — ap) + a1 (1 — az) = O(Az?9),
Wo = (1 — Oél)(l — Oég) =14+ O(Al‘Qq)

2

Denoting (dg, d1,ds) = (0,0,1) and one can easily verify > dipf(xﬁ
i=0

then we have

2 2
F(z;_y) = ;}wip?(xj_%) - Z:Odip?(xj—%) + Z:Odip?(xj—%)
= S, y) + 3 dlley )
2 2 2
(3.37) = Z,O(wz - d’i)p?(x‘jfé) - Zo(wz —di)fj_r+ > dzpf(xjfé)
5 1= 1=
= S )~ fimy) b y)
pa(w;_1) + O(Az*H)
fi_y +O(ATY).
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If the jump discontinuity lies in (z;_2,2;_1), then the indicators of smoothness ap-
proach

§ = on),
(3.38) 1 = 0Q), ,
4 = (Afo’.’ l) (1+ O(Az?)).
J—3
Replacing the indicators of smoothness into the unnormalized weights in (3.21) shows
3
o — (8" _ 3(e+ 811 — o)
R Gl G
GEHE 5(e + B3)" "
(3.39) o = L = = O(Az™),
@ ey Ot AT+ Slet B
1 4\ q
az = GEHE = (c ¥ fa) i O(Ax*).

Tty (T (e A)
Then the nonlinear weights in (3.20) satisfy

wo = qpag = O(Axd),
(3.40) w1 = az(l — ap) + a1 (1 — az) = O(Azt9),
Wo = (1 - Oél)(l - Oég) =1+ O(A$4q)

2
Denoting (do, d1,d2) = (0,0,1) and one can easily verify > dipf(xj_%) = p%(m]_%),
i=0
then we have
(3.41) Fg(xj_%) = fj—% +O(Am4). 0

Theorem 3.1 shows the maximum theoretical accuracy of the 6th-order sub-
WENO algorithm near discontinuities. What we left is to ensure the ENO property of
new algorithm. The algorithm is deemed to conserve the ENO property if it satisfies
the following two conditions,

1. If the stencil S;" is smooth, then the nonlinear weight corresponding S} satisfy
wi" = O(1);

2. If the stencil S[" is non-smooth, then the nonlinear weight corresponding S}
satisfies w™ < O(Az™).

Clearly, from the nonlinear weights (3.28) (3.32) (3.36) and (3.40) in Theorem 3.1,
we can validate the ENO property of new algorithm if ¢ > 2.

4. The higher order sub-WENO alrorithm. In this section, the 2rth-order
sub-WENO algorithms are presented for » > 2. In particular, when r = 2 the 4th-
order sub-WENO algorithm is the same as the classical WENO algorithm. The 6th-
order sub-WENO algorithm (r = 3) has been shown in section 3 and we also analyze
the optimal accuracy and ENO property. To implement the algorithm clearly, we give
the tree structure of 2rth-order sub-WENO algorithm in Figure 2.

In the first level, there are r (r + 1)-points stencils and corresponding indicators
of smoothness 5{“(2’ =0,---,r —1). As the 6th-order sub-WENO algorithm in the
section 3, it will be found that we only need to compute the indicators of smoothness
B (i =0,---,r—1) of the smallest stencils on the first level. The choice of indicator
of smoothness 8" (r+2 <m < 2r—1,m—r—1 < i < r—1) should ensure the optimal
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Sr+1 ST+1 ,,,,,, ST+1 ST+1

N/ NS NSNS

ST+ r+2

N/ NSNS

Fic. 2. The tree structure of 2rth-order sub-WENQO algorithm

accuracy, ENO property and modest computational cost of sub-WENO algorithm.
From Figure 2, we can find that each nonlinear approximation Fy"(z;_ 3 ) on stencil

Si™ is obtained by the combination of the nonlinear approximations Ffj;l(agj_f) and

Fim_l(x

(4.1)

j_

%) on Sﬁ]l and Sim_l, respectively,

) _ m 1Fm 1(1'J_1)+w?_1Fim_l(l‘j_%)~

That is, in each sub-WENO procedure {S/"7*, S} <+ S we only use the infor-
mation from two stencils. The nonlinear weights are defined as

(4.2)

i—1
m—1 (e+B7271)e
W;_1 = -1 ’
K] dm dm—l
i—1 + i
(e+B"7H)e T (e+B )
dam1
2
m—1 (5+5:n_1)q
wi - dmfl dm—l

(+Bmll)q (+Bm l)q

The linear optimal weights ;"' and d* ! in (4.2) are chosen so that they satisfy

Since 7" =

SrJrl

r+1—

) = 7 () + AT T ().

U---us;y *1 and, as we have done for the 6th-order sub-WENO

m+i

algorithm, a reasonable choice is

(4.3)

Replacing ¢ + 8"*

(e+ 8

r+1
r+2

—m+i) t

-1 +1 +1
inil = ﬂ:-&-l m4i 'Bz'r—l )
m—1 L r4+1

ﬂi T r+2 m+i 'Bi .

and € + "7 in (4.2) by (e + B pq) (e + B)) and
(e + 51“'1), respectively, and canceling the common terms, then
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(4.2) is simplified as

st
me1 (48711 ii)e
w1 = 4 PR
i— i
w O S S T YR T
(14)
K3
m—1 __ (5+5:+1)q
wi - qgm—1 m—1

(B0t | B e

Figure 3 helps us to determine the indicators of smoothness of stencils intu-
itively. The indicators of smoothness of stencils S:j[%fm 4 and S *1 on the top of
“V” corresponding the sub-WENO procedure {S/"7!, S} < S™ are chosen to
be the indicators of smoothness of Sz-"i]l and Simfl7 respectively. It is remarkable
that the stencil S} is involved simultaneously in both the sub-WENO procedures
{8y < S and {871, 877"} < S, But the indicator of smoothness
of Si" is different when it belongs to different sub-WENO procedure.

r+1 r+1 r+1 r+1
Sr+17m+i Sr+27m+i Sz Si+1

NN, S/
NN

Dl CHE St
NSNS
Sy ™

Fic. 3. The choice of indicator of smoothness for sub-WENO procedure

To validate such choice of indicators of smoothness, taking the 8th-order sub-
WENO algorithm for example, Figure 4 shows the cases in which the discontinuity
lies in (zj42,%+3), (Tj41,%j+2) and (z;,;41), respectively. The left tree structure
of Figure 4 shows the situation when the discontinuity lies in the interval (z 42, z+3),
i.e., the former three stencils S?(i = 0,1,2) are smooth and the last one S5 is non-
smooth. From the first level to second level, there are three sub-WENO procedures.
The former two sub-WENO procedures both produce the 6th-order approximations
and the third sub-WENO procedure only produce a 5th-order approximation since
the stencil S3 is non-smooth and the nonlinear weight assigned to it can be ignored.
From the second level to third level, there are two sub-WENO procedures. In the first
sub-WENO procedure {S9, 5§} — ST, since the indicators of smoothness of stencils
S$ and S§ are defined by

Bl :=p; and B3 =43,

this sub-WENO procedure generates 7th-order approximation. The second sub-
WENO procedure {S$, S5} < S7 only produces the 6th-order approximation, since
BS := 33 is non-smooth. In the final sub-WENO procedure {S3,57} < S§, the
indicators of smoothness are defined by

Bs =45 and BI .= ps.
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Since S5 is non-smooth, the contribution of this stencil is ignored and the final approx-
imation ng(xj_ 1 ) is only 7th-order. The middle and right tree structures of Figure 4
show the situations when the discontinuities lie in (z;41,2;j42) and (z;,2;41), respec-
tively. The “x” denotes the situation that the value generated by this sub-WENO
procedure is nonsense since both substencils are non-smooth. By the strategy of choos-
ing the indicators of smoothness, the value denoted by “+” will be ignored almost in
the latter sub-WENO procedures.

50 9100 1006
VAVAVARRVAVAVEARRVAVAY

VAV VAV VAY/
\/ \/ \/

FiG. 4. The choice of indicator of smoothness for sub-WENO procedure keeps the ENO property.
The circles “ (" denotes the non-smooth stencils and the stars “*” denotes the values generated
by corresponding sub-WENQ procedures are nonsense.

To implement the higher order sub-WENO algorithm easily, we present the nec-
essary formulas explicitly for » = 4. Since all the sub-WENO procedures can be
integrated, we will only present the compact forms of sub-WENO algorithms as
(3.19)(3.20)(3.21). For the 8th-order sub-WENO algorithm, there exist four sten-
cils $?(i = 0,1,2,3) used to approximate f; 1. The linear 5th-order interpolations
at x;_1 can be expressed as ’

pg(:cj_%) ﬁlg(*f)fj_zl +28fj—3 —70fj_2 +140f;_1 + 35fj),
(4.5) pg(l‘j_%) = ﬁig(:sfj—?) —20fj—2+90fj-1 +60f; = 5f;11),

Py (xj_1) = qag(=5fj—2 +60f;—1 +90f; —20fir1 + 3fj42),

P3(z;_1) 155 (3551 + 140f; = 7T0f;41 + 28fj12 — 5fj43).

By combining all the sub-WENO procedures, we can arrive

(4.6) F38($j—%) = wopg(%‘—%) + wlp?(xj—%) + w2pg(xj—%) + wspg(ﬂﬁj_g),
where
(4.7) wo = qpozas, wy = Poazas + ayfzas + ayayPs,
' wy = B1B3a5 + BrayfBs + aefsfs, w3 = B2840s,
and 8; =1 —«a;, 1 =0,...,5. The unnormalized weights are defined as
_ 3 1
ap = . (e+B0o) - : o = (e+81) 7
e+ B0)" J; e+ B e + (AT
(e+B2)4 (e+B )4
(48) Qo = 7 +2 3 , Q3= 5 +0 7 )
(e+p2)? . (e+B3)4 (e+B0)? 1 (e+p2)?
Qy = 7 (B 5 ) a5 = (GEDE .
©FB7 T ¥ hs) o e
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The indicators of smoothness computed by (2.2) can be expressed as

B8 = a52fia— 1S+ 27 50— 29[ + 111;)°
%‘f( j—4—5fj—3+9fj- 2*7fj—1+2fj)2
+%(fj 4 —4fj—3+6f—2—4fi—1+ fi)?,

6% = 36(fj 3—=Tfj—2+9fi—1— f]—ij+1)2

§?2(4 Fi=2 +3f5-1 = 3f5 + fi+1)? 2

(4.9) oy (fi-s = 4fj—2 +6f5-1 = 4fi + f111)”,
B = 36(2f] o+ fi—1—9f; + Tfis1 — fi+2)?

g%(fg 2= 3fj—1+3f; — fi+1)?
er(fj 2 4f] 1+ 6fj 4fJ+1 + fj+2) )
g3 = 36(11f1 1= 29f5 +27fj41 — 11fj40 + 2fg+3)
g%(QfJ 1= Tfj +9fj41 — 5fjs2 + fi4a)?
+igms (fim1 — Af; +6fi01 — Afjr2 + fiys)?

5. Numerical results. In this section, two examples, containing the corner
and jump discontinuities respectively, are used to test the order of accuracy of sub-
WENO algorithms. We also compare the computational costs between the classical
WENO [16], the WENO-AW [3] and sub-WENO algorithms. The 8th-order sub-
WENO algorithms is only tested by the first example since we can obtain the similar
results for the second example. We choose the parameters € = 1074° and ¢ = 2 for
all the algorithms.

Ezample 5.1. Consider the function

—10e~**t3 — 322, if —1<2<0,
(5.1) fla) = { 10673 — 322, if O<az <1,

there is a corner discontinuity lies at = 0. This piecewise function is even and con-
tinuous, but the first derivative is not discontinuous. Since the function is symmetri-
cal with y-axis, we only show the absolute errors at {x;_1/2,%j11/2,Zj13/2,Tj15/2}
While it is only interested in the order of accuracy near discontinuities in this paper,
we keep the discontinuities lie in the center of grid [x;_1,z;]. To get this, the inter-
val [—1,1] is divided into 2N + 1 grids and then we subdivide each grid into three
small uniform grids in every grid refinement. In the numerical experiments, the grid
spacing is set to be Ax = ﬁ, 1 =20,---,4. Table 1 shows the absolute errors and
order of accuracy of classical WENO, WENO-AW and sub-WENO algorithms. As
presented in subsection 2.1, when the discontinuity lies in the interval [z;_1,z;], the
approximations of classical WENO algorithm at z;,,/5 and z;,3/o can only arrive
the 4th-order of accuracy. When we predict the value at x;, 5/, since the stencil S8
for approximating ;5,2 is smooth, the maximum 6th-order of accuracy is certainly
obtained. As shown in [3] and section 3, the WENO-AW and sub-WENO algorithms
are devised to reasonably combine all the smooth stencils to arrive the maximum
theoretical accuracy. The WENO-AW and sub-WENO algorithms achieves 5th-order
of accuracy when approximate the value at 3/, since the 5-points stencil S? is s-
mooth. It is noted that the absolute errors presented by WENO-AW and sub-WENO
algorithms are almost identical.

Table 2 compares the computational costs of three WENO algorithms. To obtain
the reliable CPU costs, we loop the interpolation parts of codes 5 million times. The
results are shown in Table 2 and we find that the CPU times of the WENO-AW and
sub-WENO algorithms increase approximately by 150% and 5% respectively when
compared with the classical WENO algorithm.
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TABLE 1
The absolute errors and orders of accuracy of the 6th-order classical WENO, WENO-AW and
sub-WENO algorithms for the function (5.1) which contains a corner discontinuity at x = 0.

classical WENO

{ Tj_1/2 Tjt1/2 Tj13/2 Tji5/2

0 1.478e-00 *¥¥¥* = 1.080e-06 ¥*¥*¥*¥* = 2780e-07 FF¥¥¥  4284e-10 FHHHk*
1 4.929e-01 1.000 1.438e-08 3.931 3.439e-09 3.998 5.649e-13  6.034
2 1.643e-01 1.000 1.818e-10 3.979 4.245e-11  4.000 7.646e-16 6.012
3  5.477e-02 1.000 2.261e-12  3.993 5.239e-13  4.000 1.044e-18 6.004
4 1.826e-02 1.000 2.799e-14  3.998 6.467e-15 4.000 1.430e-21 6.001

WENO-AW

i Tj—1/2 Tjt+1/2 Tj+3/2 Tj+5/2

0 1.478e-00 ****¥*  1.109e-06 ***¥* = 7.869e-09 ¥¥¥¥*  4284e-10 F¥F*¥X
1 4.929e-01 1.000 1.450e-08 3.917 3.044e-11  5.056 5.649e-13  6.034
2 1.643e-01 1.000 1.822e-10 3.984 1.227e-13  5.019 7.646e-16 6.012
3  5.477e-02 1.000 2.263e-12  3.995 5.012e-16  5.006 1.044e-18 6.004
4 1.826e-02 1.000 2.800e-14  3.998 2.058e-18 5.002 1.430e-21 6.001

sub-WENO

i Tj-1/2 Tjt1/2 Tj43/2 Tjt5/2

0  1.478e-00 ****¥*  1.144e-06 ***¥* = 7.869e-09 FHFF¥EX  4283e-10 HFFFX
1 4.929e-01 1.000 1.464e-08 3.967 3.044e-11 5.056 5.649e-13  6.036
2 1.643e-01 1.000 1.828e-10 3.989 1.227e-13  5.019 7.646e-16 6.012
3 5.477e-02  1.000 2.266e-12  3.996 5.012e-16  5.006 1.044e-18 6.004
4 1.826e-02 1.000 2.801e-14  3.999 2.058e-18 5.002 1.430e-21 6.001

TABLE 2
The CPU costs of the 6th-order classical WENO, WENO-AW and sub-WENO algorithms for
the function (5.1). The interpolation parts of codes are looped 5 million times to obtain the reliable
CPU costs.

classical WENO WENO-AW sub-WENO
13.8s 35.4s 14.6s

The performance of 8th-order sub-WENO algorithm is presented in Table 3. We
can find that the algorithm achieves the optimal order near the corner discontinuity.
When we approximate the value at z;, /5, there exists only one stencil S3 is smooth.
The nonlinear weight distributed to this stencil is dominant and the contributions of
the left stencils are ignored. The prediction at x;3/2 by sub-WENO algorithm gives a
reasonable combination of S5 and S3 since they are both smooth. When approximate
the value at ;. 5/2, the discontinuity lies in the far left interval [z;_1, x;]. The stencils
S?, 85 and S3 all are smooth and the sub-WENO algorithm uses them well to obtain
Tth-order of accuracy.

Ezample 5.2. In this example, we slightly modify the piecewise function (5.1) so
that the corner discontinuity in it is changed into jump discontinuity,

(5.2) fz) =

103 + 322, if —1<z<0,
{ —10e*t3 — 322, if 0<a < 1.

We only test the 6th-order WENO algorithms for this example. As shown in Table 4,
the classical WENO algorithm only arrives 4th-order of accuracy when we approx-
imate the values at x;,3/5 which is near discontinuity. For the WENO-AW and
sub-WENO algorithms, they are both obtain the maximum theoretical accuracy. It is
noted that, when approximating the value at discontinuity, we will lose the accuracy
entirely.
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TABLE 4
The absolute errors and orders of accuracy of classical WENO, WENO-AW and sub-WENO
algorithms for the function (5.2) which contains a jump discontinuity at x = 0.

classical WENO

i Tj_1/2 Tjt1/2 Tj13/2 Tji5/2

0 197.988 **¥¥*  1.250e-06 ¥*F¥*  2.847e-07 FFF¥* 4 284e-10 FFFFX
1 199.899 -0.009 1.507e-08 4.021 3.464e-09 4.013 5.649e-13 6.034
2 200.537 -0.003 1.846e-10 4.007 4.254e-11  4.004 7.646e-16 6.012
3 200.749 -0.001 2.273e-12  4.002 5.243e-13  4.002 1.044e-18 6.004
4 200.820 -0.000 2.804e-14 4.001 6.469e-15 4.000 1.430e-21 6.001

WENO-AW

i Tj—1/2 Tjt+1/2 Tj+3/2 Tj+5/2

0 197.605 **¥¥*¥*  1.250e-06 *¥FF¥*  7.869e-09 FFF¥EX 4 9284e-10 FFF¥X
1 199.772 -0.010 1.507e-08 4.021 3.044e-11  5.056 5.649e-13 6.034
2 200.494 -0.003 1.846e-10 4.007 1.227e-13  5.019 7.646e-16 6.012
3 200.735 -0.001 2.273e-12  4.002 5.012e-16  5.006 1.044e-18 6.004
4 200.815 -0.000 2.804e-14 4.001 2.058e-18 5.002 1.430e-21 6.001

sub-WENO

i Tj—1/2 Tit1/2 Tj43/2 Tjy5/2

0 197.243 HF¥**x 1.250e-06 *¥*¥**  7.869e-09 FF¥FE 4 283e-10 HKFFFX
1 199.651 -0.011 1.507e-08 4.021 3.044e-11  5.056 5.649e-13  6.036
2 200.454 -0.004 1.846e-10 4.007 1.227e-13  5.019 7.646e-16 6.012
3 200.722 -0.001 2.273e-12  4.002 5.012e-16  5.006 1.044e-18 6.004
4 200.811 -0.000 2.804e-14 4.001 2.058e-18 5.002 1.430e-21 6.001

6. Conclusions. In this paper, the sub-WENO algorithm is presented to recov-
er the optimal order of accuracy near the discontinuities. The sub-WENO algorithm
is constructed by dividing the classical WENO into several sub-WENO procedures.
In each sub-WENO procedure, we only combine two stencils to approximate the val-
ue of target points. If the two stencils are both smooth, then sub-WENO procedure
increases the order of accuracy by one. If there is a stencil is smooth and the left one
is non-smooth, then algorithm conserves the order of interpolation by corresponding
smooth stencil and keeps the ENO property. If both stencils are non-smooth, then the
value constructed by sub-WENO procedure will be cut off in the latter procedures.
The whole of sub-WENO algorithm can be expressed as tree structure. The choice
of smoothness of indicator of stencils in the middle part of tree is also presented.
This choice does not increase the computational time almost. The proof of order of
accuracy and ENO property of the 6th-order sub-WENO algorithm is shown in Theo-
rem 3.1. The numerical tests validate the results we have proved in Theorem 3.1. The
sub-WENO algorithm based on the cell averages and application of it on hyperbolic
conservation laws will be our future works.
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