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Abstract. A strategy is devised to make the WENO interpolation in the point values achieve4
optimal accuracy near the discontinuities. The classical WENO interpolation ensures the optimal5
accuracy when all stencils are smooth and ENO property when the discontinuity appears. When there6
exist more than two successive smooth stencils, the maximum theoretical accuracy near discontinuity7
is also preferred to be obtained. To achieve it, we divide the classical WENO algorithm into several8
sub-WENO procedures. In each sub-WENO procedure, only two stencils are used and the order9
of accuracy grows one at most. If both stencils are smooth, then sub-WENO procedure increases10
the order of accuracy by one. If there is a stencil is smooth and the left one is non-smooth, then11
algorithm conserves the order of interpolation by corresponding smooth stencil and keeps the ENO12
property. If both stencils are non-smooth, then the value constructed by sub-WENO procedure will13
be ignored in the latter procedures. The whole of new WENO algorithm can be expressed as a tree14
structure. The indicator of smoothness of every medium stencil in the tree structure is defined by15
the indicators of smoothness of corresponding stencils on the top of tree. Such definition is proved16
to be capable of obtaining the optimal accuracy and keep the ENO property. And the new WENO17
algorithm has almost the same computational cost as the classical WENO algorithm.18

Key words. optimal order of accuracy, WENO interpolation, corner and jump discontinuity19

AMS subject classifications. 41A05, 65M06, 65D0520

1. Introduction. The interpolation of piecewise smooth function from the dis-21

crete sample points is always an important problem of numerical computation. The22

simple linear Lagrangian interpolation is suitable for a set of smooth sample points23

and achieves the optimal accuracy. However, we often need to interpolate a set of24

discrete points which contains corner (or jump) discontinuities. In these cases, the25

Gibbs oscillations generated by linear Lagrangian interpolations around the discon-26

tinuities will decrease the numerical accuracy. Then some preferred nonlinear al-27

gorithms should be used to obtain stable numerical approximation. The nonlinear28

essentially non-oscillatory (ENO) interpolation, which can tackle this problem well,29

was first presented in [12, 11] for solving hyperbolic conservation laws. To eliminate30

the effect of non-smooth parts of sample points, the ENO algorithm adaptively choos-31

es the smoothest stencil from the candidates to reconstruct the piecewise function.32

The indicator of smoothness of each stencil is defined as the Newton divided differ-33

ence of sample points on this stencil. More information about ENO algorithm one34

can refer to [22, 23, 10].35

In the procedure of ENO interpolation, while the smoothness of all the candidate36

stencils are measured, only the smoothest one is conserved finally even though all the37

stencils are enough smooth to be used. To gather all the potential stencils, in [19], the38

authors presented the weighted ENO (WENO) algorithm based on ENO. The aim of39

WENO algorithm is to keep the ENO property in non-smooth regions and meanwhile40

improve the order of accuracy in smooth regions. To obtain it, in the WENO algo-41

rithm, each candidate stencil is distributed a nonlinear weight which measures the42

contribution of this stencil for the final convex combination. The nonlinear weights43

are devised to approach linear optimal weights in smooth region to improve the accu-44
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2 FUXING HU

racy of interpolation. While there exist stencils cross the discontinuities, the weights45

assigned to these non-smooth stencils can be ignored almost. In [16], the authors46

shown new indicators of smoothness which emulate the idea of minimizing the total47

variation of function. The new indicators of smoothness are defined as the L2 norm of48

the derivatives of the interpolation polynomials. The indicators of smoothness in [16]49

ensure the optimal order of accuracy in smooth region and ENO property when there50

exist stencils contain the discontinuities. About the improvements and applications51

of WENO algorithm, the interested reader can refer to [13, 8, 24, 14, 25, 18, 15, 17, 4].52

Around the discontinuities, the classical WENO algorithm [16] generally only53

achieves the same order of accuracy as the corresponding ENO interpolation. It was54

shown in [16] for reconstructing the numerical flux at cell boundary based on the55

cell averages. What lead to the degeneration of order of accuracy is the classical56

WENO cannot distribute reasonable optimal weights to the smooth stencils when57

the discontinuity appears. In [1], the authors proposed a power WENO algorithm58

to improve the accuracy near discontinuities. However, it does not obtain the max-59

imum theoretical order of accuracy. Then, the authors in [3] succeed in obtaining60

the maximum theoretical accuracy close to the discontinuities by a improved WENO61

algorithm (WENO-AW). Unlike the fixed linear optimal weights proposed in [16, 7],62

they devise nonlinear optimal weights to tackle this problem. The nonlinear opti-63

mal weights are expressed as the nonlinear convex combination of three vectors of64

linear optimal weights. Each vector of linear optimal weights is appropriate for one65

special case. The proofs of maximum theoretical accuracy near discontinuities and66

ENO property were presented in [3]. They also give another algorithm to raise the67

accuracy of WENO algorithm for the interval which contains the corner discontinuity.68

In [1, 2, 3], certain modified indicators of smoothness are used to detect the corner69

and jump discontinuities. At the same time, these indicators of smoothness conserve70

the optimal accuracy and ENO property. In this paper, we only consider how to71

improve the order of accuracy near discontinuities by a more efficient algorithm. If72

one wants to obtain the optimal accuracy in the interval containing the discontinuity,73

the algorithm in [3] will be a commendable choice.74

As mentioned above, the algorithm in [3] recover the optimal accuracy near discon-75

tinuities by devising a set of nonlinear optimal weights. However, the new nonlinear76

optimal weights are computed by an extra WENO algorithm. And in this procedure,77

the indicators of smoothness of the bigger stencils are also need to be calculated. As78

shown in [3], the computational costs of new WENO algorithm are more than double79

when compared with the classical WENO. In this paper, we present a simple WENO80

algorithm to recover the optimal accuracy near discontinuities. In order to describe81

this algorithm clearly, we take the 6th-order WENO algorithm for example. To ensure82

the optimal accuracy near discontinuities, the classical WENO algorithm is divided83

into three sub-WENO procedures. We first construct two 5th-order WENO approx-84

imations by using the former two 4-points stencils and latter two 4-points stencils,85

respectively. In the next, we construct the 6th-order WENO approximation by using86

two 5-points stencils and corresponding 5th-order WENO approximations which have87

been obtained. From the statement above, we need three sub-WENO procedures in88

this algorithm and in each sub-WENO procedure we only need information of two89

stencils. Unlike the classical WENO, which direct constructs the 6th-order approxi-90

mation by the nonlinear convex combination of three 4th-order approximations, the91

order of accuracy of new WENO algorithm grows one by one and this nonlinear inter-92

polation truly confirms the optimal accuracy near discontinuities. Since the 5-points93

stencils are used in this procedure, we have to compute their indicators of smoothness.94
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SUB-WENO ALGORITHM 3

To control the oscillations and reduce the computational cost, we express the indica-95

tors of smoothness of 5-points stencils as the product of two corresponding 4-points96

substencils. The new WENO algorithm here can be reformulate into the similar com-97

pact form as the classcial WENO algorithm and no much computation is introduced.98

Furthermore, it is also easy to extend the algorithm to the cases of higher order.99

The organization of this paper is as follows. In section section 2, we review the100

classical WENO [16] and WENO-AW [3] algorithms. In section section 3, we show101

the new WENO interpolation and prove the statement of optimal order of accuracy102

near discontinuity and property of ENO. In section section 5, we test the numerical103

accuracy and computational costs.104

2. Review of WENO algorithms. In this section, we review the classical105

WENO [16] and WENO-AW algorithm [3] in point values. The interested reader can106

also refer to [20, 21] for a full statement of WENO interpolations.107

2.1. The classical WENO algorithm with fixed optimal weights. Let us108

consider a set of sample points (xi, fi), 1 ≤ i ≤ N , where fi = f(xi) and ∆x =109

xi − xi−1. What we want to do is to interpolate the value in middle point xj− 1
2

of110

interval (xj−1, xj) when the discontinuity appears around this interval, but not in this111

interval. As shown in [5], it is possible to locate the corner discontinuities, but it is no112

hope to locate the jump discontinuities. Hence, when the corner discontinuity appears113

in (xj−1, xj), the algorithm proposed in [3] can be used to tackle this problem. But,114

when the jump discontinuity appears in (xj−1, xj), the order of accuracy of numerical115

approximation to xj− 1
2

will be affected inevitably.116

Since xj− 1
2

we want to approximate is in the interval (xj−1, xj), each stencil used

should contain (xj−1, xj). Let us denote by Smi the stencil

{xj+i−m+1, . . . , xj−1, xj , . . . , xj+i},

where the superscript of Smi denotes the number of point of this stencil contains and117

the subscript denotes the number of point at the right of interval (xj−1, xj). The same118

notation is also used for the interpolation polynomial pmi , indicators of smoothness119

βmi , the weights wmi and so on. Let us take the 6th-order WENO for example to120

approximate the value at xj− 1
2

in the middle of (xj−1, xj). The 6th-order WENO121

algorithm uses three 4-points stencils,122

S4
0 = {xj−3, xj−2, xj−1, xj},
S4
1 = {xj−2, xj−1, xj , xj+1},
S4
2 = {xj−1, xj , xj+1, xj+2}.

123

On each stencil, we obtain approximation at xj− 1
2

by a Lagrangian interpolation124

polynomial of degree 3,125

(2.1)

p40(xj− 1
2
) = 1

16 (fj−3 − 5fj−2 + 15fj−1 + 5fj) ,

p41(xj− 1
2
) = 1

16 (−fj−2 + 9fj−1 + 9fj − fj+1) ,

p42(xj− 1
2
) = 1

16 (5fj−1 + 15fj − 5fj+1 + fj+2) .

126

In [16], the indicators of smoothness were defined as the L2 norm of the derivatives127

of the interpolation polynomials. These indicators of smoothness were proposed for128

upwind methods to solve hyperbolic conservation laws with cell averages. To fit the129

interpolation in point values, we adopt the one presented in [2, 15, 3],130

(2.2) β4
i =

n∑
l=2

∫ xj

xj−1

(
dl

dxl p
4
i (x)

)2
dx, i = 0, 1, 2.131
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By removing the first derivative of interpolation polynomial from formula in [16], the132

modified indicators of smoothness perform well for the corner discontinuities. The133

explicit forms of (2.2) of three stencils are134

(2.3)

β4
0 = 1

48 (8fj−3 − 27fj−2 + 30fj−1 − 11fj)
2

+ 13
16 (fj−2 − 2fj−1 + fj)

2
,

β4
1 = 1

48 (8fj−2 − 21fj−1 + 18fj − 5fj+1)
2

+ 13
16 (fj−1 − 2fj + fj+1)

2
,

β4
2 = 1

48 (11fj−1 − 30fj + 27fj+1 − 8fj+2)
2

+ 13
16 (fj−1 − 2fj + fj+1)

2
.

135

To ensure the optimal accuracy and ENO property, the nonlinear weights are intro-136

duced by137

(2.4) w4
i =

α4
i∑2

l=0 α
4
l

, α4
i =

d4i
(ε+ β4

i )q
, i = 0, 1, 2.138

The nonlinear weights w4
i ≥ 0 and

∑2
i=0 w

4
i = 1. The linear optimal weights d4i are

chosen to be d40 = 3
16 , d41 = 10

16 , d42 = 3
16 so that

p62(xj− 1
2
) = d40p

4
0(xj− 1

2
) + d41p

4
1(xj− 1

2
) + d42p

4
2(xj− 1

2
).

The parameter ε appears in denominator is used to avoid the division by zero. The139

fully discusses about ε can refer to [13, 6]. The exponent q in (2.4) is used to in-140

crease the difference of scales of weights near the non-smooth region. For high order141

WENO interpolations, we generally need to choose q ≥ 2 for control the numerical142

oscillations around the discontinuities [7, 9]. To imitate the 6th-order linear interpo-143

lation at the smooth region and meanwhile compress the interpolation oscillations,144

the approximation F 6
2 (xj− 1

2
) of p62(x) at xj− 1

2
is chosen to be145

(2.5) F 6
2 (xj− 1

2
) = w4

0p
4
0(xj− 1

2
) + w4

1p
4
1(xj− 1

2
) + w4

2p
4
2(xj− 1

2
).146

At smooth regions, Taylor series expansions at xj− 1
2

of the indicators of smooth-147

ness in (2.3) can be collected to be148

(2.6) β4
i =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
, i = 0, 1, 2.149

Replacing β4
i in (2.4) and taking ε small enough, if f ′′(xj− 1

2
) 6= 0 the nonlinear weights150

approximate linear ones by151

(2.7) w4
i = d4i +O(∆x2), i = 0, 1, 2.152

Substituting (2.7) into (2.5) gives153

(2.8)

F 6
2 (xj− 1

2
) =

2∑
i=0

w4
i p

4
i (xj− 1

2
)−

2∑
i=0

d4i p
4
i (xj− 1

2
) +

2∑
i=0

d4i p
4
i (xj− 1

2
)

=
2∑
i=0

(w4
i − d4i )p4i (xj− 1

2
) +

2∑
i=0

d4i p
4
i (xj− 1

2
)

=
2∑
i=0

(w4
i − d4i )p4i (xj− 1

2
)−

2∑
i=0

(w4
i − d4i )fj− 1

2
+

2∑
i=0

d4i p
4
i (xj− 1

2
)

=
2∑
i=0

(w4
i − d4i )(p4i (xj− 1

2
)− fj− 1

2
) +

2∑
i=0

d4i p
4
i (xj− 1

2
)

= p62(xj− 1
2
) +O(∆x6)

= fj− 1
2

+O(∆x6).

154
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SUB-WENO ALGORITHM 5

At the smooth part of discretized data, the classical 6th-order WENO algorithm has155

optimal accuracy if f ′′(xj− 1
2
) 6= 0.156

In the next, we consider the case in which β4
0 and β4

1 are smooth, while β4
2

contains a jump discontinuity. For the corner discontinuity, we can reach the similar
conclusions. In the case of jump discontinuity, three indicators of smoothness will
take values

β4
0 = O(∆x4), β4

1 = O(∆x4), β4
2 = O(1).

Then the corresponding weights can be expressed as157

w4
0 =

d40
(ε+β4

0)
q

d40
(ε+β4

0)
q +

d41
(ε+β4

1)
q +

d42
(ε+β4

2)
q

=
d40

d40 + d41

(
ε+β4

0

ε+β4
1

)q
+ d42

(
ε+β4

0

ε+β4
2

)q
=

d40
d40 + d41 (1 +O(∆x2))

q
+ d42(O(∆x4q))

=
d40

d40 + d41
+O(∆x2),

158

159

w4
1 =

d41
(ε+β4

1)
q

d40
(ε+β4

0)
q +

d41
(ε+β4

1)
q +

d42
(ε+β4

2)
q

=
d41

d40

(
ε+β4

1

ε+β4
0

)q
+ d41 + d42

(
ε+β4

1

ε+β4
2

)q
=

d41
d40 (1 +O(∆x2))

q
+ d41 + d42(O(∆x4q))

=
d41

d40 + d41
+O(∆x2)

160

and161

w4
2 =

d42
(ε+β4

2)
q

d40
(ε+β4

0)
q +

d41
(ε+β4

1)
q +

d42
(ε+β4

2)
q

=
d42

(ε+β4
0)

q(ε+β4
1)

q

(ε+β4
2)

q

d40(ε+ β4
1)q + d41(ε+ β4

0)q + d42
(ε+β4

0)
q(ε+β4

1)
q

(ε+β4
2)

q

= O(∆x4q).

162

So, the contribution of stencil S4
2 which contains discontinuity can be ignored when

∆x is small enough. It is exactly the ENO property. Generally, since

d40
d40 + d41

p40(xj− 1
2
) +

d41
d40 + d41

p41(xj− 1
2
) 6= p51(xj− 1

2
)

and using the similar operations in (2.8), we only obtain163

(2.9) F 6
2 (xj− 1

2
) = fj− 1

2
+O(∆x4).164

Finally, we consider the case of β4
0 = O(∆x4), β4

1 = O(1) and β4
2 = O(1). That165

is, the discontinuity lies in interval (xj , xj+1) and only stencil β4
0 is smooth. Through166

the similar analysis as the above cases, the same conclusion as (2.9) is achieved for167

WENO approximation at xj− 1
2
. The idea of classical WENO algorithm is to ensure168

the optimal accuracy at smooth part of discretized data and ENO property when169

there exist stencils affected by discontinuity. In the second case, since β4
0 and β4

1 are170

both smooth, the higher 5th-order approximation using the information of stencil S5
1171

is preferred to be reached.172
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2.2. The WENO algorithm with adapted optimal weights. In the clas-
sical WENO algorithm [16], the optimal weights d4i (i = 0, 1, 2) in equation (2.4) are
fixed. It is considered as the primary reason of degeneration of order of accuracy
around discontinuities in [3]. The authors present the adapted optimal weights based
on the indicators of smoothness of stencils. For the 6th-order WENO-AW algorithm,
if the jump discontinuity lies in (xj+1, xj+2), i.e., β4

0 = O(∆x4), β4
1 = O(∆x4) and

β4
2 = O(1), then optimal weights (2d40, d

4
1, 0), which satisfy

2d40p
4
0(xj− 1

2
) + d41p

4
1(xj− 1

2
) = p51(xj− 1

2
),

are preferred to be chosen to achieve the 5th-order of accuracy. Similarly, if the
discontinuity lies in (xj−3, xj−2), i.e., β4

0 = O(1), β4
1 = O(∆x4) and β4

2 = O(∆x4),
then optimal weights (0, d41, 2d

4
2), which satisfy

d41p
4
1(xj− 1

2
) + 2d42p

4
2(xj− 1

2
) = p52(xj− 1

2
),

are preferred to be chosen. To improve the accuracy near discontinuities, an adapted173

strategy to choose the optimal weights among (2d40, d
4
1, 0), (0, d41, 2d

4
2) and (d40, d

4
1, d

4
2)174

is proposed in [3]. In order to avoid the abrupt transition from one vector of optimal175

weight to another one at the interfaces between smooth and non-smooth regions, the176

nonlinear adapted optimal weights are defined as a smooth convex combination of177

three vectors of optimal weights,178

(2.10) (d̃40, d̃
4
1, d̃

4
2) = w̃5

1(2d40, d
4
1, 0) + w̃6

2(d40, d
4
1, d

4
2) + w̃5

2(0, d41, 2d
4
2).179

The coefficients of three vectors of linear optimal weights are defined as

w̃5
1 =

α̃5
1

α̃5
1 + α̃6

2 + α̃5
2

, w̃6
2 =

α̃6
2

α̃5
1 + α̃6

2 + α̃5
2

, w̃5
2 =

α̃5
2

α̃5
1 + α̃6

2 + α̃5
2

,

where

α̃5
1 =

1

(ε+ β5
1)q

, α̃6
2 =

1

(ε+ β6
2)q

, α̃5
2 =

1

(ε+ β5
2)q

.

After obtaining the adapted optimal weights (d̃40, d̃
4
1, d̃

4
2), inserting them into equation180

(2.4) gives181

(2.11) w4
i =

α4
i∑2

l=0 α
4
l

, α4
i =

d̃4i
(ε+ β4

i )q
, i = 0, 1, 2.182

In case 1: all the 4-points stencils are smooth. The nonlinear weights computed
by (2.11) satisfy

(w4
0, w

4
1, w

4
2) = (d40, d

4
1, d

4
2) +O(∆x2).

It is the sufficient condition, as shown by the Theorem 3.2 in [3], to achieve the
6th-order approximation,

F 6
2 (xj− 1

2
) =

2∑
i=0

w4
i p

4
i (xj− 1

2
) = fj− 1

2
+O(∆x6).

In case 2: the discontinuity lies in the interval (xj+1, xj+2), i.e., β4
0 and β4

1 are
both smooth and β4

2 is non-smooth. If it is a corner discontinuity, then we have(
w4

0, w
4
1, w

4
2

)
=
(
2d40, d

4
1, 0
)

+
(
O(∆x2),O(∆x2),O(∆x2p)

)
.
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If it is a jump discontinuity, then we have(
w4

0, w
4
1, w

4
2

)
=
(
2d40, d

4
1, 0
)

+
(
O(∆x4),O(∆x4),O(∆x4p)

)
.

If the discontinuity lies in the symmetric interval (xj−3, xj−2) of (xj+1, xj+2), by
similar analysis we obtain(

w4
0, w

4
1, w

4
2

)
=
(
0, d41, 2d

4
2

)
+
(
O(∆x2p),O(∆x2),O(∆x2)

)
for the corner discontinuity and(

w4
0, w

4
1, w

4
2

)
=
(
0, d41, 2d

4
2

)
+
(
O(∆x4p),O(∆x4),O(∆x4)

)
for the jump discontinuity. Also by the Theorem 3.2 in [3], the 5th-order approxima-
tion can be achieved,

F 6
2 (xj− 1

2
) =

2∑
i=0

w4
i p

4
i (xj− 1

2
) = fj− 1

2
+O(∆x5).

In case 3: the discontinuity lies in the interval (xj , xj+1), i.e., β4
0 is smooth and

β4
1 and β4

2 are both non-smooth. If it is a corner discontinuity, then we have(
w4

0, w
4
1, w

4
2

)
= (1, 0, 0) +O(∆x2q).

If it is a jump discontinuity, then we have(
w4

0, w
4
1, w

4
2

)
= (1, 0, 0) +O(∆x4q).

If the discontinuity lies in the symmetric interval (xj−2, xj−1) of (xj , xj+1), by similar
analysis we obtain (

w4
0, w

4
1, w

4
2

)
= (0, 0, 1) +O(∆x2q)

for the corner discontinuity and(
w4

0, w
4
1, w

4
2

)
= (0, 0, 1) +O(∆x4q)

for the jump discontinuity. Also by the Theorem 3.2 in [3], the 4th-order approxima-
tion can be achieved,

F 6
2 (xj− 1

2
) =

2∑
i=0

w4
i p

4
i (xj− 1

2
) = fj− 1

2
+O(∆x4).

When the interval [xj−1, xj ] contains the corner discontinuity, the strategy in [3] is183

suggested to be used. This strategy ensures the 3rd-order of accuracy for the interval184

which contains the corner discontinuity.185

3. The 6th-order sub-WENO algorithm. In this section, a simple 6th-order186

sub-WENO algorithm is presented, which has the same aim as the WENO-AW al-187

gorithm proposed in [3], to achieve the optimal order near the discontinuities. The188

second algorithm in [3] is to improve the order of accuracy of when the middle inter-189

val (xj−1, xj) contains the discontinuity. As shown in subsection 2.2, the extra three190

indicators of smoothness of big stencils β5
1 , β5

2 and β6
2 are required to calculate the191

adapted nonlinear optimal weights. The computational cost of the WENO-AW algo-192

rithm in [3] is more than double when compared with the classical WENO algorithm193
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[16]. In the classical 6th-order WENO algorithm, the idea is to combine three 4th-194

order linear interpolations to achieve 6th-order accuracy at smooth regions and the195

potential 5th-order interpolations are skipped. It is the probable reason which leads196

to the degeneration of algorithm near discontinuities. To recover the accuracy near197

discontinuities, we divide the classical WENO into several sub-WENO procedures. In198

each sub-WENO procedure, only two stencils are used. The order of accuracy grows199

only one at most by combining two stencils and the ENO property is also conserved.

S4
0 S4

1 S4
2

S5
1 S5

2

S6
2

S
S

S
S

S
S

�
�

�
�

�
�

S4
0 S4

1 S4
2

S6
2

S
S
S
S
SS

�
�
�
�
��

Fig. 1. The left is the tree structure of the 6th-order sub-WENO algorithm. The right is the
tree structure of the 6th-order classical WENO algorithm.

200

In the 6th-order sub-WENO algorithm, there are three 4-points stencils can be201

used and there will be three sub-WENO procedures as shown in Figure 1. In the first202

sub-WENO procedure denoted by {S4
0 , S

4
1} ↪→ S5

1 , emulating the classical WENO in203

section section 2, we use the stencils S4
0 and S4

1 to compute the 5th-order approxima-204

tion at xj− 1
2
,205

(3.1) F 5
1 (xj− 1

2
) = w4

0p
4
0(xj− 1

2
) + w4

1p
4
1(xj− 1

2
).206

We extract the formulas of interpolation polynomials p4i (x)(i = 0, 1) at xj− 1
2

from207

(2.1),208

(3.2)
p40(xj− 1

2
) = 1

16 (fj−3 − 5fj−2 + 15fj−1 + 5fj) ,

p41(xj− 1
2
) = 1

16 (−fj−2 + 9fj−1 + 9fj − fj+1) .
209

The nonlinear weights are computed similarly as (2.4) by210

(3.3) w4
0 =

α4
0

α4
0 + α4

1

, w4
1 =

α4
1

α4
0 + α4

1

,211

and the unnormalized weights are defined as212

(3.4) α4
0 =

d40
(ε+ β4

0)q
, α4

1 =
d41

(ε+ β4
1)q

.213

The linear optimal weights in (3.4) are chose to be d40 = 3
8 and d41 = 5

8 to satisfy

p51(xj− 1
2
) = d40p

4
0(xj− 1

2
) + d41p

4
1(xj− 1

2
).

The indicators of smoothness β4
i (i = 0, 1) are extracted from (2.3), and we repeat214

them for completeness of new algorithm,215

(3.5)
β4
0 = 1

48 (8fj−3 − 27fj−2 + 30fj−1 − 11fj)
2

+ 13
16 (fj−2 − 2fj−1 + fj)

2
,

β4
1 = 1

48 (8fj−2 − 21fj−1 + 18fj − 5fj+1)
2

+ 13
16 (fj−1 − 2fj + fj+1)

2
.

216
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Up to now, the first sub-WENO procedure {S4
0 , S

4
1} ↪→ S5

1 is completed by emulating217

the classical WENO algorithm. This sub-WENO procedure can achieve 5th-order218

approximation to fj− 1
2

at smooth region and keep the ENO property when there is219

one non-smooth stencil. Actually, when there is one non-smooth stencil, this sub-220

WENO procedure still ensure the 4th-order of accuracy. The proofs of assertions are221

ignored here, since the properties of the algorithm after integrating three sub-WENO222

procedures are our aims.223

In the second sub-WENO procedure {S4
1 , S

4
2} ↪→ S5

2 , we use the stencils S4
1 and224

S4
2 to obtain another 5th-order approximation to fj− 1

2
,225

(3.6) F 5
2 (xj− 1

2
) = w4

1p
4
1(xj− 1

2
) + w4

2p
4
2(xj− 1

2
),226

where the values of two 4th-order interpolation polynomials at xj− 1
2

are227

(3.7)
p41(xj− 1

2
) = 1

16 (−fj−2 + 9fj−1 + 9fj − fj+1) ,

p42(xj− 1
2
) = 1

16 (5fj−1 + 15fj − 5fj+1 + fj+2) .
228

The nonlinear weights in (3.6) are computed as229

(3.8) w4
1 =

α4
1

α4
1 + α4

2

, w4
2 =

α4
2

α4
1 + α4

2

,230

and the unnormalized weights are defined as231

(3.9) α4
1 =

d41
(ε+ β4

1)q
, α4

2 =
d42

(ε+ β4
2)q

.232

The linear optimal weights are chose to be d41 = 5
8 and d42 = 3

8 for satisfying

p52(xj− 1
2
) = d41p

4
1(xj− 1

2
) + d42p

4
2(xj− 1

2
).

The indicators of smoothness β4
i (i = 1, 2) are also chosen from (2.3),233

(3.10)
β4
1 = 1

48 (8fj−2 − 21fj−1 + 18fj − 5fj+1)
2

+ 13
16 (fj−1 − 2fj + fj+1)

2
,

β4
2 = 1

48 (11fj−1 − 30fj + 27fj+1 − 8fj+2)
2

+ 13
16 (fj−1 − 2fj + fj+1)

2
.

234

The second sub-WENO procedure {S4
1 , S

4
2} ↪→ S5

2 is similar to the first one but the235

nonlinear interpolation is operated on the stencils S4
1 and S4

2 . It is noted that in the236

two sub-WENO procedures above, we use the several same notations, such as the237

nonlinear weight w4
1 in (3.3) and (3.8). But these same notations are independent in238

the different sub-WENO procedures.239

Through the former sub-WENO procedures, we arrive the 5th-order approxima-
tions satisfying

F 5
1 (xj− 1

2
) = p51(xj− 1

2
) +O(∆x5)

and
F 5
2 (xj− 1

2
) = p52(xj− 1

2
) +O(∆x5)

on the 5-points stencils S5
1 and S5

2 , respectively, when discretized data is smooth. In240

the third sub-WENO procedure {S5
1 , S

5
2} ↪→ S6

2 , we arrange to obtain the 6th-order241

approximation to fj− 1
2

by combination of F 5
1 (xj− 1

2
) and F 5

2 (xj− 1
2
),242

(3.11) F 6
2 (xj− 1

2
) = w5

1F
5
1 (xj− 1

2
) + w5

2F
5
2 (xj− 1

2
).243

This manuscript is for review purposes only.



10 FUXING HU

The nonlinear weights are defined as244

(3.12) w5
1 =

α5
1

α5
1 + α5

2

, w5
2 =

α5
2

α5
1 + α5

2

,245

where the unnormalized weights are defined as246

(3.13) α5
1 =

d51
(ε+ β5

1)q
, α5

2 =
d52

(ε+ β5
2)q

.247

The optimal weights are chosen to be d51 = 1
2 and d52 = 1

2 for satisfying

p62(xj− 1
2
) = d51p

5
1(xj− 1

2
) + d52p

5
2(xj− 1

2
).

The only problem is how to choose the indicators of smoothness β5
1 and β5

2 on S5
1 and248

S5
2 , respectively. A natural option of β5

i (i = 1, 2) is to use the formula (2.2)249

β5
i =

4∑
l=2

∫ xj

xj−1

(
dl

dxl p
5
i (x)

)2
dx, i = 1, 2.250

When the discontinuity lies in (xj+1, xj+2) or (xj−3, xj−2), the choice of (2.2) is valid251

and the final algorithm can achieve 5th-order accuracy and keep the ENO property.252

However, if there exists a discontinuity appears in (xj , xj+1) or (xj−2, xj−1), then S5
1253

and S5
2 are both non-smooth. And in result, both stencils are distributed comparative254

weights and the oscillation will be inevitable. To approach the optimal accuracy and255

preserve the ENO property, the effective choices are256

(3.14) β5
1 := β4

0β
4
1 , β5

2 := β4
1β

4
2 .257

Taking S5
1 for example, since S5

1 = S4
0 ∪ S4

1 , we express the indicator of smoothness258

parent stencil S5
1 as the product of substencils S4

0 and S4
1 . This option will be extended259

to the higher order sub-WENO algorithms. If the discontinuity appears in (xj , xj+1)260

or (xj+1, xj+2), by using the indicators of smoothness in (3.14), the contribution of261

stencil S5
2 can be ignored and S5

1 will dominate the final combination. The similar262

result can be obtained when the discontinuity lies in (xj−3, xj−2) or (xj−2, xj−1).263

In addition, the indicators of smoothness β4
i (i = 0, 1, 2) have been obtained in the264

former sub-WENO procedures and we do not need extra computational cost. For the265

simplification of the equations, we replace ε + β5
i (i = 1, 2) in denominators of (3.13)266

by (ε+ β4
i−1)(ε+ β4

i )(i = 1, 2), respectively, and (3.13) becomes267

(3.15) α5
1 =

d51
((ε+ β4

0)(ε+ β4
1))q

, α5
2 =

d52
((ε+ β4

1)(ε+ β4
2))q

.268

The common term ε + β4
1 will be cancelled when we substitute the unnormalized269

weights into (3.12). So, we actually define the indicators of smoothness β5
1 and β5

2 as270

(3.16) β5
1 := β4

0 , β5
2 := β4

2 .271

For the higher order sub-WENO algorithms, the choice of indicators of smoothness272

is presented in section 4 in detail. The proofs of achieving optimal accuracy and273

keeping ENO property will be shown in Theorem 3.1. Before giving this theorem, we274

first simplify the sub-WENO algorithm which will facilitate the proof of Theorem 3.1.275
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Inserting the weights (3.3) into (3.1) gives276

(3.17) F 5
1 (xj− 1

2
) =

3(ε+ β4
1)qp40(xj− 1

2
) + 5(ε+ β4

0)qp41(xj− 1
2
)

3(ε+ β4
1)q + 5(ε+ β4

0)q
,277

and similarly inserting the weights (3.8) into (3.6) gives278

(3.18) F 5
2 (xj− 1

2
) =

5(ε+ β4
2)qp41(xj− 1

2
) + 3(ε+ β4

1)qp42(xj− 1
2
)

5(ε+ β4
2)q + 3(ε+ β4

1)q
.279

Finally, substituting the 5th-order approximations (3.17)(3.18) into (3.11), we obtain280

(3.19) F 6
2 (xj− 1

2
) = w0p

4
0(xj− 1

2
) + w1p

4
1(xj− 1

2
) + w2p

4
2(xj− 1

2
),281

Through reorganization, the nonlinear weights in (3.19) are282

(3.20) w0 = α0α2, w1 = α2(1− α0) + α1(1− α2), w2 = (1− α1)(1− α2),283

where the unnormalized weights are284

(3.21)

α0 =

3
(ε+β4

0)
q

3
(ε+β4

0)
q + 5

(ε+β4
1)

q

,

α1 =

5
(ε+β4

1)
q

5
(ε+β4

1)
q + 3

(ε+β4
2)

q

,

α2 =

1
(ε+β4

0)
q

1
(ε+β4

0)
q + 1

(ε+β4
2)

q

.

285

Theorem 3.1. Suppose that the stencil S6
2 contains a discontinuity at most, the286

exponent in unnormalized weights q ≥ 1 and ε ≤ O(∆x4). Then the 6th-order sub-287

WENO algorithm (3.19)(3.20)(3.21) satisfies the following three cases:288

case 1: if the stencil S6
2 is smooth, then

F 6
2 (xj− 1

2
) = f(xj− 1

2
) +O(∆x6);

case 2: if there is a discontinuity lies in (xj−3, xj−2), then

F 6
2 (xj− 1

2
) = f(xj− 1

2
) +O(∆x5),

or if there is a discontinuity lies in (xj+1, xj+2), then

F 6
2 (xj− 1

2
) = f(xj− 1

2
) +O(∆x5);

case 3: if there is a discontinuity lies in (xj−2, xj−1), then

F 6
2 (xj− 1

2
) = f(xj− 1

2
) +O(∆x4),

or if there is a discontinuity lies in (xj , xj+1), then

F 6
2 (xj− 1

2
) = f(xj− 1

2
) +O(∆x4).
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Proof. For the case 1, since the stencil S6
2 is smooth, we obtain289

(3.22) β4
i =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
, i = 0, 1, 2.290

By Taylor analysis, the unnormalized weights in (3.21) satisfy291

(3.23)

α0 =

3
(ε+β4

0)
q

3
(ε+β4

0)
q + 5

(ε+β4
1)

q

=
3(ε+ β4

1)q

3(ε+ β4
1)q + 5(ε+ β4

0)q
=

3

8
+O(∆x2),

α1 =

5
(ε+β4

1)
q

5
(ε+β4

1)
q + 3

(ε+β4
2)

q

=
5(ε+ β4

2)q

5(ε+ β4
2)q + 3(ε+ β4

1)q
=

5

8
+O(∆x2),

α2 =

1
(ε+β4

0)
q

1
(ε+β4

0)
q + 1

(ε+β4
2)

q

=
(ε+ β4

2)q

(ε+ β4
2)q + (ε+ β4

0)q
=

1

2
+O(∆x2).

292

Then the weights in (3.20) satisfy293

(3.24)

w0 = α0α2 =
3

16
+O(∆x2),

w1 = α2(1− α0) + α1(1− α2) =
10

16
+O(∆x2),

w2 = (1− α1)(1− α2) =
3

16
+O(∆x2).

294

By using the similar discussion as (2.8) and denoting (d0, d1, d2) = ( 3
16 ,

10
16 ,

3
16 ), we295

have296

(3.25)

F 6
2 (xj− 1

2
) =

2∑
i=0

wip
4
i (xj− 1

2
)−

2∑
i=0

dip
4
i (xj− 1

2
) +

2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)p4i (xj− 1
2
) +

2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)p4i (xj− 1
2
)−

2∑
i=0

(wi − di)fj− 1
2

+
2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)(p4i (xj− 1
2
)− fj− 1

2
) + p62(xj− 1

2
)

= p62(xj− 1
2
) +O(∆x6)

= fj− 1
2

+O(∆x6).

297

For the case 2, we only discuss the situation in which the discontinuity lies in298

the interval (xj−3, xj−2) since (xj+1, xj+2) and (xj−3, xj−2) are symmetric. We first299

analyze the case of corner discontinuity which lies in (xj−3, xj−2). At this moment300

three 4-points stencils satisfy301

(3.26)

β4
0 = O(∆x2),

β4
1 =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
,

β4
2 =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
.

302
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The unnormalized weights in (3.21) satisfy303

(3.27)

α0 =

3
(ε+β4

0)
q

3
(ε+β4

0)
q + 5

(ε+β4
1)

q

=
3(ε+ β4

1)q

3(ε+ β4
1)q + 5(ε+ β4

0)q
= O(∆x2q),

α1 =

5
(ε+β4

1)
q

5
(ε+β4

1)
q + 3

(ε+β4
2)

q

=
5(ε+ β4

2)q

5(ε+ β4
2)q + 3(ε+ β4

1)q
=

5

8
+O(∆x2),

α2 =

1
(ε+β4

0)
q

1
(ε+β4

0)
q + 1

(ε+β4
2)

q

=
(ε+ β4

2)q

(ε+ β4
2)q + (ε+ β4

0)q
= O(∆x2q).

304

The weights in (3.20) satisfy305

(3.28)

w0 = α0α2 = O(∆x4q),

w1 = α2(1− α0) + α1(1− α2) =
5

8
+O(∆x2),

w2 = (1− α1)(1− α2) =
3

8
+O(∆x2).

306

Denoting (d0, d1, d2) = (0, 58 ,
3
8 ) and one can easily verify

2∑
i=0

dip
4
i (xj− 1

2
) = p52(xj− 1

2
),307

then we have308

(3.29)

F 6
2 (xj− 1

2
) =

2∑
i=0

wip
4
i (xj− 1

2
)−

2∑
i=0

dip
4
i (xj− 1

2
) +

2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)p4i (xj− 1
2
) +

2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)p4i (xj− 1
2
)−

2∑
i=0

(wi − di)fj− 1
2

+
2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)(p4i (xj− 1
2
)− fj− 1

2
) + p52(xj− 1

2
)

= p52(xj− 1
2
) +O(∆x6)

= fj− 1
2

+O(∆x5).

309

If there is a jump discontinuity in the interval (xj−3, xj−2), then the indicators310

of smoothness satisfy311

(3.30)

β4
0 = O(1),

β4
1 =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
,

β4
2 =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
.

312

Inserting these indicators of smoothness into the unnormalized weights in (3.21) gives313

(3.31)

α0 =

3
(ε+β4

0)
q

3
(ε+β4

0)
q + 5

(ε+β4
1)

q

=
3(ε+ β4

1)q

3(ε+ β4
1)q + 5(ε+ β4

0)q
= O(∆x4q),

α1 =

5
(ε+β4

1)
q

5
(ε+β4

1)
q + 3

(ε+β4
2)

q

=
5(ε+ β4

2)q

5(ε+ β4
2)q + 3(ε+ β4

1)q
=

5

8
+O(∆x2),

α2 =

1
(ε+β4

0)
q

1
(ε+β4

0)
q + 1

(ε+β4
2)

q

=
(ε+ β4

2)q

(ε+ β4
2)q + (ε+ β4

0)q
= O(∆x4q).

314
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Then the nonlinear weights in (3.20) satisfy315

(3.32)

w0 = α0α2 = O(∆x8q),

w1 = α2(1− α0) + α1(1− α2) =
5

8
+O(∆x2),

w2 = (1− α1)(1− α2) =
3

8
+O(∆x2).

316

Repeating (3.29) shows the same result,317

(3.33) F 6
2 (xj− 1

2
) = fj− 1

2
+O(∆x5).318

Finally, we consider the case 3, in which the discontinuity lies in interval (xj−2, xj−1)319

or (xj , xj+1). Again we only analyze the situation of the discontinuity lies in interval320

(xj−2, xj−1) since (xj , xj+1) and (xj−2, xj−1) are symmetric. we take into account321

the corner discontinuity which lies in (xj−2, xj−1), then the indicators of smoothness322

achieve323

(3.34)

β4
0 = O(∆x2),
β4
1 = O(∆x2),

β4
2 =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
.

324

Substituting the indicators of smoothness into the unnormalized weights in (3.21)325

shows326

(3.35)

α0 =

3
(ε+β4

0)
q

3
(ε+β4

0)
q + 5

(ε+β4
1)

q

=
3(ε+ β4

1)q

3(ε+ β4
1)q + 5(ε+ β4

0)q
= O(1),

α1 =

5
(ε+β4

1)
q

5
(ε+β4

1)
q + 3

(ε+β4
2)

q

=
5(ε+ β4

2)q

5(ε+ β4
2)q + 3(ε+ β4

1)q
= O(∆x2q),

α2 =

1
(ε+β4

0)
q

1
(ε+β4

0)
q + 1

(ε+β4
2)

q

=
(ε+ β4

2)q

(ε+ β4
2)q + (ε+ β4

0)q
= O(∆x2q).

327

Then the nonlinear weights in (3.20) satisfy328

(3.36)
w0 = α0α2 = O(∆x2q),
w1 = α2(1− α0) + α1(1− α2) = O(∆x2q),
w2 = (1− α1)(1− α2) = 1 +O(∆x2q).

329

Denoting (d0, d1, d2) = (0, 0, 1) and one can easily verify
2∑
i=0

dip
4
i (xj− 1

2
) = p42(xj− 1

2
),330

then we have331

(3.37)

F 6
2 (xj− 1

2
) =

2∑
i=0

wip
4
i (xj− 1

2
)−

2∑
i=0

dip
4
i (xj− 1

2
) +

2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)p4i (xj− 1
2
) +

2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)p4i (xj− 1
2
)−

2∑
i=0

(wi − di)fj− 1
2

+
2∑
i=0

dip
4
i (xj− 1

2
)

=
2∑
i=0

(wi − di)(p4i (xj− 1
2
)− fj− 1

2
) + p42(xj− 1

2
)

= p42(xj− 1
2
) +O(∆x2q+4)

= fj− 1
2

+O(∆x4).

332
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If the jump discontinuity lies in (xj−2, xj−1), then the indicators of smoothness ap-333

proach334

(3.38)

β4
0 = O(1),
β4
1 = O(1),

β4
2 =

(
∆x2f ′′

j− 1
2

)2 (
1 +O(∆x2)

)
.

335

Replacing the indicators of smoothness into the unnormalized weights in (3.21) shows336

(3.39)

α0 =

3
(ε+β4

0)
q

3
(ε+β4

0)
q + 5

(ε+β4
1)

q

=
3(ε+ β4

1)q

3(ε+ β4
1)q + 5(ε+ β4

0)q
= O(1),

α1 =

5
(ε+β4

1)
q

5
(ε+β4

1)
q + 3

(ε+β4
2)

q

=
5(ε+ β4

2)q

5(ε+ β4
2)q + 3(ε+ β4

1)q
= O(∆x4q),

α2 =

1
(ε+β4

0)
q

1
(ε+β4

0)
q + 1

(ε+β4
2)

q

=
(ε+ β4

2)q

(ε+ β4
2)q + (ε+ β4

0)q
= O(∆x4q).

337

Then the nonlinear weights in (3.20) satisfy338

(3.40)
w0 = α0α2 = O(∆x4q),
w1 = α2(1− α0) + α1(1− α2) = O(∆x4q),
w2 = (1− α1)(1− α2) = 1 +O(∆x4q).

339

Denoting (d0, d1, d2) = (0, 0, 1) and one can easily verify
2∑
i=0

dip
4
i (xj− 1

2
) = p42(xj− 1

2
),340

then we have341

(3.41) F 6
2 (xj− 1

2
) = fj− 1

2
+O(∆x4).342

Theorem 3.1 shows the maximum theoretical accuracy of the 6th-order sub-343

WENO algorithm near discontinuities. What we left is to ensure the ENO property of344

new algorithm. The algorithm is deemed to conserve the ENO property if it satisfies345

the following two conditions,346

1. If the stencil Smi is smooth, then the nonlinear weight corresponding Smi satisfy347

wmi = O(1);348

2. If the stencil Smi is non-smooth, then the nonlinear weight corresponding Smi349

satisfies wmi ≤ O(∆xm).350

Clearly, from the nonlinear weights (3.28) (3.32) (3.36) and (3.40) in Theorem 3.1,351

we can validate the ENO property of new algorithm if q ≥ 2.352

4. The higher order sub-WENO alrorithm. In this section, the 2rth-order353

sub-WENO algorithms are presented for r ≥ 2. In particular, when r = 2 the 4th-354

order sub-WENO algorithm is the same as the classical WENO algorithm. The 6th-355

order sub-WENO algorithm (r = 3) has been shown in section 3 and we also analyze356

the optimal accuracy and ENO property. To implement the algorithm clearly, we give357

the tree structure of 2rth-order sub-WENO algorithm in Figure 2.358

In the first level, there are r (r + 1)-points stencils and corresponding indicators359

of smoothness βr+1
i (i = 0, · · · , r − 1). As the 6th-order sub-WENO algorithm in the360

section 3, it will be found that we only need to compute the indicators of smoothness361

βr+1
i (i = 0, · · · , r−1) of the smallest stencils on the first level. The choice of indicator362

of smoothness βmi (r+2 ≤ m ≤ 2r−1,m−r−1 ≤ i ≤ r−1) should ensure the optimal363
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· · · · · · Sr+1

r−2 Sr+1
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e
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%
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%
%

Sr+2
1

· · · · · · Sr+2
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e
e

e
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e
e

%
%

%
%

%
%

· · · · · · · · ·

e
e

e
e

%
%

%
%

S2r−1
r−2 S2r−1

r−1

e
e

%
%

S2r
r−1

Fig. 2. The tree structure of 2rth-order sub-WENO algorithm

accuracy, ENO property and modest computational cost of sub-WENO algorithm.364

From Figure 2, we can find that each nonlinear approximation Fmi (xj− 1
2
) on stencil365

Smi is obtained by the combination of the nonlinear approximations Fm−1i−1 (xj− 1
2
) and366

Fm−1i (xj− 1
2
) on Sm−1i−1 and Sm−1i , respectively,367

(4.1) Fmi (xj− 1
2
) = wm−1i−1 Fm−1i−1 (xj− 1

2
) + wm−1i Fm−1i (xj− 1

2
).368

That is, in each sub-WENO procedure {Sm−1i−1 , Sm−1i } ↪→ Smi , we only use the infor-369

mation from two stencils. The nonlinear weights are defined as370

(4.2)

wm−1i−1 =

dm−1
i−1

(ε+βm−1
i−1 )q

dm−1
i−1

(ε+βm−1
i−1 )q

+
dm−1
i

(ε+βm−1
i )q

,

wm−1i =

dm−1
i

(ε+βm−1
i )q

dm−1
i−1

(ε+βm−1
i−1 )q

+
dm−1
i

(ε+βm−1
i )q

.

371

The linear optimal weights dm−1i−1 and dm−1i in (4.2) are chosen so that they satisfy

pmi (xj− 1
2
) = dm−1i−1 p

m−1
i−1 (xj− 1

2
) + dm−1i pm−1i (xj− 1

2
).

Since Smi = Sr+1
r+1−m+i∪· · ·∪S

r+1
i and, as we have done for the 6th-order sub-WENO372

algorithm, a reasonable choice is373

(4.3)
βm−1i−1 := βr+1

r+1−m+i · · ·β
r+1
i−1 ,

βm−1i := βr+1
r+2−m+i · · ·β

r+1
i .

374

Replacing ε + βm−1i−1 and ε + βm−1i in (4.2) by (ε + βr+1
r+1−m+i) · · · (ε + βr+1

i−1 ) and375

(ε + βr+1
r+2−m+i) · · · (ε + βr+1

i ), respectively, and canceling the common terms, then376
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(4.2) is simplified as377

(4.4)

wm−1i−1 =

dm−1
i−1

(ε+βr+1
r+1−m+i)

q

dm−1
i−1

(ε+βr+1
r+1−m+i)

q
+

dm−1
i

(ε+βr+1
i )q

,

wm−1i =

dm−1
i

(ε+βr+1
i )q

dm−1
i−1

(ε+βr+1
r+1−m+i)

q
+

dm−1
i

(ε+βr+1
i )q

.

378

Figure 3 helps us to determine the indicators of smoothness of stencils intu-379

itively. The indicators of smoothness of stencils Sr+1
r+1−m+i and Sr+1

i on the top of380

“V” corresponding the sub-WENO procedure {Sm−1i−1 , Sm−1i } ↪→ Smi are chosen to381

be the indicators of smoothness of Sm−1i−1 and Sm−1i , respectively. It is remarkable382

that the stencil Smi is involved simultaneously in both the sub-WENO procedures383

{Sm−1i−1 , Sm−1i } ↪→ Smi and {Sm−1i , Sm−1i+1 } ↪→ Smi+1. But the indicator of smoothness384

of Smi is different when it belongs to different sub-WENO procedure.

Sr+1
r+1−m+i Sr+1

r+2−m+i Sr+1
i Sr+1

i+1

e
e

e
e

%
%

%
%

· · · · · · · · · · · ·

e
e

e
e

%
%

%
%

Sm−1i−1 Sm−1i Sm−1i+1

e
e

e
e

%
%

%
%

Smi Smi+1

Fig. 3. The choice of indicator of smoothness for sub-WENO procedure

385
To validate such choice of indicators of smoothness, taking the 8th-order sub-

WENO algorithm for example, Figure 4 shows the cases in which the discontinuity
lies in (xj+2, xj+3), (xj+1, xj+2) and (xj , xj+1), respectively. The left tree structure
of Figure 4 shows the situation when the discontinuity lies in the interval (xj+2, xj+3),
i.e., the former three stencils S5

i (i = 0, 1, 2) are smooth and the last one S5
3 is non-

smooth. From the first level to second level, there are three sub-WENO procedures.
The former two sub-WENO procedures both produce the 6th-order approximations
and the third sub-WENO procedure only produce a 5th-order approximation since
the stencil S5

3 is non-smooth and the nonlinear weight assigned to it can be ignored.
From the second level to third level, there are two sub-WENO procedures. In the first
sub-WENO procedure {S6

1 , S
6
2} ↪→ S7

2 , since the indicators of smoothness of stencils
S6
1 and S6

2 are defined by

β6
1 := β5

0 and β6
2 := β5

2 ,

this sub-WENO procedure generates 7th-order approximation. The second sub-
WENO procedure {S6

2 , S
6
3} ↪→ S7

3 only produces the 6th-order approximation, since
β6
3 := β5

3 is non-smooth. In the final sub-WENO procedure {S7
2 , S

7
3} ↪→ S8

3 , the
indicators of smoothness are defined by

β7
2 := β5

0 and β7
3 := β5

3 .
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Since S5
3 is non-smooth, the contribution of this stencil is ignored and the final approx-386

imation F 8
3 (xj− 1

2
) is only 7th-order. The middle and right tree structures of Figure 4387

show the situations when the discontinuities lie in (xj+1, xj+2) and (xj , xj+1), respec-388

tively. The “∗” denotes the situation that the value generated by this sub-WENO389

procedure is nonsense since both substencils are non-smooth. By the strategy of choos-390

ing the indicators of smoothness, the value denoted by “∗” will be ignored almost in391

the latter sub-WENO procedures.
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Fig. 4. The choice of indicator of smoothness for sub-WENO procedure keeps the ENO property.
The circles “ © ” denotes the non-smooth stencils and the stars “ ∗ ” denotes the values generated
by corresponding sub-WENO procedures are nonsense.

392

To implement the higher order sub-WENO algorithm easily, we present the nec-393

essary formulas explicitly for r = 4. Since all the sub-WENO procedures can be394

integrated, we will only present the compact forms of sub-WENO algorithms as395

(3.19)(3.20)(3.21). For the 8th-order sub-WENO algorithm, there exist four sten-396

cils S5
i (i = 0, 1, 2, 3) used to approximate fi− 1

2
. The linear 5th-order interpolations397

at xj− 1
2

can be expressed as398

(4.5)

p50(xj− 1
2
) = 1

128 (−5fj−4 + 28fj−3 − 70fj−2 + 140fj−1 + 35fj),

p51(xj− 1
2
) = 1

128 (3fj−3 − 20fj−2 + 90fj−1 + 60fj − 5fj+1),

p52(xj− 1
2
) = 1

128 (−5fj−2 + 60fj−1 + 90fj − 20fj+1 + 3fj+2),

p53(xj− 1
2
) = 1

128 (35fj−1 + 140fj − 70fj+1 + 28fj+2 − 5fj+3).

399

By combining all the sub-WENO procedures, we can arrive400

(4.6) F 8
3 (xj− 1

2
) = w0p

5
0(xj− 1

2
) + w1p

5
1(xj− 1

2
) + w2p

5
2(xj− 1

2
) + w3p

5
3(xj− 1

2
),401

where402

(4.7)
w0 = α0α3α5, w1 = β0α3α5 + α1β3α5 + α1α4β5,
w2 = β1β3α5 + β1α4β5 + α2β4β5, w3 = β2β4β5,

403

and βi = 1− αi, i = 0, . . . , 5. The unnormalized weights are defined as404

(4.8)

α0 =

3
(ε+β0)q

3
(ε+β0)q

+ 7
(ε+β1)q

, α1 =

1
(ε+β1)q

1
(ε+β1)q

+ 1
(ε+β2)q

,

α2 =

7
(ε+β2)q

7
(ε+β2)q

+ 3
(ε+β3)q

, α3 =

5
(ε+β0)q

5
(ε+β0)q

+ 7
(ε+β2)q

,

α4 =

7
(ε+β1)q

7
(ε+β1)q

+ 5
(ε+β3)q

, α5 =

1
(ε+β0)q

1
(ε+β0)q

+ 1
(ε+β3)q

.

405
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The indicators of smoothness computed by (2.2) can be expressed as406

(4.9)

β5
0 = 1

36 (2fj−4 − 11fj−3 + 27fj−2 − 29fj−1 + 11fj)
2

+ 39
36 (fj−4 − 5fj−3 + 9fj−2 − 7fj−1 + 2fj)

2

+ 3124
2880 (fj−4 − 4fj−3 + 6fj−2 − 4fj−1 + fj)

2,
β5
1 = 1

36 (fj−3 − 7fj−2 + 9fj−1 − fj − 2fj+1)2

+ 39
36 (−fj−2 + 3fj−1 − 3fj + fj+1)2

+ 3124
2880 (fj−3 − 4fj−2 + 6fj−1 − 4fj + fj+1)2,

β5
2 = 1

36 (2fj−2 + fj−1 − 9fj + 7fj+1 − fj+2)2

+ 39
36 (fj−2 − 3fj−1 + 3fj − fj+1)2

+ 3124
2880 (fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)2,

β5
3 = 1

36 (11fj−1 − 29fj + 27fj+1 − 11fj+2 + 2fj+3)2

+ 39
36 (2fj−1 − 7fj + 9fj+1 − 5fj+2 + fj+3)2

+ 3124
2880 (fj−1 − 4fj + 6fj+1 − 4fj+2 + fj+3)2.

407

5. Numerical results. In this section, two examples, containing the corner408

and jump discontinuities respectively, are used to test the order of accuracy of sub-409

WENO algorithms. We also compare the computational costs between the classical410

WENO [16], the WENO-AW [3] and sub-WENO algorithms. The 8th-order sub-411

WENO algorithms is only tested by the first example since we can obtain the similar412

results for the second example. We choose the parameters ε = 10−40 and q = 2 for413

all the algorithms.414

Example 5.1. Consider the function415

(5.1) f(x) =

{
−10e−x+3 − 3x2, if − 1 ≤ x ≤ 0,
−10ex+3 − 3x2, if 0 < x ≤ 1,

416

there is a corner discontinuity lies at x = 0. This piecewise function is even and con-417

tinuous, but the first derivative is not discontinuous. Since the function is symmetri-418

cal with y-axis, we only show the absolute errors at {xj−1/2, xj+1/2, xj+3/2, xj+5/2}.419

While it is only interested in the order of accuracy near discontinuities in this paper,420

we keep the discontinuities lie in the center of grid [xj−1, xj ]. To get this, the inter-421

val [−1, 1] is divided into 2N + 1 grids and then we subdivide each grid into three422

small uniform grids in every grid refinement. In the numerical experiments, the grid423

spacing is set to be ∆x = 2
101·3i , i = 0, · · · , 4. Table 1 shows the absolute errors and424

order of accuracy of classical WENO, WENO-AW and sub-WENO algorithms. As425

presented in subsection 2.1, when the discontinuity lies in the interval [xj−1, xj ], the426

approximations of classical WENO algorithm at xj+1/2 and xj+3/2 can only arrive427

the 4th-order of accuracy. When we predict the value at xj+5/2, since the stencil S6
2428

for approximating xj+5/2 is smooth, the maximum 6th-order of accuracy is certainly429

obtained. As shown in [3] and section 3, the WENO-AW and sub-WENO algorithms430

are devised to reasonably combine all the smooth stencils to arrive the maximum431

theoretical accuracy. The WENO-AW and sub-WENO algorithms achieves 5th-order432

of accuracy when approximate the value at xj+3/2 since the 5-points stencil S5
1 is s-433

mooth. It is noted that the absolute errors presented by WENO-AW and sub-WENO434

algorithms are almost identical.435

Table 2 compares the computational costs of three WENO algorithms. To obtain436

the reliable CPU costs, we loop the interpolation parts of codes 5 million times. The437

results are shown in Table 2 and we find that the CPU times of the WENO-AW and438

sub-WENO algorithms increase approximately by 150% and 5% respectively when439

compared with the classical WENO algorithm.440
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Table 1
The absolute errors and orders of accuracy of the 6th-order classical WENO, WENO-AW and

sub-WENO algorithms for the function (5.1) which contains a corner discontinuity at x = 0.

classical WENO
i xj−1/2 xj+1/2 xj+3/2 xj+5/2

0 1.478e-00 ***** 1.080e-06 ***** 2.780e-07 ***** 4.284e-10 *****
1 4.929e-01 1.000 1.438e-08 3.931 3.439e-09 3.998 5.649e-13 6.034
2 1.643e-01 1.000 1.818e-10 3.979 4.245e-11 4.000 7.646e-16 6.012
3 5.477e-02 1.000 2.261e-12 3.993 5.239e-13 4.000 1.044e-18 6.004
4 1.826e-02 1.000 2.799e-14 3.998 6.467e-15 4.000 1.430e-21 6.001

WENO-AW
i xj−1/2 xj+1/2 xj+3/2 xj+5/2

0 1.478e-00 ***** 1.109e-06 ***** 7.869e-09 ***** 4.284e-10 *****
1 4.929e-01 1.000 1.450e-08 3.917 3.044e-11 5.056 5.649e-13 6.034
2 1.643e-01 1.000 1.822e-10 3.984 1.227e-13 5.019 7.646e-16 6.012
3 5.477e-02 1.000 2.263e-12 3.995 5.012e-16 5.006 1.044e-18 6.004
4 1.826e-02 1.000 2.800e-14 3.998 2.058e-18 5.002 1.430e-21 6.001

sub-WENO
i xj−1/2 xj+1/2 xj+3/2 xj+5/2

0 1.478e-00 ***** 1.144e-06 ***** 7.869e-09 ***** 4.283e-10 *****
1 4.929e-01 1.000 1.464e-08 3.967 3.044e-11 5.056 5.649e-13 6.036
2 1.643e-01 1.000 1.828e-10 3.989 1.227e-13 5.019 7.646e-16 6.012
3 5.477e-02 1.000 2.266e-12 3.996 5.012e-16 5.006 1.044e-18 6.004
4 1.826e-02 1.000 2.801e-14 3.999 2.058e-18 5.002 1.430e-21 6.001

Table 2
The CPU costs of the 6th-order classical WENO, WENO-AW and sub-WENO algorithms for

the function (5.1). The interpolation parts of codes are looped 5 million times to obtain the reliable
CPU costs.

classical WENO WENO-AW sub-WENO
13.8s 35.4s 14.6s

The performance of 8th-order sub-WENO algorithm is presented in Table 3. We441

can find that the algorithm achieves the optimal order near the corner discontinuity.442

When we approximate the value at xj+1/2, there exists only one stencil S5
3 is smooth.443

The nonlinear weight distributed to this stencil is dominant and the contributions of444

the left stencils are ignored. The prediction at xj+3/2 by sub-WENO algorithm gives a445

reasonable combination of S5
2 and S5

3 since they are both smooth. When approximate446

the value at xj+5/2, the discontinuity lies in the far left interval [xj−1, xj ]. The stencils447

S5
1 , S5

2 and S5
3 all are smooth and the sub-WENO algorithm uses them well to obtain448

7th-order of accuracy.449

Example 5.2. In this example, we slightly modify the piecewise function (5.1) so450

that the corner discontinuity in it is changed into jump discontinuity,451

(5.2) f(x) =

{
10ex+3 + 3x2, if − 1 ≤ x ≤ 0,
−10ex+3 − 3x2, if 0 < x ≤ 1.

452

We only test the 6th-order WENO algorithms for this example. As shown in Table 4,453

the classical WENO algorithm only arrives 4th-order of accuracy when we approx-454

imate the values at xj+3/2 which is near discontinuity. For the WENO-AW and455

sub-WENO algorithms, they are both obtain the maximum theoretical accuracy. It is456

noted that, when approximating the value at discontinuity, we will lose the accuracy457

entirely.458
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Table 4
The absolute errors and orders of accuracy of classical WENO, WENO-AW and sub-WENO

algorithms for the function (5.2) which contains a jump discontinuity at x = 0.

classical WENO
i xj−1/2 xj+1/2 xj+3/2 xj+5/2

0 197.988 ***** 1.250e-06 ***** 2.847e-07 ***** 4.284e-10 *****
1 199.899 -0.009 1.507e-08 4.021 3.464e-09 4.013 5.649e-13 6.034
2 200.537 -0.003 1.846e-10 4.007 4.254e-11 4.004 7.646e-16 6.012
3 200.749 -0.001 2.273e-12 4.002 5.243e-13 4.002 1.044e-18 6.004
4 200.820 -0.000 2.804e-14 4.001 6.469e-15 4.000 1.430e-21 6.001

WENO-AW
i xj−1/2 xj+1/2 xj+3/2 xj+5/2

0 197.605 ***** 1.250e-06 ***** 7.869e-09 ***** 4.284e-10 *****
1 199.772 -0.010 1.507e-08 4.021 3.044e-11 5.056 5.649e-13 6.034
2 200.494 -0.003 1.846e-10 4.007 1.227e-13 5.019 7.646e-16 6.012
3 200.735 -0.001 2.273e-12 4.002 5.012e-16 5.006 1.044e-18 6.004
4 200.815 -0.000 2.804e-14 4.001 2.058e-18 5.002 1.430e-21 6.001

sub-WENO
i xj−1/2 xj+1/2 xj+3/2 xj+5/2

0 197.243 ***** 1.250e-06 ***** 7.869e-09 ***** 4.283e-10 *****
1 199.651 -0.011 1.507e-08 4.021 3.044e-11 5.056 5.649e-13 6.036
2 200.454 -0.004 1.846e-10 4.007 1.227e-13 5.019 7.646e-16 6.012
3 200.722 -0.001 2.273e-12 4.002 5.012e-16 5.006 1.044e-18 6.004
4 200.811 -0.000 2.804e-14 4.001 2.058e-18 5.002 1.430e-21 6.001

6. Conclusions. In this paper, the sub-WENO algorithm is presented to recov-459

er the optimal order of accuracy near the discontinuities. The sub-WENO algorithm460

is constructed by dividing the classical WENO into several sub-WENO procedures.461

In each sub-WENO procedure, we only combine two stencils to approximate the val-462

ue of target points. If the two stencils are both smooth, then sub-WENO procedure463

increases the order of accuracy by one. If there is a stencil is smooth and the left one464

is non-smooth, then algorithm conserves the order of interpolation by corresponding465

smooth stencil and keeps the ENO property. If both stencils are non-smooth, then the466

value constructed by sub-WENO procedure will be cut off in the latter procedures.467

The whole of sub-WENO algorithm can be expressed as tree structure. The choice468

of smoothness of indicator of stencils in the middle part of tree is also presented.469

This choice does not increase the computational time almost. The proof of order of470

accuracy and ENO property of the 6th-order sub-WENO algorithm is shown in Theo-471

rem 3.1. The numerical tests validate the results we have proved in Theorem 3.1. The472

sub-WENO algorithm based on the cell averages and application of it on hyperbolic473

conservation laws will be our future works.474
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[9] G. A. Gerolymos, D. Sénéchal, and I. Vallet, Very-high-order WENO schemes, J. Comput.494
Phys., 228 (2009), pp. 8481–8524.495

[10] A. Harten, ENO schemes with subcell resolution, J. Comput. Phys., 83 (1987), pp. 148–184.496
[11] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order essentially497

non-oscillatory schemes III, J. Comput. Phys., 71 (1987), pp. 231–303.498
[12] A. Harten and S. Osher, Uniformly high order essentially non-oscillatory schemes I, SIAM499

J. Numer. Anal., 24 (1987), pp. 279–309.500
[13] A. K. Henrick, T. D. Aslam, and J. M. Powers, Mapped weighted essentially non-oscillatory501

schemes: Achieving optimal order near critical points, J. Comput. Phys., 207 (2005),502
pp. 542–567.503

[14] C. Q. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes,504
J. Comput. Phys., 150 (1999), pp. 97–127.505

[15] G. S. Jiang and D. P. Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM506
J. Sci. Comput., 21 (2000), pp. 2126–2143.507

[16] G. S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.508
Phys., 126 (1996), pp. 202–228.509

[17] G. S. Jiang and C. Wu, A high-order WENO finite difference scheme for the equations of510
ideal mgnetohydrodynamics, J. Comput. Phys., 150 (1999), pp. 561–594.511

[18] D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems of con-512
servation laws, Math. Model. Numer. Anal., 33 (1999), pp. 547–571.513

[19] X. D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput.514
Phys., 115 (1994), pp. 200–212.515

[20] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for516
hyperbolic conservation laws, in Advanced numerical approximation of nonlinear hyperbolic517
equations, Lecture Notes in Mathematics, vol. 1697, Berlin, 1998, Springer-Verlag, pp. 325–518
432.519

[21] C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated520
problems, SIAM Review, 51 (2009), pp. 82–126.521

[22] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-522
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.523

[23] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-524
capturing schemes II, J. Comput. Phys., 83 (1989), pp. 32–78.525

[24] J. Zhu and J. X. Qiu, A new fifth order finite difference WENO scheme for solving hyperbolic526
conservation laws, J. Comput. Phys., 318 (2016), pp. 110–121.527

[25] J. Zhu and J. X. Qiu, New finite volume weighted essentially nonoscillatory schemes on528
triangular meshes, SIAM J. Sci. Comput., 40 (2018), pp. A903–A928.529

This manuscript is for review purposes only.


	Introduction
	Review of WENO algorithms
	The classical WENO algorithm with fixed optimal weights
	The WENO algorithm with adapted optimal weights

	The 6th-order sub-WENO algorithm
	The higher order sub-WENO alrorithm
	Numerical results
	Conclusions
	References

