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Abstract

In this paper, a novel numerical method for solving the optigontrol problems (OCPs) are pre-
sented. This method uses Genocchi polynomials. Some giepef Genocchi polynomials are given
and the operational matrix of derivative is constructedisThatrix helps us to convert the nonlinear
constrained optimal control problem to the nonlinear paogming one that can be solved by Maple
programming software. The presented method is applied e sumerical examples in order to show
its advantages.
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1 INTRODUCTION

Optimal control problems, which often include an objectfuaction and nonlinear constraints, need to
be solved numerically using high-precision methods with tome and low cost, given the importance
they have found in various engineering sciences. The ngalemethods are divided into two parts, the
indirect [, 8, 25 and the direct method$]7]. In the indirect methods, calculus of variations are used a
the necessary conditions are achieved. Then we deal withl@point boundary value problem which
must be solved. In this method, guessing the values of eosattors are needed. In the direct methods
both the control and the state vectors are discretizé2[/]. After discretization of the vectors, a nonlinear
optimization problem is obtained which can be solved by #abigé numerical optimization metho@]|
Recently, most attention to solve such matters has beep@lat the spectral methods. In these methods
we expand the control and the state vectors as an unknovar looenbination of a suitable base. Also the
derivative of the control and the state vectors is obtainethb same base using the operational matrix of
derivation. Vlassenbroeck has used Chebyshev polynontiakssolve control problem29, 30]. Elnagar
benefited from the legendre polynomials for approximationtml and state vectordl{l]. Edrisi et al.
has used linear B-spline functions as polynomials for agipration [12]. In this paper we use Genocchi
polynomials to approximate the unknown functions. Theiorigf the Genocchi numbers is provided by
Anthony Genocchi (1817-1889). Useful properties of the é&ehi polynomials make us expect that the
numerical solution of the optimal control problem have mareuracy. So that we can obtain an approximate

*Corresponding Author. Email: lakestani@tabrizu.ac.it Ekestani@gmail.com



Numerical solution of optimal control problems using Gestogolynomials 2

solution for the objective function, system state equatiamonditions and control vectors to transform the
optimal control problem into a nonlinear programming pewbl This method is based on the direct methods.

This paper’s text order is as follows: Sectignstates the optimal control problem. In Sectignthe
Genocchi numbers and polynomials and some properties of éne presented. The objective function and
state equations are approximated in Sectiorin Section5, some numerical examples are presented and
solved by the presented method and finally, in Sediiaonclusion of the paper is stated.

2 Optimal control problem

Consider following OCP:
Minimizing the objective function

J:/Olh(x(t),u(t),t)dt, L

for finding the control vectoru(t), and the corresponding state vectoft), that apply to the following
constraints

t) = f(x(t),u(t),t), (2)
t) <0, )
X(0) = Xo, X(1) = xq, (4)

wherex(t) andu(t) are unknown vectors with dimensioms< 1 andm x 1 respectively which must be
defined h, f andg are known functions aR" x R™ x R — R, andxg andx; aren x 1 known vectors.

3 Genocchi numbers and polynomials

The Genocchi numbers and polynomials are widely used inenadtics and physics. Genocchi numbers,
Gn, and polynomialsG,(x), are defined respectively, by using exponential generétingtions as2—4,18,
23

2t N
Z GI’]H7

n=0
2t 2 t" ®)

Q(t,x) = Fa n;Gn(X) R

Then, we can write the Genocchi polynomial of degness

_ < (N k
Gol = 5 (k> Gr_iod 6)

Qt) == a1
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whereGy in Eq.(6) is the Genocchi numbed 8-20] :

Go=0,
Gi=1

Gy = 2iE5 1(0), .

2 2i—1(0) (i>1)
Gaiy1 =0,

andE; is Euler's number, which is defined &k 8, 22]

. o’ e i [N 2
oy (e (5 (1))

Also, we can write Genocchi numbers and polynomials in tesfigernoulli numbersB,,, and polynomials,
Bn(X) as

Gn — 2(1 - zn)Bn,

Gn(X) = 2Bn(X) — 2"1B, (g) .

Some of the important properties of the Genocchi polynsraat as below:

1 _q\m
[ en(96 (0 ac= 2D T G mi>1 @
dC;)EX) =iGi-1(x), i>1, (8)
Gi (x+1)+Gi (x) = 2ix 2,
Gi(1)+Gi(0)=0, i>1.

Here, we use Genocchi polynomials as basis polynomialspmapnate the state and control variables. Let
G = Sparf Gy (t),Ga(t),...,Gm(t)} is generated by Genocchi polynomials. For every arbitréggnent of
f(t) € L2]0,1], there is a unique best approximationGmamedf*(t) such that

va(t) € G, [[f(t) = F O < [IF(t) —a®)ll;

so, for everyg(t) € G
(f(t) - (1), 9(t)) =0, (9)

where(.) is the inner product. In result of belongirfg(t) to G, unique coefficient€;,Cy,...,Cy exist
which we can approximate the arbitrary functibfi) as [LO, 15]

f(t)~ f*(t) = _iciei (t) =CTG(t),

whereC = [Cl,Cg, A ,CM]T, G(t) = [Gl(t),Gz(t), ...,Gpm (t)]T.
According to 0), we can write

(f(t)—CTG(1),Gi(t)) =0,i=1,2,...,M.
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So, any arbitrary functiorf (t) € L[0,1] can be approximated by Genocchi basis polynomial$ (5=
CTG(t) where

C =P Yf(t),G(1), (10)
and L
P=(G(1).6(1) = | GOV, (11
is aM x M matrix with entires obtained fron¥) as
2(-1)'itj! .
P:[pij]MXMa pLjZWGi-H‘a |7J:1727"'7M'
For example foiM = 8 we have :
1 0 -3 o 1 o -¥ o
o i o -%Z o0 b o -
1 3 17 31
-3 0 35 0 -3 O ¥ 0
p_| 0 -8 0 % 0O -3 0 I
11 o -i¥ o 1 o -8 0
28 126 132
o % 9 %o om0
_ 17 0 31 0 691 0 38227 0
04 62 102 1382 18 10922 1616 929569
) 165 T 7429 6435
In order to obtain the derivative of Genocchi basis polyraisG (t), we use §) and get
d

G/(t) = 5 (G(1) =DeG(),

whereDg is aM x M operational matrix of derivative as

000 - 0 00
200 0 00
030 0 00
De— |0 0 4 0 00
000 - M-1 0 0
000 - 0 MO

In order to approximate the derivative of the arbitrary fiimt, we use operational matrix derivative of the

Genocchi polynomials as below
f'(t)=CTG'(t) =C"DgG (t).

4  Approximation of objective function and system constraints

Let
12)
; (13)
u(t) =[ug(t),uz(t),...,um(®)]", (14)
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and to generalize the discussion, suppose

Gn(t) = 1h,®G(t), (15)
G (t) = In®DaG(t), (16)
Gm(t) =Im®G(t), (17)

wherel,, andl, are identity matrixG (t) is a vector at dimensioM x 1, ® is the Kronecker produc®f],
Gn(t), Gpn(t) are matrices with dimensian x nandGp (t) is aMm x mmatrix.

Itis assumed thatany,i =1...nandu;, j = 1...m, thatin Egs.{2)-(14), can be approximated as Genocchi
basis polynomials

X (t) = G' ()X, (18)
X (t) ~ G (t) DeXi, (19)
uj ('[) ~ GT (t) Uj, (20)

whereX; andU; areM x 1 vectors. So, from Eqs1§)-(17) we have

x(t) ~ Gl (t)X, (21)
%(t) ~ Gh ()X, (22)
u(t) ~ Gh(t)U, (23)

whereX andU are matrices of dimensiamx M andm x M, respectively, and

X= [X17X27"'7XH]T7
U= [U17U2>"'7Um]T‘

Now, we want to approximate the objective function of OCPd®ahis, we replace2(l) and ¢3) in (1) and
get

szh(éI (t)X,éL(t)U,t) . (24)

There are two cases:

() hin (24) is a quadratic function, then we have

I /01 <xT(t)Qx(t) T (t)Ru(t))dt (25)

whereQ andR are suitable matrices. By replacinglj and ¢3) in (25) we get

JaXT (/Olén(t)QéI(t)dt> X+UT (/Olém(t)Ré,Tn(t)dt>u. (26)
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We simplify (26) as

1 1
IaXT (/ Q® G(t)GT(t)dt> X+UT </ R® G(t)G" (t)dt> u. 27)
0 0
Finally, we changd with J(X,U) and rewrite it as
JX,U)=XT(QeP)X+UT (ReP)U, (28)
whereP is the same asl().
(i) hin (24) is atime-varying quadratic function or an arbitrary of&rt we use a suitable Newton-Cotes

numerical integration metho@§] and approximate the objective function as

i=1,2,....1, (29)

30.0) = 5 ah(S0X.GHUL) . -

where the weighty is determined by

a= [ i

and eacHj(t) is a Lagrange polynomial as

r t—1t;
li(t) = P
j=0" 0

J#

For approximating the OCP constraints, we substit@fig { (23) in (2) - (4) and we get

Gha(HX ~ f (GTHX.GROU.L), (30)
9(Gl(HX.GRvU.L) <O, (31)
Gl (0)X = X, GT (1)X ~ x1. (32)

By collocating Egs.28] and [29] at the chebyshev nodes

ti:%{lJrcos(z;/lln)], i=1...,M, (33)

We obtain
Ghn(t)X = £ (G (6)X,GHHU,). (34)
g (Gﬁ (ti)X,éL(ti)U,ti) <o. (35)

Therefore, solving an OCP turns to solving NLP such that wetwafind X andU to minimize the objective
function 28) or (29) and apply the constraint8%), (34) and @35).
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5 Numerical Examples

Example5.1. Consider the following OCP9,11,13:

1
minimize J:/ u? (t) dt
0

Assumel”, %1%(t), %" (t), G*(t) be the approximate optimal values, obtained by the predemigthod and
J*, X5 (t), X2*(t), u*(t) are the exact values of them.
Define error values in the form

B = X" (t) =% () o j0.1)5

B = 2" (t) = %2" () 0.1y

Eu = [u"(t) = 0" ()] 0,1
Tablel, shows the amount of these errors for different values ofdBleR, shows thég) errors for different
values of M for the methods presented 18]] Comparing the value of objective function obtained by the
presented method with two methods presented 3tif Tab 2, we find that the presented method is better

in accuracy and time saving in this example. The exact andoappate values of the optimal control and
state vectors and related errors by using the Genocchi hasismomials method are shown in Fig.

Table 1:Error values obtained by the presented method for Example

M E; Ex, Ex, E, CPU Time
6 | 1.4x10 % 204x1012 102x101T 211x10 10  0.046
7 | 73x1016 683x1015 419x10 14 1.12x1012 0.157
8 | 22x1017 151x1016 897x1016 209x101*  0.641
9 |60x1018 261x1015 174x10 14 1.07x1012 0.733
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Figure 1:Absolute values of errors far(t) , x; (t) andx(t) using the presented method wih= 8 for examples.1
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Table 2:Error values of the objective function derived from the noethin [L3] for Example5.1

Method 1 Method 2
M E; CPU Time E; CPU Time
6 | 3.67x10°° 0.053 |[593x10°3 0.163
7 | 1.86x10°2 0.181 | 148x10°3 0.401
8 | 9.34x10°8 1.034 | 374x10°* 1.377
9 | 468x10°° 7.662 | 9.38x10° 7.400

Table 3:Error values obtained by the presented method for Exathgle

M E; Ex, Ex, Ey CPU Time
6 | 1.12x10° 501x107? 7.02x10° 896x107? 0.402
7 | 1.06x10°% 550x102 7.64x102 4.21x10°7? 0.577
8 | 1.16x10° 555x102 7.44x102 152x10°72 0.609
9 | 1.09x10°% 518x102 7.45x102 3.21x10?2 0.639

Example5.2. Consider the following optimal control probleriZ]

minimize J:%/Ol (x2(t) + UP(t))dt,

subjectto x; (t) =x2 (),
X2 (t) = =%z (t) +uf(t),
x1(0) =0,
X2 (0) = 10,
ut) <1

The optimal control is

-1 A2%(t) > 1,

U(t) =9 — 25 (t) —1<A*(t) <1,
+1 A% (t) < —1.

Tab. 3 shows the values of errors for M 6,7,8,9. Fig. 2 shows the error plots.

Example5.3. Consider the Breakwell problem fror]] as

1

minimize J= %/0 u?(t)dt,
subject to x;(t) = xa(t),
%(t) = u(t),
Xl(t) < 017
Xl(O) = Xl(l) = 0,
(
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Figure 2:Plot of absolute values of errors foft) , x; (t) andxx(t) using presenetd method wihh = 8 for examples.2
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The exact solution of Breakwell problem is as follows

11

%)t3_1_30t2+t’ O§t§03,
() =1 . 03=t=07
10043 | 7042 49 37
o2_20t4+1, 0<t<03,
XE (t) — 07 03<t< O7a
10042 140 — 49
—Gtet+ Gt y, 07<t<1
— 204+ 10 07<t<1

Also, this problem was numerically solved by using the psspettral methodl7] and ChFD method
[26], We solve it by the presented method and the results arertegpan Table. 4. Error plots of the
Breakwell problem for M= 8 has been shown in Figg.

Table 4:Error values obtained by the presented method for Example

M E; Ex, Ex, E, CPU Time
10| 282x102 3.08x103 396x10°2 589x101 0.88
11| 1.70x103 453x10% 215x10° 219x101 1.48

Table 5:Error values of the objective function derived from the noetfil1] for Example5.3

Method 1 Method 2
Number of points E; CPU Time E; CPU Time
8 3.58x 1072 0.702 | 8.98x 1072 1.341
16 2.02x 1073 3.701 2.19% 102 1513

Example5.4. Consider the following optimal maneuvers of a rigid a symimepacecraft P6]. The Eulers
equations for the angular velocitieg, Y2, Ys of the spacecraft are given by

Y1=
Yz =
Y3 =

I1
12

I3

whereus, Uy, U3 are the control torques, anty = 86.

(I3—12)

(11—13)

(I2—11)

Y2Y3+%,
Y1Ys+2,
Vi +i2,

24kgn?, 1, = 85.07kgm?, |3 = 1135%gn? are the
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Figure 3:Plots of errors fou(t) , x1 (t) andxx(t) obtained by the presented method wifh= 11 for examples.3
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spacecraft principle inertia. The performance index to beimized is given by

100
minimize J:%/ (ur?(t) + up?(t) +ug?(t) ) dt,
0

Y1(0) = 0.01,
Y, (0) = 0.005
Y3 (0) = 0.001,

(
Y1(100) = Y, (100) = Y5 (100) = 0.

In Table. 6, the values of the objective function J are presented andhaced with two other methods
presented in21, 26].

Table 6:The values of the objective function for Exampl&

Methods J
Quasilinearization41]
N=6 0.0046878

Composite Chebyshev finite difference methdf] [
N=2, M=4 0.0046877953

Presented Method

M=4 0.0046877856
M=6 0.0046877953
M=8 0.0046877953

Example5.5. Consider the following example fror7].

1
minimize J:/ Xo(t)u(t)dt,
0

subject to x1(t) = (1),
Xo(t) = — X% (t) + u(t),

x1(0),%2(0)) = (0,1),
x1(1),%(1)) = (1,1).

For this problem, we define the first and second constraints @r the following from

e = [Xa(t) —X2(t)]
& = |Xo(t) +X2(t) —u(t)|.

The obtained results applying presented method for thiblpro are reported in TableéZ and Figs.4 and5.
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14

Table 7:Constraints error obtained by presented method for Example

M mtaxel mtaxeg CPU Time

7 1 208x10 8 179x10 18 0.88

8 |218x1018 219x1018 1.48

9 | 134x10Y 598x10°1® 2.02
0o s on ax — a0

Figure 4:The exact and approximate values of the optimal control tate sectors for example.5

6 Conclusion

In the present study, the Genocchi polynomial basis was tessedmerically solve the OCPs. We apply
operational matrix of derivation of the Genocchi polynolmiand change the solving an OCP to the solving
NLP. The method can solve any arbitrary OCP with constantear terminal time problems. Five examples
are include to examine the performance and effectiveneseafew method. These examples show that the
present method is superior in terms of accuracy and timegavi

3.x 10718

25% 107184

2.x 10714

]

1.5x 10718

1.x 107184

5.x 107191

4.x 107184

3.x 107184

2.x 107 1%

1.x 10718+

02 04 06 08 1

Figure 5:Results obtained for exampie5
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