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Abstract

In this paper, a novel numerical method for solving the optimal control problems (OCPs) are pre-
sented. This method uses Genocchi polynomials. Some properties of Genocchi polynomials are given
and the operational matrix of derivative is constructed. This matrix helps us to convert the nonlinear
constrained optimal control problem to the nonlinear programming one that can be solved by Maple
programming software. The presented method is applied on some numerical examples in order to show
its advantages.
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1 INTRODUCTION

Optimal control problems, which often include an objectivefunction and nonlinear constraints, need to
be solved numerically using high-precision methods with low time and low cost, given the importance
they have found in various engineering sciences. The numerical methods are divided into two parts, the
indirect [5,8,25] and the direct methods [6,7]. In the indirect methods, calculus of variations are used and
the necessary conditions are achieved. Then we deal with a multi-point boundary value problem which
must be solved. In this method, guessing the values of costate vectors are needed. In the direct methods
both the control and the state vectors are discretized [16,27]. After discretization of the vectors, a nonlinear
optimization problem is obtained which can be solved by a suitable numerical optimization method [6].
Recently, most attention to solve such matters has been placed on the spectral methods. In these methods
we expand the control and the state vectors as an unknown linear combination of a suitable base. Also the
derivative of the control and the state vectors is obtained by the same base using the operational matrix of
derivation. Vlassenbroeck has used Chebyshev polynomialsto resolve control problems [29, 30]. Elnagar
benefited from the legendre polynomials for approximation control and state vectors [14]. Edrisi et al.
has used linear B-spline functions as polynomials for approximation [12]. In this paper we use Genocchi
polynomials to approximate the unknown functions. The origin of the Genocchi numbers is provided by
Anthony Genocchi (1817-1889). Useful properties of the Genocchi polynomials make us expect that the
numerical solution of the optimal control problem have moreaccuracy. So that we can obtain an approximate
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solution for the objective function, system state equations, conditions and control vectors to transform the
optimal control problem into a nonlinear programming problem. This method is based on the direct methods.

This paper’s text order is as follows: Section2, states the optimal control problem. In Section3, the
Genocchi numbers and polynomials and some properties of them are presented. The objective function and
state equations are approximated in Section4. In Section5, some numerical examples are presented and
solved by the presented method and finally, in Section6, conclusion of the paper is stated.

2 Optimal control problem

Consider following OCP:
Minimizing the objective function

J =

∫ 1

0
h(x(t) ,u(t) , t)dt, (1)

for finding the control vector,u(t), and the corresponding state vector,x(t), that apply to the following
constraints

ẋ(t) = f (x(t) ,u(t) , t), (2)

g(x(t) ,u(t) , t)≤ 0, (3)

x(0) = x0, x(1) = x1, (4)

wherex(t) and u(t) are unknown vectors with dimensionsn× 1 andm× 1 respectively which must be
defined,h, f andg are known functions asRn×R

m×R 7→ R, andx0 andx1 aren×1 known vectors.

3 Genocchi numbers and polynomials

The Genocchi numbers and polynomials are widely used in mathematics and physics. Genocchi numbers,
Gn, and polynomials,Gn(x), are defined respectively, by using exponential generatingfunctions as [2–4,18,
23]:

Q(t) :=
2t

et +1
=

∞

∑
n=0

Gn
tn

n!
,

Q(t,x) :=
2tetx

et +1
=

∞

∑
n=0

Gn(x)
tn

n!
.

(5)

Then, we can write the Genocchi polynomial of degreen as

Gn(x) =
n

∑
k=0

(
n
k

)
Gn−kx

k
, (6)
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whereGk in Eq.(6) is the Genocchi number [18–20] :

G0 = 0,

G1 = 1,

G2i = 2iE2i−1 (0) ,

G2i+1 = 0,
(i ≥ 1)

andEi is Euler’s number, which is defined as [1,3,22]

E2i−1(0) = 21−2i
2i−1

∑
j=1

(
(−1)2i+ j

. j2i−1

(
2i−1

∑
k=0

(
2i
k

)))
.

Also, we can write Genocchi numbers and polynomials in termsof Bernoulli numbers,Bn, and polynomials,
Bn(x) as

Gn = 2(1−2n)Bn,

Gn(x) = 2Bn(x)−2n+1Bn

(x
2

)
.

Some of the important properties of the Genocchi polynomials are as below:

∫ 1

0
Gm(x)Gl (x)dx=

2(−1)mm!l !
(m+ l)!

Gm+l , m, l ≥ 1, (7)

dGi (x)
dx

= iGi−1(x) , i ≥ 1, (8)

Gi (x+1)+Gi (x) = 2ixi−1
,

Gi (1)+Gi (0) = 0, i > 1.

Here, we use Genocchi polynomials as basis polynomials to approximate the state and control variables. Let
G= Span{G1(t),G2(t), . . . ,GM(t)} is generated by Genocchi polynomials. For every arbitrary element of
f (t) ∈ L2[0,1], there is a unique best approximation inG namedf ∗(t) such that

∀g(t) ∈ G, ‖ f (t)− f ∗(t)‖ ≤ ‖ f (t)−g(t)‖,

so, for everyg(t) ∈ G
〈 f (t)− f ∗(t),g(t)〉 = 0, (9)

where〈.〉 is the inner product. In result of belongingf ∗(t) to G, unique coefficientsC1,C2, . . . ,CM exist
which we can approximate the arbitrary functionf (t) as [10,15]

f (t)≈ f ∗(t) =
M

∑
i=1

CiGi (t) = CTG(t),

whereC = [C1,C2, . . . ,CM ]T , G(t) = [G1(t),G2(t), . . . ,GM(t)]T .
According to (9), we can write

〈 f (t)−CTG(t),Gi(t)〉= 0, i = 1,2, . . . ,M.
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So, any arbitrary functionf (t) ∈ L2[0,1] can be approximated by Genocchi basis polynomials asf (t) =
CTG(t) where

C = P−1〈 f (t),G(t)〉, (10)

and

P= 〈G(t),G(t)〉 =
∫ 1

0
G(t)GT(t)dt, (11)

is aM×M matrix with entires obtained from (7) as

P= [pi j ]M×M , pi, j =
2(−1)i i! j!
(i + j)!

Gi+ j , i, j = 1,2, . . . ,M.

For example forM = 8 we have :

P=




1 0 −1
2 0 1 0 −17

4 0
0 1

3 0 −2
5 0 17

14 0 −62
9

−1
2 0 3

10 0 −17
28 0 31

12 0
0 −2

5 0 17
35 0 −31

21 0 1382
165

1 0 −17
28 0 155

126 0 −691
132 0

0 17
14 0 −31

21 0 691
154 0 −10922

429
−17

4 0 31
12 0 691

132 0 38227
1716 0

0 −62
9 0 1382

165 0 −10922
429 0 929569

6435




.

In order to obtain the derivative of Genocchi basis polynomials,G(t), we use (8) and get

G′(t) =
d
dt

(G(t)) = DGG(t),

whereDG is aM×M operational matrix of derivative as

DG =




0 0 0 · · · 0 0 0
2 0 0 · · · 0 0 0
0 3 0 · · · 0 0 0
0 0 4 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · M−1 0 0
0 0 0 · · · 0 M 0




.

In order to approximate the derivative of the arbitrary function, we use operational matrix derivative of the
Genocchi polynomials as below

f ′ (t) = CTG′ (t) = CTDGG(t) .

4 Approximation of objective function and system constraints

Let

x(t) = [x1(t) ,x2 (t) , . . . ,xn (t)]
T
, (12)

ẋ(t) = [ẋ1(t) , ẋ2 (t) , . . . , ẋn (t)]
T
, (13)

u(t) = [u1(t) ,u2 (t) , . . . ,um(t)]T , (14)
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and to generalize the discussion, suppose

Ĝn(t) = In⊗G(t) , (15)

ĜD,n (t) = In⊗DGG(t) , (16)

Ĝm(t) = Im⊗G(t) , (17)

whereIn andIm are identity matrix,G(t) is a vector at dimensionM×1,⊗ is the Kronecker product [24],
Ĝn(t), ĜD,n (t) are matrices with dimensionMn×n andĜm(t) is aMm×mmatrix.
It is assumed that anyxi , i = 1. . .nandu j , j = 1. . .m, that in Eqs.(12)-(14), can be approximated as Genocchi
basis polynomials

xi (t)≈ GT (t)Xi, (18)

ẋi (t)≈ GT (t)DGXi, (19)

u j (t)≈ GT (t)U j , (20)

whereXi andU j areM×1 vectors. So, from Eqs. (15)-(17) we have

x(t)≈ ĜT
n (t)X, (21)

ẋ(t)≈ ĜT
D,n(t)X, (22)

u(t)≈ ĜT
m(t)U, (23)

whereX andU are matrices of dimensionn×M andm×M, respectively, and

X = [X1,X2, . . . ,Xn]
T
,

U = [U1,U2, . . . ,Um]
T
.

Now, we want to approximate the objective function of OCP. Todo this, we replace (21) and (23) in (1) and
get

J ≈

1∫

0

h
(

ĜT
n (t)X,ĜT

m(t)U, t
)

dt. (24)

There are two cases:

(i) h in (24) is a quadratic function, then we have

J ≈
∫ 1

0

(
xT(t)Qx(t)+uT(t)Ru(t)

)
dt (25)

whereQ andR are suitable matrices. By replacing (21) and (23) in (25) we get

J ≈ XT
(∫ 1

0
Ĝn(t)QĜT

n (t)dt

)
X+UT

(∫ 1

0
Ĝm(t)RĜT

m(t)dt

)
U. (26)
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We simplify (26) as

J ≈ XT
(∫ 1

0
Q⊗G(t)GT(t)dt

)
X+UT

(∫ 1

0
R⊗G(t)GT(t)dt

)
U. (27)

Finally, we changeJ with J(X,U) and rewrite it as

J(X,U)≈ XT (Q⊗P)X+UT (R⊗P)U, (28)

whereP is the same as (11).

(ii) h in (24) is a time-varying quadratic function or an arbitrary one, then we use a suitable Newton-Cotes
numerical integration method [28] and approximate the objective function as

J(X,U) =
r

∑
i=0

ωih
(

ĜT
n (ti)X,ĜT

m(ti)U, ti
)
, ti =

i
r
, i = 1,2, . . . , r, (29)

where the weightωi is determined by

ωi =

∫ 1

0
l i(t)dt,

and eachl i(t) is a Lagrange polynomial as

l i(t) =
r

∏
j=0
j 6=i

t − t j

ti − t j
.

For approximating the OCP constraints, we substitute (21) - (23) in (2) - (4) and we get

ĜT
D,n(t)X ≈ f

(
ĜT

n (t)X,ĜT
m(t)U, t

)
, (30)

g
(

ĜT
n (t)X,ĜT

m(t)U, t
)
≤ 0, (31)

ĜT
n (0)X ≈ x0, ĜT

n (1)X ≈ x1. (32)

By collocating Eqs. [28] and [29] at the chebyshev nodes

ti =
1
2

[
1+cos

(
2i −1
2M

π
)]

, i = 1, . . . ,M, (33)

We obtain

ĜT
D,n (ti)X = f

(
ĜT

n (ti)X,ĜT
m(t)U, ti

)
, (34)

g
(

ĜT
n (ti)X,ĜT

m(ti)U, ti
)
≤ 0. (35)

Therefore, solving an OCP turns to solving NLP such that we want to findX andU to minimize the objective
function (28) or (29) and apply the constraints (32), (34) and (35).
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5 Numerical Examples

Example 5.1. Consider the following OCP [9,11,13]:

minimize J=
∫ 1

0
u2 (t)dt

subject to ẋ1(t) = x2 (t) ,

ẋ2(t) = u(t) ,

x1(0) = 1,

x2(0) = 1,

x1(1) = 0.

The exact optimal value of this problem is J∗ = 12and its exact optimal solutions are

u∗ (t) = 6(t −1) ,

x∗1(t) = t3−3t2+ t +1,

x∗2(t) = 3t2−6t +1.

AssumeĴ
∗
, x̂1

∗(t), x̂2
∗(t), û∗(t) be the approximate optimal values, obtained by the presented method and

J∗, x1
∗(t), x2

∗(t), u∗(t) are the exact values of them.
Define error values in the form

EJ =
∣∣∣J∗− Ĵ

∗
∣∣∣ , ,

Ex1 = ‖x1
∗(t)− x̂1

∗(t)‖∞,[0,1],

Ex2 = ‖x2
∗(t)− x̂2

∗(t)‖∞,[0,1],

Eu = ‖u∗(t)− û∗(t)‖∞,[0,1] .

Table1, shows the amount of these errors for different values of M. Table2, shows the′E′
J errors for different

values of M for the methods presented in [13]. Comparing the value of objective function obtained by the
presented method with two methods presented at [13] in Tab 2, we find that the presented method is better
in accuracy and time saving in this example. The exact and approximate values of the optimal control and
state vectors and related errors by using the Genocchi basispolynomials method are shown in Fig.1

Table 1:Error values obtained by the presented method for Example5.1

M EJ Ex1 Ex2 Eu CPU Time
6 1.4×10−14 2.04×10−12 1.02×10−11 2.11×10−10 0.046
7 7.3×10−16 6.83×10−15 4.19×10−14 1.12×10−12 0.157
8 2.2×10−17 1.51×10−16 8.97×10−16 2.09×10−14 0.641
9 6.0×10−18 2.61×10−15 1.74×10−14 1.07×10−12 0.733
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(a) Plot of
∣∣∣∗u(t)− û(t)

∣∣∣

(b) Plot of
∣∣∣ ∗x1(t)− x̂1(t)

∣∣∣

(c) Plot of
∣∣∣ ∗x2(t)− x̂2(t)

∣∣∣

Figure 1:Absolute values of errors foru(t) , x1(t) andx2(t) using the presented method withM = 8 for example5.1
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Table 2:Error values of the objective function derived from the methods in [13] for Example5.1

Method 1 Method 2
M EJ CPU Time EJ CPU Time
6 3.67×10−2 0.053 5.93×10−3 0.163
7 1.86×10−2 0.181 1.48×10−3 0.401
8 9.34×10−3 1.034 3.74×10−4 1.377
9 4.68×10−3 7.662 9.38×10−5 7.400

Table 3:Error values obtained by the presented method for Example5.2

M EJ Ex1 Ex2 Eu CPU Time
6 1.12×10−3 5.01×10−2 7.02×10−2 8.96×10−2 0.402
7 1.06×10−3 5.50×10−2 7.64×10−2 4.21×10−2 0.577
8 1.16×10−3 5.55×10−2 7.44×10−2 1.52×10−2 0.609
9 1.09×10−3 5.18×10−2 7.45×10−2 3.21×10−2 0.639

Example 5.2. Consider the following optimal control problem [12]

minimize J=
1
2

∫ 1

0

(
x1

2(t)+u2(t)
)
dt,

subject to ẋ1 (t) = x2 (t) ,

ẋ2 (t) =−x2 (t)+u(t) ,

x1 (0) = 0,

x2 (0) = 10,

|u(t)| ≤ 1.

The optimal control is

u∗(t) =





−1 λ2
∗(t)> 1,

−λ2
∗(t) −1< λ2

∗(t)< 1,

+1 λ2
∗(t)<−1.

Tab.3 shows the values of errors for M= 6,7,8,9. Fig. 2 shows the error plots.

Example 5.3. Consider the Breakwell problem from [11] as

minimize J=
1
2

∫ 1

0
u2(t)dt,

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t),

x1(t)≤ 0.1,

x1(0) = x1(1) = 0,

x2(0) =−x2(1) = 1.
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(a) Plot of
∣∣∣∗u(t)− û(t)

∣∣∣

(b) Plot of
∣∣∣ ∗x1(t)− x̂1(t)

∣∣∣

(c) Plot of
∣∣∣ ∗x2(t)− x̂2(t)

∣∣∣

Figure 2:Plot of absolute values of errors foru(t) , x1(t) andx2(t) using presenetd method withM = 8 for example5.2
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The exact solution of Breakwell problem is as follows

x∗1 (t) =





100
27 t3− 10

3 t2+ t, 0≤ t ≤ 0.3,
1
10, 0.3≤ t ≤ 0.7,

−100
27 t3+ 70

9 t2− 49
9 t + 37

27, 0.7≤ t ≤ 1,

x∗2 (t) =





100
9 t2− 20

3 t +1, 0≤ t ≤ 0.3,

0, 0.3≤ t ≤ 0.7,

−100
9 t2+ 140

9 t− 49
9 , 0.7≤ t ≤ 1,

u∗ (t) =





200
9 t − 20

3 , 0≤ t ≤ 0.3,

0, 0.3≤ t ≤ 0.7,

−200
9 t + 140

9 , 0.7≤ t ≤ 1.

Also, this problem was numerically solved by using the pseudospectral method [17] and ChFD method
[26], We solve it by the presented method and the results are reported in Table. 4. Error plots of the
Breakwell problem for M= 8 has been shown in Fig.3.

Table 4:Error values obtained by the presented method for Example5.3

M EJ Ex1 Ex2 Eu CPU Time
10 2.82×10−2 3.08×10−3 3.96×10−2 5.89×10−1 0.88
11 1.70×10−3 4.53×10−4 2.15×10−3 2.19×10−1 1.48

Table 5:Error values of the objective function derived from the method [11] for Example5.3

Method 1 Method 2
Number of points EJ CPU Time EJ CPU Time

8 3.58×10−2 0.702 8.98×10−2 1.341
16 2.02×10−3 3.701 2.19×10−2 1.513

Example 5.4. Consider the following optimal maneuvers of a rigid a symmetric spacecraft [26]. The Eulers
equations for the angular velocitiesY1,Y2,Y3 of the spacecraft are given by

Ẏ1 =− (I3− I2)
I1 Y2Y3+

u1
I1
,

Ẏ2 =− (I1− I3)
I2 Y1Y3+

u2
I2
,

Ẏ3 =− (I2− I1)
I3 Y1Y2+

u3
I3
,

whereu1,u2,u3 are the control torques, andI1 = 86.24kgm2, I2 = 85.07kgm2, I3 = 113.59kgm2 are the
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(a) Plot of of
∣∣∣∗u(t)− û(t)

∣∣∣

(b) Plot of
∣∣∣ ∗x1(t)− x̂1(t)

∣∣∣

(c) Plot of
∣∣∣ ∗x2(t)− x̂2(t)

∣∣∣

Figure 3:Plots of errors foru(t) , x1(t) andx2(t) obtained by the presented method withM = 11 for example5.3
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spacecraft principle inertia. The performance index to be minimized is given by

minimize J=
1
2

∫ 100

0

(
u1

2(t)+u2
2(t)+u3

2(t)
)
dt,

Y1 (0) = 0.01,

Y2 (0) = 0.005,

Y3 (0) = 0.001,

Y1 (100) =Y2 (100) =Y3 (100) = 0.

In Table. 6, the values of the objective function J are presented and compared with two other methods
presented in [21,26].

Table 6:The values of the objective function for Example5.3

Methods J
Quasilinearization [21]
N=6 0.0046878

Composite Chebyshev finite difference method [26]
N=2, M=4 0.0046877953

Presented Method
M=4 0.0046877856
M=6 0.0046877953
M=8 0.0046877953

Example 5.5. Consider the following example from [17].

minimize J=
∫ 1

0
x2(t)u(t)dt,

subject to ẋ1(t) = x2(t),

ẋ2(t) =−x2(t)+u(t),

x2(t)≥ 0,

0≤ u≤ 2,

(x1(0),x2(0)) = (0,1) ,

(x1(1),x2(1)) = (1,1) .

For this problem, we define the first and second constraints error in the following from

e1 = |ẋ1(t)−x2(t)|

e2 = |ẋ2(t)+x2(t)−u(t)| .

The obtained results applying presented method for this problem are reported in Table.7 and Figs.4 and5.
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Table 7:Constraints error obtained by presented method for Example5.5

M max
t

e1 max
t

e2 CPU Time

7 2.08×10−18 1.79×10−18 0.88
8 2.18×10−18 2.19×10−18 1.48
9 1.34×10−17 5.98×10−18 2.02

Figure 4:The exact and approximate values of the optimal control and state vectors for example5.5

6 Conclusion

In the present study, the Genocchi polynomial basis was usedto numerically solve the OCPs. We apply
operational matrix of derivation of the Genocchi polynomials and change the solving an OCP to the solving
NLP. The method can solve any arbitrary OCP with constant or free terminal time problems. Five examples
are include to examine the performance and effectiveness ofthe new method. These examples show that the
present method is superior in terms of accuracy and time saving.

Figure 5:Results obtained for example5.5
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[3] S. Araci, M. Acikgoz and E. Şen: Some new formulae for Genocchi numbers and polynomials
involving Bernoulli and Euler polynomials. InternationalJournal of Mathematics and Mathematical
Sciences 2014, (2014).3, 3
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