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In this paper, we study the vaporization process of a polydisperse ensemble of liq-
uid drops on the basis of a nonlinear set of balance and kinetics equations for the
particle-radius distribution function and temperature in the gaseous phase. We found
an exact parametric solution to this problem using a modified time variable and the
Laplace integral transform method. The distribution function of vaporizing drops as
well as its moments, the temperature dynamics in gas, and the unvaporized mass of
drops are found. The initial particle-radius distribution shifts to smaller particle radii
with increasing the vaporization time. As this takes place, the temperature difference
between the drops and gas decreases with time. It is shown that the heat of vapor-
ization and initial total number of particles in the system substantially influence the
dynamics of a polydisperse ensemble of liquid drops.
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1 INTRODUCTION

The processes of interaction of heated gas with evaporating droplets are used in many technological systems (for example, in
spray drying or evaporative cooling systems1,2). Such processes are controlled by the kinetic mechanisms of interfacial heat
and mass transfer. The greatest difficulties arise when studying the dynamic behavior of a polydisperse droplet system, which is
described by an integro-differential system of kinetic and balance equations.
In this paper, we consider the evaporation process of a polydisperse system of droplets into a vapor-gas mixture and its

subsequent cooling on the basis of an analytical theory developed by analogy with the evolution of spherical crystals in a
metastable liquid.3−11 Following these works, we assume that the evaporating droplets have a spherical shape and do not interact
with each other. We also assume that the saturated vapor pressure does not depend on the radius of the droplet, and there is no
fragmentation and coagulation of droplets. In addition, we consider the gas and droplets as an adiabatic system, which consists
of two locally equilibrium subsystems. Moreover, due to the rapid thermal relaxation of the droplets, their temperature can be
considered constant and equal to the temperature of the wet thermometer. Note that these assumptions work in many practically
important systems.
The present paper is organized as follows. The governing integro-differential system representing the law of heat conservation

and the kinetic equation for the particle-radius distribution function, as well as the initial and boundary conditions is given in
Section 2. In addition, this section is devoted to the analytical solutions constructed in a dimensionless form. The behavior of
analytical solutions and the main outcomes following from the present analysis are presented in Section 3.
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2 THE MODEL AND ITS ANALYTICAL SOLUTION

Let us neglect fluctuations in the vaporization rates of spherical particles and write out the kinetic equation for the particle-radius
distribution function f (r, t) in the form

)f
)t
+ )
)r
(wf ) = 0, r > 0, t > 0, (1)

where r and t represent the spatial and time variables. For the sake of simplicity, we consider the case when the vaporization
rate dr∕dt = w(t) < 0 of an individual drop is a function of time only.
We assume that the initial distribution of vaporizing droplets is known and given by the initial distribution function f0(r)

(for instance, the normal, log-normal, square-root-normal, Rosin-Rammler, and Nukiyama-Tanasawa distributions may be
mentioned12), i.e.

f (r, 0) = f0(r), r > 0;

∞

∫
0

f0(r)dr = 1. (2)

In addition, we assume that there are no drops of an infinitely large size in the evaporating system, i.e

f (r→∞, t)→ 0, t > 0. (3)

Let us designate the temperatures of drops and gas through Tq and T , respectively. Taking this into account, we write down
the heat balance law as

(

Mgcpg +Mvcpv
) d�
dt

= 4�N0�qriw(t)

∞

∫
0

r2f (r, t)dr, t > 0. (4)

Here � = T − Tq ,Mg andMv are the masses of gas and vapor, cpg and cpv are their isobaric heat capacities, N0 is the initial
number of drops in the system, �q is the density of liquid phase, and ri stands for the vaporization heat. Equation (4) should be
supplemented with the initial condition of the form

�(0) = �0, (5)

where �0 represents the known temperature.
The integro-differential model (1)-(5) describes the evolution of a polydisperse ensemble of liquid drops in a gas-vapormixture

and its subsequent cooling. In addition, this system determines the distribution function moments of the s-order given by the
following expression

⟨rs(t)⟩ =
N0

N(t)

∞

∫
0

rsf (r, t)dr, t > 0, (6)

where N(t) stands for the current number of drops in the system. So, for example, the initial mean particle radius r̄0 takes the
form

r̄0 =

∞

∫
0

rf0(r)dr. (7)

This radius represents the natural characteristic length scale for a given initial particle-size distribution.
For the sake of simplicity, let us introduce the dimensionless variables and parameters as follows

� = r
d1
, �̄0 =

r̄0
d1
, g(�, �) = d1f (r, t), g0(�) = d1f0(r), � = −

1
d1

t

∫
0

w(t1)dt1, Δ(�) =
�(t)
�0
, �∗ =

3�ri
cpg

, (8)

y(t) =
Mq

Mq0
= 1
r̄30

∞

∫
0

r3f (r, t)dr = y(�) = 1
�̄30

∞

∫
0

�3g(�, �)d�, � =
Mq0

Mg
,
Mv

Mg
=
Mq0 −Mq

Mg
= �(1 − y). (9)

Here � and � represent the dimensionless spatial and time variables, g(�, �) and g0(�) are the dimensionless time-dependent
and initial distribution functions, �̄0 is the dimensionless initial mean particle radius, Δ(�) is the dimensionless temperature
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difference, y(t) = y(�) stands for the ratio of the unvaporized massMq(t) of drops to the initial massMq0 of drops, and d1 is a
characteristic length scale. To chose this scale we should introduce the initial distribution function. So, introducing the normal
distribution function

f0(r) =
1

�
√

2�
exp

[

−1
2

(r − �
�

)2
]

or g0(�) =
d1

�
√

2�
exp

[

−1
2

(

� − �∕d1
�∕d1

)2
]

, (10)

where � is the mean or expectation of the distribution, and � is its standard deviation, we can chose any of the parameters r̄0, �
or � as a characteristic length scale d1.
The aforementioned model in dimensionless form (8) and (9) becomes

)g
)�
−
)g
)�

= 0, � > 0, � > 0; g(�, 0) = g0(�), � > 0; g(� →∞, �)→ 0, � > 0, (11)

[

1 + a2 (1 − y(�))
] dΔ
d�

= −N0a1Λ(�), � > 0; Δ(0) = 1, (12)

where

Mq0 =
4�r̄30�q
3

, a1 =
�∗

�0
, a2 =

�cpv
cpg

, Λ(�) = 1
�̄30

∞

∫
0

�2g(�, �)d�.

The dimensionless mean particle radius �̄0 and vaporization rate d�∕d� read as

�̄0 =

∞

∫
0

�g0(�)d�, (13)

w(t) = dr
dt
= −w

d�
d�
. (14)

Thus, expression (14) shows that the vaporization law takes the form of � = �0 − �, where �0 is a constant. Let us chose �0 equal
to the mean particle radius �̄0. In this case, we arrive at

� = �̄0 − �. (15)

Choosing the vaporization rate as13

w(t) = −
(

r
r̄0

)−n �0�(t)
�qri

(16)

and combining this law with expression (15), we obtain in dimensionless form

w(�) = −
(

1 − �
�̄0

)−n �0�0Δ(�)
�qri

. (17)

Here �0 and n represent the heat transfer and power coefficients.
Now from expression (8) for �, we obtain

d�
dt

= −w
d1
=
(

1 − �
�̄0

)−n Δ(�)
b
, (18)

where b = d1�qri∕(�0�0).
Thus, the model equations, initial and boundary conditions (10)-(13), and (18) written out in dimensionless form describe the

vaporization process of a polydisperse ensemble of drops. These equations are used below to determine the analytical solutions.
At first, let us apply the Laplace transform to the kinetic equation (11) with respect to the modified time �. Designating the

Laplace variable through p, we obtain
dg∗

d�
− pg∗ + g0(�) = 0, g∗(� →∞)→ 0. (19)

Here the subscript ∗ denotes the Laplace transform space.
The solution to equation (19) reads as

g∗(�) =

∞

∫
�

g0(�1) exp
[

−p
(

�1 − �
)]

d�1. (20)
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FIGURE 1 The dimensionless distribution function g(�, �) versus the dimensional radius � of evaporating drops at different
times � (numbers at the curves).

Now taking into account the inverse Laplace transform14 (� is the Dirac delta function)

exp
[

−p
(

�1 − �
)]

→ �
(

� −
(

�1 − �
))

,

we get from (20)

g(�, �) = g0(� + �), � > 0, � > 0. (21)

Now integrating equations (12) and (18), we arrive at the dynamical laws Δ(�) and t(�) of the form

Δ(�) = 1 − a1N0

�

∫
0

Λ(�1)d�1
1 + a2

(

1 − y(�1)
) , � > 0, (22)

t(�) = b

�

∫
0

(

1 −
�1
�̄0

)n d�1
Δ(�1)

, � > 0, (23)

where y(�) and �̄0 are defined by formulas (9) and (13).
Thus, expressions (21)-(23) entirely determine the analytical solution obtained in a parametric form, where the modified time

variable � > 0 plays the role of this parameter. Also, let us note that the analytical solutions depend on the initial distribution
function g0(�) that is given by expression (10) in the case of the normal initial distribution.

3 DISCUSSION AND CONCLUSION

To demonstrate the evolutionary behavior of the particle-size distribution function, we estimate the initial mean particle radius
r̄0 = d1 as 10−3 m. In this case, the mean or expectation � of the initial distribution (10), and its standard deviation � can be
chosen as � = 10−3 m and � = 0.000267 m. This choice corresponds to the dimensionless initial mean particle radius �̄0 = 1.
The distribution function of evaporating drops calculated on the basis of expression (21) is shown in Figure 1 . As is easily

seen, the initial distribution moves to the left as time increases. Indeed, the initial distribution (dotted line) eventually shifts to
the left to the solid curve, transforms into the dashed distribution, and then becomes a dash-dotted line. Physically, this means
that large droplets evaporate and reduce their radius in the course of time.
Figures 2 and 3 illustrate the relative unvaporized mass y(�), relative temperature difference Δ(�) as well as the rescaled

evaporation time t∕b as functions of the modified time variable �. These dependencies are shown accordingly to the analytical
solutions (21)-(23). As is easily seen, the unvaporized mass y of drops and the relative temperature differenceΔ = �∕�0 between
drops and gas decrease as time � increases. As this takes place, the real dimensionless time t∕b grows with increasing the
modified time �. It is important to note that when the temperature difference between the gas and the droplets substantially
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FIGURE 2 The ratio y(�) of the unvaporized massMq(t) of drops to the initial massMq0 of drops (scale of values on the left)
and the dimensionless temperature difference Δ(�) (scale of values on the right) as functions of the modified time variable �.
The system parameters areN0 = 103, a1 = 10−3, and a2 = 10−1.

FIGURE 3 The time t of evaporation versus the modified time variable �. The system parameters correspond to Figure 2 and
n = 1.

decreases, there is almost no unevaporated mass remaining in the system, y ≈ 0, and the time dependence t(�)∕b becomes
noticeably different from the linear one.
Figures 4 and 5 show that the larger the parameter a1 (e.g., the larger the heat ri of vaporization or the initial massMq0 of

the drops) and the total numberN0 of particles at the initial time, the faster the temperature equalizes between the droplets and
the gas. On the other hand, when the parameters a1 andN0 decrease, the relative temperature difference Δ grows and stabilizes
to a certain value as time � increases.
Thus, the exact analytical solutions (21)-(23) constructed in a parametric form enable us to describe the vaporization dynamics

of a polydisperse ensemble of drops when neglecting the fluctuations in the evaporation rates of individual particles. Generally
speaking, such fluctuations always exist and may play a decisive role in the evolution of particulate assemblages during the initial
stages of a phase transformation process.15 Therefore, it is significant to note that the present analysis should be extended with
allowance for the fluctuations in the evaporation rates of individual particles by analogy with the crystallization theory.16−20
The next important generalization of the developed theory is to take into account the non-stationary evaporation rates of

individual droplets. To solve this problem, it is necessary to derive non-stationary corrections to the evaporation rates of spherical
droplets. Such a problem can be solved using the differential series method, like the problem on the growth of spherical crystals
in a metastable fluid.21−23
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FIGURE 4 The dimensionless temperature difference Δ(�) as a function of the modified time variable � at different values of
the parameter a1 (numbers at the curves). The system parameters correspond to Figure 2 .

FIGURE 5 The dimensionless temperature difference Δ(�) as a function of the modified time variable � at different values of
the initial total numberN0 of particles (numbers at the curves). The system parameters correspond to Figure 2 .
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