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Characteristics of rogue waves on a soliton background of
the vector Lakshmanan-Porsezian-Daniel equation
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Abstract In this paper, the semi-rational solutions that causes vector rogue waves
and breathers can be obtained by using the Darboux dressing transformation. We
studied vector rogue waves and the interaction between rogue waves and light-dark
solitons, and observed that during the interaction, due to the interference between the
light-dark components of the solitons, a respiration-like structures appears. Besides, it
can be observed that the rogue waves and soliton merge together. Moreover, the main
characteristics of the interactions between the breathers and bright-dark solitons are
displayed with some graphics.
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1 Introduction

Rogue waves refer to transient huge waves with extremely large amplitude that seem
to be everywhere and responsible for a large number of shipwrecks[1,2]. Recently,
more and more scholars are devoted to studying such rare extreme events in the fields
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of hydrodynamics[3], capillary waves[4], plasma physics[5], Bose-Einstein conden-
sates[6] and even financial system [7,8]. Due to its wide application, the nonlinear
Schrödinger(NLS) equation has attracted widespread attentions [9–15]. The topic of
research is the common characteristics and differences manifestations of rogue waves
in different backgrounds. According to research, the appearance of rogue waves de-
pends on the instability of modulation[16]. Characteristics of rogue waves and lump-
s in certain optical fibers or fluids can be described by rational solutions of NL-
S equation, which has certain types of breathers or solitons in finite backgrounds.
The breather solutions contain two special cases: (1) Akhmediev breathers (AB)[17],
which is localized in the propagation direction and possess the periodicity in the
temporal direction; (2) Kuznetsov-Ma (KM) [18]solitons, which is localized in the
temporal dimension but periodicity in the propagation direction.

In this paper, we give the Darboux-dressing transformation to construct the breather
solutions and semirational solutions of the vector Lakshmanan-Porsezian-Daniel (LPD)
equation[19,20].

iq1t +
1
2

q1xx + q1A + σ[q1xxxx + 4q1xxA + 2q1x(Ax + 2B) + 2q1(3A2 + B∗x + 2C)] = 0,

iq2t +
1
2

q2xx + q2A + σ[q2xxxx + 4q2xxA + 2q2x(Ax + 2B) + 2q2(3A2 + B∗x + 2C)] = 0,
(1)

where A = |q1|2+ |q2|2, B = q1xq∗1+q2xq∗2, and C = q1xxq∗1+q2xxq∗2. In the optical envi-
ronment, q1 and q2 are the complex envelopes of two field polarization components,
where t is the propagation distance , x is the delay time. The superscripts denote the
complex conjugate and the subscripts represent the partial derivatives.

The parameter σ = 0 scales the perturbation to a coupled NLS equation or Man-
akov system[21,22],which only consider the group velocity dispersion and Kerr non-
linearity 

iq1t +
1
2

q1xx + q1(|q1|2 + |q2|2) = 0,

iq2t +
1
2

q2xx + q2(|q1|2 + |q2|2) = 0,
(2)

where q1(x, t) and q2(x, t) are complex valued functions. In the past decades, much
work have been done for (2) : Chen and Mihalache used a nonrecursive Darboux
transformation formalism to obtain the hierarchy of the rogue wave solution [21];
Wang and Han studied on rogue waves on a soliton background by the DDT method
[22].

Compared with the Manakov system, the vector LPD model have higher accuracy
and considers the additional items of self-steepening effect, fourth-order dispersion
effect, fifth-order nonlinearity and higher-order nonlinear dispersion, so it can de-
scribe the propagation of a few periodic ultrashort pulses in the optical fiber[19]. In
this paper, choosing σ = 1, our general solution reproduces known rogue waves of
equation (1) via the Darboux dressing transformation (DDT) at special parameter val-
ues, such as vectors Peregrine soliton and bright- and dark-rogue waves. In Section
2, recall the essential steps of the DDT of the equation (1). In Section 3, based on
the obtained DDT, the complicated first-order breather wave and rogue wave solu-
tions for equation (1) are systematically derived. In Section 4, the higher-order rogue
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waves are considered. Our conclusions will be given in Section 5. Additionally, the
main features of these solutions are graphically analyzed.

2 Lax pair and the DDT

Due to the equation (1) is completely integrable[20], its Lax Pair yields[19]
Φx = MΦ = (−iλϱ3 + R),

Φt = NΦ = (8λ3M + 2iλ2(E + 2Tϱ3) + 2λ(2R3 + 2RxR + Tx)

− λR − i[(Txx + 3T 2) +
T
2

]ϱ3)Φ.

(3)

where Φ = (ϕ1, ϕ2, ϕ3)
′

(′ mens a matrix transpose) is the vector eigenfunction of
the parameter λ, ϕ1, ϕ2 and ϕ3 are the complex functions of (x, t), and i2 = −1,
E = diag(1, 0, 0) ,

ϱ3

 1 0 0
0 −1 0
0 0 −1

 , R =

 0 u∗1 u∗2
−u1 0 0
−u2 0 0

 , T =

 |q1|2 + |q2|2 −q∗1x −q∗2x
q1x |q1|2 q1q∗2
q2x q∗1q2 |q2|2

 . (4)

where the superscript ∗ representing the complex conjugate, λ being the spectral pa-
rameter. From the compatibility condition Mt −Nx+MN −NM = 0, equation (1) can
be easily obtained.

Based on the study of [23–27], the DDT for equation (1) can be derived.

Theorem 1 The following unified DT yields

Φ[1] = KΦ, K = I3 −
λ1 − λ∗1
λ − λ∗1

P1, (5)

where

P1 =
Λ0Λ

⋆
0

Λ⋆0Λ0
, Λ0 = Φ(x, t, λ1)Z0 =

 h0
h1
h2

 , (6)

and I3 = diag(1, 1, 1), Φ is a special vector for the lax pair with λ = λ1, and ⋆

represent Hermitian conjugation. Obviously, the linear system (3) can be rewritten in
another form

Φ[1]x = M[1]Φ[1], Φ[1]t = N[1]Φ[1]. (7)

and transformation between potential functions reads

q[1] = q[0] + i(λ∗1 − λ1)[P1, ϱ3] (8)

or (
q1,[1]
q2,[1]

)
=

(
q1,[0]
q2,[0]

)
+

2i(λ∗1 − λ1)h∗0
|h0|2 + |h1|2 + |h2|2

(
h1
h2

)
(9)

Where commutator [P1, ϱ3] = P1ϱ3 − ϱ3P1.
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3 Breather wave solutions

To derive the rogue wave solutions for equation (1), we start from the seed solution-
nonzero plane wave solution. We denote them as

q j = c j exp(a1x + b1t), j = 1, 2, (10)

where c j,a1 and b1 are constants. After the simple calculation, we can obtain a con-
straint relationship

b1 = a4
1 − 12a2

1(c2
1 + c2

2) + 6(c2
1 + c2

2)2 − 1
2

a2
1 + c2

1 + c2
2. (11)

where a1 is the real amplitudes and b1 is the wave numbers, which are taken to be
real. Based on the Ref.[25], the corresponding solution of the Lax pair can be sought
in a new form

Φ =

 h0(x, t)
h1(x, t)
h2(x, t)

 = ∆PQZ, P = exp(iM̆x), Q = exp(iN̆x), (12)

∆ = diag(1, exp(iφ), exp(iφ)), Z = (α1, α2, α3)
′
,

where α1, α2 and α3 are arbitrary complex. Substituting equation (35) into the Lax
pair, M̆ and N̆ obatined

M̆ =

−λ −ic1 −ic2
ic1 λ − a1 0
ic2 0 λ − a1

 , (13)

N̆ = N0 + N1λ + N2λ
2 + N3λ

3 + N4λ
4, (14)

where
N4 = −8λ4ϱ3,

N3 = 8iλ3

 0 −c1 −c2
c1 0 0
c2 0 0

 , N2 =

 4c2
1 + 4c2

2 + 2 −4ic1a1 −4ic2a1
4ic1a1 −4c2

1 −4c1c2σ
4ic2a1 −4c1c2 −4c2

2

 ,
N1 =

 N1[11] N1[12] N1[13]
−N1[12] N1[22] N1[23]
−N1[13] N1[23] N1[33]

 , N0 =

 N0[11] N0[12] N0[13]
−N0[12] N0[22] N0[23]
−N0[13] N0[23] N0[33]

 ,
N1[11] = 4ωa1, N1[12] = −

ic1

2
(4a2

1 − 8ω − 2), N1[13] = −
ic2

2
(4a2

1 − 8ω − 2),

N1[22] = −4c2
1a1, N1[23] = −4c1c2a1, N1[33] = −4c2

2a1,

N0[11] = −3ω2 + 3a2
1ω −

1
2
ω, N0[12] = −

ic1

2
(2a3

1 − 12a1ω − a1),

N0[13] = −
ic2

2
(2a3

1 − 12a1ω − a1), N0[23] =
c1c2

2
(6a2

1 − 6ω − 1),

N0[22] = −3c4
1 − 9c2

1c2
2 + 9a2

1c2
1 − a4

1 + 12a2
1c2

2 − 6c4
2 −

c2
1

2
+

a2
1

2
− c2

2,

N0[33] = −3c4
2 − 9c2

1c2
2 + 9a2

1c2
2 − a4

1 + 12a2
1c2

1 − 6c4
1 −

c2
2

2
+

a2
1

2
− c2

1,
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and ω2 = c2
1+ c2

2. By using maple software, we can obtain the detailed result of P and
Q.

After complicated calculations, the matrices P can be written as

P = exp(− ia1x
2

)

 P[11] 2c1τ
−1 sinh( xτ

2 ) 2c2τ
−1 sinh( xτ

2 )
−2c1τ

−1 sinh( xτ
2 ) P[22] P[23]

−2c2τ
−1 sinh( xτ

2 ) P[23] P[33]

 , (15)

where

P[11] = −
(2iλ − ia1) sinh( xτ

2 ) − 2τ cosh( xτ
2 )

τ
,

P[22] = −
c2

1

τω
((−2iλ + ia1) sinh(

xτ
2

) − τ cosh(
xτ
2

)) +
c2

2

ω
exp(iλx − ixa1

2
),

P[33] = −
c2

2

τω
((−2iλ + ia1) sinh(

xτ
2

) − τ cosh(
xτ
2

)) +
c2

1

ω
exp(iλx − ixa1

2
),

P[23] = −
c1c2

τω
((−2iλ + ia1) sinh(

xτ
2

) − τ cosh(
xτ
2

)) − c1c2

ω
exp(iλx − ixa1

2
),

ω2 = c2
1 + c2

1, τ =
√
−4λ2 + 4λa1 − a2

1 − 4ω.

(16)

Similarly, the exponential matrices Q can be written as

Q =

 Q[11] Q[12] Q[13])
−Q[12] Q[22] Q[23])
−Q[13] Q[23] Q[33])

 , (17)

where

Q[11] =
−1
υ

(ϖ sinh(
tυ
4

) + υ cosh(
tυ
4

)) exp(i
tη
4

),

Q[1 j] =
2c j−1

υ
((16λ3 + 8λ2a1 + 4λa2

1 − 8λω + 2a3
1 − 12a1ω − 2λ − a1) sinh(

tυ
4

) exp(i
tη
4

),

Q[22] =
c2

1

υω
(ϖ sinh(

tυ
4

) + υ cosh(
tυ
4

)) exp(i
tη
4

) +
c2

2 exp(iθt)
ω

,

Q[23] =
c1c2

υω
(ϖ sinh(

tυ
4

) + υ cosh(
tυ
4

) exp(i
tη
4

)) − c1c2 exp(iθt)
ω

,

Q[33] =
c2

2

υω
(ϖ sinh(

tυ
4

) + υ cosh(
tυ
4

)) exp(i
tη
4

) +
c2

1 exp(iθt)
ω

,

ϖ = 32iλ4 − 16iλ2ω − 16iλa1ω − 2ia4
1 + 12ia2

1ω − 4iλ2 + ia2
1,

υ = τ(16λ3 + 8λ2a1 + 4λa2
1 − 8λω + 2a3

1 − 12a1ω − 2λ − a1),

η = −2a4
1 + 24a2

1ω − 12ω2 + 4λ2 + a2
1 − 2ω,

θ = 8λ4 − a4
1 + 12a2

1ω − 6ω2 +
1
2

a2
1 − ω.

(18)
According the equation (35), the seed solution (10) and Theorem 1, the new ratio-
nal solution composed of exponential and hyperbolic functions is easily obtained.
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(a) (b)

Fig. 1 (Color online) AB in the vector Lakshmanan-Porsezian-Daniel equation (1)for parameters: c1 =

0, c2 := 1, λ := 1
2 i, h0 = h1 = h2 = 1.

(a) (b)

Fig. 2 (Color online) KM in the vector Lakshmanan-Porsezian-Daniel equation(1) for parameters: c1 =

0, c2 := 1, λ := 6
5 i, h0 = h1 = h2 = 1.

Since the expression is too long, it is omitted here. The dynamic characteristics of the
equation (1) still shown in Figure 1 and Figure 2.

As seen in Fig.1 and Fig.2, they are dynamic characteristics depicted by choosing
the suitable parameters. Fig. 1(a) and (b) display the bright soliton and dark solutions
coexist with the AB soliton, respectively. Fig. 2 displays the KM propagation on a
plane wave background and bright-dark soliton background.

Taking λ = 1
2 a1±iω, the function exp(iM̆x+iN̆t) can be transformed combination

of exponential and polynomial functions of (x, t). In this work, choosing λ = 1
2 a1+iω,

and using Taylor expansion

sin(x) = x − x3

3
+

x5

5!
+ · · · , cos(x) = 1 − x2

2
+

x4

4!
+ · · · ,

the family solution of equation (1) is obtained(
q11
q21

)
=

(
q10
q20

)
+

4
√
ωh∗0

|h0|2 + |h1|2 + |h2|2

(
h1
h2

)
,

(h0(x, t), h1(x, t), h2(x, t))
′
= ∆P⋄Q⋄Z, (19)
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where

P = exp(− ia1x
2

)


1 + ωx c1x c2x

−c1x − xc2
1ω−c2

1+c2
2 exp(−xω)
ω2 −c1c2

xω−1+exp(−xω)
ω2

−c2x −c1c2
xω−1+exp(−xω)

ω2 − xc2
2ω−c2

2+c2
1 exp(−xω)
ω2

 , (20)

and

Q =


Q[11] Q[12] Q[13]

−Q[12] −
c2

2YE+c2
1X

2ω2 − c1c2(YE+X)
2ω2

−Q[13] − c1c2(YE+X)
2ω2 − c2

1YE+c2
2X

2ω2

 , (21)

with 

Q[11] = 1 − 12iω4t − 24a1ω
3t + (12ia2

1t − it)ω2 + (4a3
1t − a1t)ω,

Q[12] = −12itc1ω
3 − 24tc1a1ω

2 + (12ia2
1c1t − ic1t)ω + 4tc1a3

1 − tc1a1,

Q[13] = −12itc2ω
3 − 24tc2a1ω

2 + (12ia2
1c2t − ic2t)ω + 4tc2a3

1 − tc2a1,

E = exp(2−1t(ia4
1 − 12ia2

1ω
2 + 6iω4 − ia2

1 + 3iω2 + 2a1ω)),

X = 24ia2
1ω

2t − 24iω4t + 8a3
1ωt − 48a1ω

3t − 2itω2 − 2a1ωt − 2,

Y = ia4
1t − 4iω4t + 8a3ωt − 32aω3t − ia1t + 2itω2 − 2.

The non-zero wave number solution we obtained. which is difference in the direc-
tion and speed of respiratory wave propagation from the zero wave number solution.
When a1 = 0, the solution is same as the next first-order rogue wave solution.

4 Higher-order rogue waves solutions

In this section, the higher-order rogue wave solutions will be studied. For simplicity,
taking λ = iω(1 + ε), (ε→ 0), then

P(λ)|λ=iω(1+ε) =

∞∑
n=0

Pnε
n,

Q(λ)|λ=iω(1+ε) = exp(−3it
2

(2ω2 + 1)ω2)
∞∑

n=0

Qnε
n,

(22)

where

Pn =

 ℵn c1ω
−1Yn c2ω

−1Yn

−c1ω
−1Yn ω

−2[c2
1Bn − c2

2 exp(−ωx)Hn] c1c2ω
−2[Bn − exp(−ωx)Hn]

−c2ω
−1Yn c1c2ω

−2[Bn − exp(−ωx)Hn] ω−2[c2
2Bn − c2

1 exp(−ωx)Hn]

 , (23)

with

ℵn = Xn + Yn + Yn−1, Bn = Xn − Yn − Yn−1,

Xn =

[n/2]∑
m=0

Cm
n−m2n−2mH2(n−m), Yn =

[n/2]∑
m=0

Cm
n−m2n−2mH2(n−m)+1, (24)

Cm
n =

n!
m!(n − m)!

, Hm =
(ωx)m

m!
,
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and

Qn =

 ~n −c1ω
−1γn −c2ω

−1γn

c1ω
−1γn (c2

1χn + c2
2 exp(iω(10ω + 1)t/2)ρn) c1c2(χn − exp(iω(10ω + 1)t/2)ρn)

c2ω
−1γn c1c2(Bn − exp(iω(10ω + 1)t/2)ρn) (c2

2χn + c2
1 exp(iω(10ω + 1)t/2)ρn)

 ,
(25)

with

~n = γn − θn − θn−1, χn = γn + θn + θn−1,

γn =

[3n/4]∑
ι=0

[ι]∑
m=0

(−1)n−ιCm
n−ιC

ι−m
2(n−ι)2

n−ι−mI2(n−ι),

θn = i
[(3n+1)/4]∑
ι=0

[ι]∑
m=0

(−1)n−ιCm
n−ιC

ι−m
2(n−ι)+12n−ι−mI2(n−ι)+1,

ρm
n =

[n/2]∑
n=0

Cιn−ιi
n−ι2n−2ιIn, Im =

12imω4mtm − ω2mtm

m!
,

According to the above expression, ι is a non-negative integer. Next, to separate the
higher order rogue waves, the complex constant vector Z accepts the following ex-
pression

zξ(ε) =
∞∑
ξ=0

Zξεξ =
∞∑
ξ=0

(h0ξ, h1ξ, h2ξ)εξ, ξ ∈ N (26)

∞∑
ξ=0

(h0ξ, h1ξ, h2ξ)εξ = exp(iP(λ)X + iQ(λ)T )β|i(1+ε), (27)

and

X =
∞∑

n=0

Rnε
n, T =

∞∑
n=0

S nε
n, β = (β1, β2, β3)

′
. (28)

Accordingly, using the Taylor expansion for the solution (12), we get

Φ|λ=i
√
ω(1+ε) =

∞∑
n=0

Φnε
n,

Φn = exp(−3it
2

(2ω + 1)ω)
n∑
ξ=0

n∑
n1

∆PξQn1 (h0,n−ξ−n1 , h1,n−ξ−n1 , h2,n−ξ−n1 )
′
. (29)

When N = 1,the first-order rogue wave solutions is obtained(
q[1]

1
q[1]

2

)
=

(
q[0]

1
q[0]

2

)
+

4ωh∗0
|h[0]

0 |2 + |h
[0]
1 |2 + |h

[0]
2 |2

(
h[0]

1
h[0]

2

)
(30)

with

Φ0 = exp(−3it
2

(2ω2 + 1)ω2)


h[0]

0 (x, t)
h[0]

2 (x, t)
h[0]

2 (x, t)

 = ∆P0Q0Z0,
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(a) (b)

(c) (d)

Fig. 3 (Color online) First-order rogue wave in the vector Lakshmanan-Porsezian-Daniel equation(1) for
parameters: a1 = 0, c1 = 1c2 = 1, h0 = 1, h1 = 1, h2 = 1. (a) and (c) are the q1 are the 3D surface plots of
first-order rogue wave, (b) and (d) are the q2 are the contour plots of first-order rogue wave.

where

P0 =


1 + ωx c1x c2x

−c1x − xc2
1ω−c2

1+c2
2 exp(−xω)
ω2 −c1c2

xω−1+exp(−xω)
ω2

−c2x −c1c2
xω−1+exp(−xω)

ω2 − xc2
2ω−c2

2+c2
1 exp(−xω)
ω2

 , (31)

Q0 =

−12iω4t − iω2t + 1 −12iω3c1t − iωc1t −12iω3c2t − iωc2t
12iω3c1t + iωc1t Q0[22] Q0[23]
12iω3c2t + iωc2t Q0[23] Q0[33]

 , (32)

where

Q0[22] =
(
12iω4c2

1t + ic2
1ω

2t + c2
1 + c2

2 exp
(

itω2(10ω2 + 1)
2

))
ω−2,

Q0[23] =
(
−c1c2(12ω4t + exp

(
itω2(10ω2 + 1)

2

)
+ ω2t − 1)

)
ω−2,

Q0[33] =
(
12iω4c2

2t + ic2
2ω

2t + c2
2 + c2

1 exp
(

itω2(10ω2 + 1)
2

))
ω−2.

(33)

Fig.3 shows the rogue wave for equation(1) with suitable parameters. The ampli-
tude qi is peaked when x = 0 and t = 0, and the contour of the wave is symmetrical
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(a) (b)

Fig. 4 (Color online) One-order rogue waves on breathing bright-dark solitons by choosing suitable pa-
rameters: c1 = 1c2 = 1, h0 = 1, h1 = 1, h2 = 1000.. (a) and (c) are the q1 are the 3D surface plots of
first-order rogue wave, (b) and (d) are the q2 are the contour plots of first-order rogue wave.

(a) (b) (c)

(e) (f) (g)

Fig. 5 (Color online) One-order rogue waves on breathing bright-dark solitons by choosing suitable pa-
rameters: c1 = 0, c2 = 1, h0 = 1, h1 = 1. (a) h2 = 1, (b) h2 = 100, (b) h2 = 1000,.

about the t-axis. Fig.4 shows that the Peregrine bump coexists and interacts with-
breather-like solitons. Form the figures, we note that the soliton slightly bends to-
wards the rogue wave. Such solutions are generated by using the seeding solutions as
the plane waves (c1 , 0 and c2 , 0). A complicated breather-like pulse is produced by
the superposition of the dark and bright contributions. It is found that the peak height
in the q1 component is lower than the peak height in the q2 component in Fig 5. Ac-
cording to Fig.4 and Fig.5, whenc1c1 , 0, the interference between dark and bright
components leads to Fig.5 shows a vector dark-bright soliton together with a single
Peregrine soliton. As shown in the Fig.5 (a) and (b) and (c),we note that increasing
the h2, the boomeron-type bright solitons is disappear and the Peregrine structure is
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about to die away, and according the Fig.5 (d) and (e) and ( f ) decreasing the h2 the
rogue wave stay away from the dark solitons and generating the boomeron-type dark
solitons.

when N = 2,the second-order rogue wave solutions is obtained

(
q[2]

1
q[2]

2

)
=

(
q[1]

1
q[1]

2

)
+

4ωh∗0
|h[1]

0 |2 + |h
[1]
1 |2 + |h

[1]
2 |2

(
h[1]

1
h[1]

2

)
(34)

with

Φ1 = exp(−3it
2

(2ω2 + 1)ω2)(∆P1Q0Z0 + ∆P0Q1Z0 + ∆P0Q0Z1),
h[1]

0 (x, t)
h[1]

2 (x, t)
h[1]

2 (x, t)

 = R[1]Φ2 + i
√
ωΦ1,

R[1] = 2i
√
ω(I3 − T [1]), T [1] =

Φ0Φ
∗
0

Φ0 ∗Φ0
.

where

Φ2 =

 h02(x, t)
h12(x, t)
h22(x, t)

 = ∆P2Q2Z2, Z2 =

α12
α22
α32

 ,
P1 =


ω3 x3

3 + ω
2x2 + ωx c1ω

2 x3

3
c2ω

2 x3

3
− c1ω

2 x3

3 P1[22] P1[23]
− c2ω

2 x3

3 P1[23] P1[33]

 , (35)

Q1 =

 Q1[11] c1Q1[13] Q1[13]
−c1Q1[13] Q1[22] Q1[23]
−Q1[13] Q1[23] Q1[33]

 ,
with 

P1[22] = −
x
(
c2

1ω
2x2 − 3c2

1ωx + 3c2
1 + 3c2

2 exp(−xω)
)

3ω
,

P1[23] = −
xc1c2

(
ω2x2 − 3ωx + 3 − 3 exp(−xω)

)
3ω

,

P1[33] = −
x
(
c2

2ω
2x2 − 3c2

2ωx + 3c2
2 + 3c2

1 exp(−xω)
)

3ω
,

(36)
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(a) (b) (c)

(e) (f) (g)

Fig. 6 (Color online) Second-order rogue waves on breathing bright-dark solitons by choosing suitable
parameters: c1 = 1, c2 = 1, t0 = 1. (a) t1 = 1, (b) t1 = 10, (c) t1 = 1000,.



Q1[11] =
(
576iω12 + 144iω10 + 12iω8 +

iω6

3

)
t3 −

(
144ω8 + 48ω6 + 3ω4

)
t2 −

(
40iω4 + 4iω2

)
t,

Q1[12] = c1

(
576iω11 + 144iω9 + 12iω7 +

iω5

3

)
t3 − c1

(
24ω5 + 2ω3

)
t2 − c1

(
28iω3 + iω

)
t,

Q1[13] = c2

(
576iω11 + 144iω9 + 12iω7 +

iω5

3

)
t3 − c2

(
24ω5 + 2ω3

)
t2 − c2

(
28iω3 + iω

)
t,

Q1[22] = c2
1

(
−576iω10 − 144iω8 − 12iω6 − ω

4

3
i
)

t3 − c2
1

(
144ω6 − ω2

)
t2

+ c2
140iω2t + 32ic2

2ω
2 exp(

itω2(10ω2 + 1)
2

)t,

Q1[23] = c1c2

(
576ω10 + 144ω8 + 12ω6 +

ω4

3

)
t3 − c1c2

(
144ω6 − 24iω4 + 24ω4 − 2iω2 + ω2

)
t2

− c1c2

(
40ω2 + 2i + 2

)
t − 32ic1c2ω

2 exp(
itω2(10ω2 + 1)

2
)t,

Q1[33] = c2
2

(
−576iω10 − 144iω8 − 12iω6 − ω

4

3
i
)

t3 − c2
2

(
144ω6 − ω2

)
t2

+ c2
240iω2t + 32ic2

1ω
2 exp(

itω2(10ω2 + 1)
2

)t.
(37)

According to the calculation, when c1 = c2 = 1, the second-order rogue wave q1
equal q2, and the distance between the three peaks become increases as t1 increases
(see Figs.6). Here, we only plot q1. Fig. 7 (a) to (c) reveals the interaction between
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(a) (b) (c)

(e) (f) (g)

Fig. 7 (Color online) Second-order rogue waves on breathing bright-dark solitons by choosing suitable
parameters: c1 = 0, c2 = 1, t0 = 0. (a) t1 = 1, (b) t1 = 100, (b) t1 = 1000,.

second-order rogue waves and bright-soliton waves. Fig. 7 (d) to ( f ) displays the
interaction between second-order rogue waves and dark-soliton waves.

5 Conclusions

In conclusion, the rational solutions of the vector Lakshmanan-Porsezian-Daniel e-
quation(1) has been investigated via the DDT with Lax pair. In order to help the reader
to better understand the rational solution, the new breather wave and new rogue wave
solutions are drawn by looking for the appropriate parameters (Figure 1 to Figure 7).
All figures in this paper are drawn according to the explicit analytical formulas of so-
lutions. When λ , iω and selecting appropriate parameters, Figure 1 and 2 show the
AB wave and KMs under bright-dark soliton background. When λ = iω, Figures 4
to 7 show the interaction between rogue waves and dark-bright soliton waves. These
presented phenomena should be used to predict rogue wave phenomena in optics,
fluid, dynamics, BECs, and finance, etc
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