Noname manuscript No.
(will be inserted by the editor)

Characteristics of rogue waves on a soliton background of
the vector Lakshmanan-Porsezian-Daniel equation
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Abstract In this paper, the semi-rational solutions that causes vector rogue waves
and breathers can be obtained by using the Darboux dressing transformation. We
studied vector rogue waves and the interaction between rogue waves and light-dark
solitons, and observed that during the interaction, due to the interference between the
light-dark components of the solitons, a respiration-like structures appears. Besides, it
can be observed that the rogue waves and soliton merge together. Moreover, the main
characteristics of the interactions between the breathers and bright-dark solitons are
displayed with some graphics.

Keywords Solitons, Rogue waves, The vector Lakshmanan-Porsezian-Daniel
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(Some figures in this article are in colour only in the electronic version)

1 Introduction

Rogue waves refer to transient huge waves with extremely large amplitude that seem
to be everywhere and responsible for a large number of shipwrecks[1,2]. Recently,
more and more scholars are devoted to studying such rare extreme events in the fields
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of hydrodynamics[3], capillary waves[4], plasma physics[5], Bose-Einstein conden-
sates[6] and even financial system [7,8]. Due to its wide application, the nonlinear
Schrodinger(NLS) equation has attracted widespread attentions [9—15]. The topic of
research is the common characteristics and differences manifestations of rogue waves
in different backgrounds. According to research, the appearance of rogue waves de-
pends on the instability of modulation[16]. Characteristics of rogue waves and lump-
s in certain optical fibers or fluids can be described by rational solutions of NL-
S equation, which has certain types of breathers or solitons in finite backgrounds.
The breather solutions contain two special cases: (1) Akhmediev breathers (AB)[17],
which is localized in the propagation direction and possess the periodicity in the
temporal direction; (2) Kuznetsov-Ma (KM) [18]solitons, which is localized in the
temporal dimension but periodicity in the propagation direction.

In this paper, we give the Darboux-dressing transformation to construct the breather
solutions and semirational solutions of the vector Lakshmanan-Porsezian-Daniel (LPD)
equation[19,20].

. 1 .
g1 + 591“ + QIA + 0'[q1xxxx + 4qlxxA + 2qlx(Ax +2B) + 2‘11(3142 + Bx +20)]1 =0,

gy + %q2xx + Q2A + 0'[q2xxxx + 4q2xxA + 2q2x(Ax +2B) + 21]2(3142 + B; +20)] =0,
(D
where A = |1 > +1q2*, B = q1<q} +¢2:q5, and C = q1,4G} +G21xq5- In the optical envi-
ronment, ¢g; and ¢, are the complex envelopes of two field polarization components,
where 7 is the propagation distance , x is the delay time. The superscripts denote the
complex conjugate and the subscripts represent the partial derivatives.

The parameter o~ = 0 scales the perturbation to a coupled NLS equation or Man-
akov system[21,22],which only consider the group velocity dispersion and Kerr non-
linearity

. 1 2 2\ _
g+ Sque + q1(q1l° +1g217) = 0,
: 2)
g2 + 3@+ (0l + 1gal") = 0,

where g (x,t) and g»(x, f) are complex valued functions. In the past decades, much
work have been done for (2) : Chen and Mihalache used a nonrecursive Darboux
transformation formalism to obtain the hierarchy of the rogue wave solution [21];
Wang and Han studied on rogue waves on a soliton background by the DDT method
[22].

Compared with the Manakov system, the vector LPD model have higher accuracy
and considers the additional items of self-steepening effect, fourth-order dispersion
effect, fifth-order nonlinearity and higher-order nonlinear dispersion, so it can de-
scribe the propagation of a few periodic ultrashort pulses in the optical fiber[19]. In
this paper, choosing o = 1, our general solution reproduces known rogue waves of
equation (1) via the Darboux dressing transformation (DDT) at special parameter val-
ues, such as vectors Peregrine soliton and bright- and dark-rogue waves. In Section
2, recall the essential steps of the DDT of the equation (1). In Section 3, based on
the obtained DDT, the complicated first-order breather wave and rogue wave solu-
tions for equation (1) are systematically derived. In Section 4, the higher-order rogue
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waves are considered. Our conclusions will be given in Section 5. Additionally, the
main features of these solutions are graphically analyzed.

2 Lax pair and the DDT

Due to the equation (1) is completely integrable[20], its Lax Pair yields[19]

&, = MP = (—idos + R),
&, = NO = 81M + 2i1*(E + 2T03) + 2A2R* + 2R.R + T,) 3)

T
— AR — i[(Tyx + 3T%) + 5]93)@

where @ = (41, $2,¢3) (' mens a matrix transpose) is the vector eigenfunction of

the parameter A, ¢, ¢, and ¢3 are the complex functions of (x,7), and 2 = -1,
E = diag(1,0,0),
100 0 uju} lg1* +lg2l* =47, =45,
03{0-10 |,  R=|-; 00|, T=| q. laf qag| @
00 -1 —u 00 O 49 g

where the superscript = representing the complex conjugate, A being the spectral pa-
rameter. From the compatibility condition M, — N, + MN — NM = 0, equation (1) can
be easily obtained.

Based on the study of [23-27], the DDT for equation (1) can be derived.

Theorem 1 The following unified DT yields

b= Kb, K=L- "t (5)
[1] = 5 = 13 1— AT 1s
where
AoAY ho
Pi=——., Ao=D(x,t,1)Z=|hi |, (6)
A A e

and Iy = diag(1,1,1), @ is a special vector for the lax pair with A = Ay, and *
represent Hermitian conjugation. Obviously, the linear system (3) can be rewritten in
another form

Ppje = Min@m, - Py = Nin @y ™)

and transformation between potential functions reads

qny = qpo) + i(A] = )Py, 03] (8)
or . .
(91,[1]) _ (611,[0] ) + 2i( — Ahy (h1) ©)
92,1 g2101)  lhol? + Im? + |ho? \ B2

Where commutator [Py, 03] = P10z — 03P;.
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3 Breather wave solutions

To derive the rogue wave solutions for equation (1), we start from the seed solution-
nonzero plane wave solution. We denote them as

qj =cjexplaix+bit), j=1,2, (10)

where c¢j,a; and b; are constants. After the simple calculation, we can obtain a con-
straint relationship

1
by = a} - 12a3(c} + ¢3) + 6(cT + c3)* — 5a§+c} +c3. (11)

where a; is the real amplitudes and b, is the wave numbers, which are taken to be
real. Based on the Ref.[25], the corresponding solution of the Lax pair can be sought
in a new form
ho(x, 1)
@ =| hi(x,t) | =4PQZ, P =exp(iMx), Q= exp(iNx), (12)
hz(x, l)

4 = diag(1,exp(ip), exp(ip)),  Z = (a1, a2, @3),

where @, @, and a3 are arbitrary complex. Substituting equation (35) into the Lax
pair, M and N obatined
-1 —i01 —iCz

M=|iciA-a; 0 |, (13)
ic, 0 A-a
N = Ny + NyA + No A% + N3 + Nyt (14)
where
Ny = —8/1493,
0 —c| —c; 40% + 4c§ +2 —dicia; —4ica,
N3 = 8i/l3 Cq 0 0 N N2 = 4iC1611 —46% —4C1C20’ N
¢ 0 0 dicray —4cicy —4c%
Nignr Nz Nips Noriiy Nopizg Nopis
Ni=|=Nin2 Nipz2g Nipsr |, No = | =Nopiz) Nopzzg Nopag |
—Ni13) N3y Nigs3) —Nop13) Nops) Nopz3)
icy icy
Ny =4way, Ny = —7(4a%—8w—2), Nz = _7(451%_80)_2)’
Ny = —4ciar,  Nips) = —4cicaa1,  Nips) = —4c3a,
1 iC]
Nopii = =30” + 3@ w - 5 Nopiz) = _T(Za? -~ Rayw-ay),
iCz cico
NO[13] = _T(ZGT - 126110) - al)» NQ[23] = T(6a% — 6w — 1)’
2 g2
Nopay = =3¢} = 9¢ic3 + 9aiet —aj + 12a;¢; — 6¢5 — 51 + ?1 -,
2 &2
Nopz) = =3¢3 = 9632 +9a°c2 — at + 12a°¢2 —6¢t - 2 + L - &2,
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and w? = cf + c%. By using maple software, we can obtain the detailed result of P and

0.

After complicated calculations, the matrices P can be written as

iarx Py 2¢;77" sinh(4F) 2¢,77! sinh(4)
P= eXp(—T) ~2¢;7! sinh() P Pps, ’ (15)
~2cp77! sinh(%) Ppo3; Pp3
where
(2id — iay) sinh(%5) — 27 cosh(5")
Ppn =- - ,
C% . XT XT C% ixal
P2 = =——((=2id + iay) sinh(—=) — Tcosh(—)) + —= exp(ilx — ——),
TW 2 2 w 2
c 2 :
Pisn = —~2(-2i + iay) sinh( ) — reosh(5) + L exp(ide - 2oty (10)
TW 2 2 W 3
Py = =<2 ((=2id + fay) sinh() - Teosh(5) = % explidx — ),
TW 2 2 w )

W=+, 1= \/—4/12+4/la1 - a3 - 4w.
Similarly, the exponential matrices Q can be written as

Onn Qua Qusp
0 =|-0n2 Oy Op3y |, (17
=031 Q31 Opsy)

where
-1 t t t
Qun = —(@ sinh(%) + vcosh(zv)) exp(izn),
2¢;_ t t
Oyt = —ZL((1643 + 8%, + 44d® — 8w +2d3 — 12ay0 — 21 — ay) sinh(zv) exp(izn),
v
> t t 1 2 exp(ift
Opar = L (arsinh(™Y) + voosh("Lyy exp( L) + 2P
vw 4 4 4
t t t 143
sy = L2 (@ sinh() + v cosh(Y) exp(i D)) — EL2XPU),
vw 4 4 4 w
2 C% exp(ifr)

c t t t
Qo = 2 (@ sinh(zv) +u cosh(zv)) exp(izn) +
@ = 32id* — 16i*w - 16ida;w - 2ia} + 12iaiw — 4id* + ia},
v= ‘1'(16/13 + 8% + 4/la% - 8w + Za? - 12a,w - 24— ay),
n=-2a} +24atw - 120* + 42 + a* - 2w,

1
6 =81 - a‘l1 + 12a%w - 6w + Ea% - w.
(18)
According the equation (35), the seed solution (10) and Theorem 1, the new ratio-

nal solution composed of exponential and hyperbolic functions is easily obtained.
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(b)

Fig. 1 (Color online) AB in the vector Lakshmanan-Porsezian-Daniel equation (1)for parameters: ¢; =
0,c2:=1,A:=Lihg=hy =hy = L

(b)

Fig. 2 (Color online) KM in the vector Lakshmanan-Porsezian-Daniel equation(1) for parameters: ¢; =
0,c0:=1,0:= Sihg=hy =hp = 1.

Since the expression is too long, it is omitted here. The dynamic characteristics of the
equation (1) still shown in Figure 1 and Figure 2.

As seen in Fig.1 and Fig.2, they are dynamic characteristics depicted by choosing
the suitable parameters. Fig. 1(a) and (b) display the bright soliton and dark solutions
coexist with the AB soliton, respectively. Fig. 2 displays the KM propagation on a
plane wave background and bright-dark soliton background.

Taking A = %a | £iw, the function exp(iMx+ iN7) can be transformed combination
of exponential and polynomial functions of (x, 7). In this work, choosing A = %al +iw,
and using Taylor expansion

, 0ox @ x
sin(x) = x 3+5!+---, cos(x) =1 2+4!+---,

the family solution of equation (1) is obtained

qu _(qw) 4 Vwh; h
q21 420 [hol? + |2 + a2 \ 2 )°

(ho(x, 1), b1 (x, 1), ha(x, 1)) = AP.Q.Z, 19)
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where
1+ wx c1x X
iayx xc2w—c3+c3 exp(—xw) xw—1+exp(—xw)
P=exp(-—)| —cix Y <aa—o — |, (20)
xw—1+exp(—xw) XC%UJ—C%“‘C% exp(—xw)
—CX —C1C2 PR - 2
and
Onn  Ony O3
AYE+c2X YE+X
0=|-0Ony -+ —”‘”;wf L, 21
c1ea(YE+X) AYE+c3X
_Q[13] - 2w? T 202
with

O = 1 - 12iw't - 24a,0’t + (12iait — iDw* + (4ajt — artw,
Oz
Q[13]

E = exp(2~'t(ia} - 12ia?w® + 6iw® — id? + 3iw* + 2a,w)),

—12itc1w3 — 24tc1a1w2 + (l2ia%c1t —iciHhw + 4tc1a? —tciay,

—12itcza)3 - 24tcza1w2 + (lZia%czt —icw + 4tcza? —tcray,

X = 24ia%a)2t — 24wt + 8a?a)t - 48a1w3t —2itw?* — 2aiwt -2,

Y= ia‘l‘t —4iw*t + 8a wt — 32aw’t — iat + 2itw® — 2.

The non-zero wave number solution we obtained. which is difference in the direc-
tion and speed of respiratory wave propagation from the zero wave number solution.
When a; = 0, the solution is same as the next first-order rogue wave solution.

4 Higher-order rogue waves solutions

In this section, the higher-order rogue wave solutions will be studied. For simplicity,
taking A = iw(l + €), (¢ — 0), then

PWliciuiise) = ) Pat’
" N . 22)
125
OD)ciuties) = EXP(=- (20 + D) ) ",
n=0

where
N, cwy, cw Y,
P,=| -0y, w‘2[c%B,, - c% exp(—wx)H,] cicow™?[B, — exp(-wx)H,] |, (23)
-7 'Y, crcow?[B, — exp(—wx)H,] w’2[c§Bn - cf exp(—wx)H,]

with
Nrzz)(n"'Yn‘{'Yn—ls Bn:Xn_Yn_Yn—ls
[n/2] [n/2]
Xo= D o2 By, Yu= D Ol 2 oyt (24)
m=0 m=0
n n! H, = (wx)m7

m!(n —m)!’ m!
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and

By —c1w™ Y, -0y,
O = | clw™yu (cixn + 3 expliw(10w + 1)t/2)p,) c162(xn — expliw(10w + 1)1/2)p,) |,
crw™ 'y, c1ey(B, — expliw(10w + 1)t/2)p,) (cg)(n + c% exp(iw(10w + 1)t/2)p,)

(25)
with
i = Yn = Op = On-1, Xn="Yn+6,+6,1,
[3n/4] [
Yn = Z Z(_1)nﬁC?—LCLZEIT—L)zniLimIZ(n—L)7
=0 m=0

[Bn+1)/4] [d
=i Y Y DO O 2 D
=0 m=0

[n/2] : 4 2m gm
121" W™ " — w ¢
=D Cod™ 2y, dy =
n=0

m! ’

According to the above expression, ¢ is a non-negative integer. Next, to separate the
higher order rogue waves, the complex constant vector Z accepts the following ex-
pression

2(8) = ) Zeet = ) (hoe, g, hog)ef,  £€N (26)
£=0 £=0
D e, b, hag)ef = exp(P(DX +iQOTBli e, 27)
£=0
and - .
X=Y R, T=).8:8 B=Bpp). (28)
n=0 n=0

Accordingly, using the Taylor expansion for the solution (12), we get

Plizivaive) = Z Due”,
n=0

3it SR\ .
@, = exp(- = (2w + Do) ; D APQu (oo Prpeens haegen) - (29)
&=0 m

When N = 1,the first-order rogue wave solutions is obtained

("EE ) - (q?; ) . 4ok (hﬁgi ) (30)
4, 4 ) R+ RO+ R \ Ry
with

%, 1)

3it
@y = exp(— = (20? + 1) hg‘”(x, 0 | = 4Py00Z,
2 R (x, 1)
2 9
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© (d)

Fig. 3 (Color online) First-order rogue wave in the vector Lakshmanan-Porsezian-Daniel equation(1) for
parameters: a; = 0,c¢1 = lca = 1,hg = 1,h = 1,hy = 1. (a) and (c) are the g are the 3D surface plots of
first-order rogue wave, (b) and (d) are the ¢, are the contour plots of first-order rogue wave.

where
1+ wx c1x X
20— +c2 —Xw — Xp(—.
Po=| —cix _xw l+w22exp( ) —C1C2xw 1+Zzp( XW) ’ G1)
—erx —cicy xw—l+:));p(—xw) _XC§W—C§+§2€XP(—M))
—12iw*t — iw?t + 1 —12icit — iwert —12iw3cat — iweat
Qo =| 12iw’cit +iwet 0o[22] 00[23] , (32
12iw3crt + iweat 00[23] Qo[33]
where
itw?(10w? + 1
Qol22] = (12iw4cft +iciw’t+ ¢t + 3 exp (%)) w7,
itw? (100 + 1
00l23] = (—clcz(12w4t + exp (%) + - 1)) w2, (33)
itw*(100? + 1
Qol33] = (12iw4c§t +icdw*t + 3 + Fexp (%)) w™.

Fig.3 shows the rogue wave for equation(1) with suitable parameters. The ampli-
tude ¢; is peaked when x = 0 and ¢ = 0, and the contour of the wave is symmetrical
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(a) (b)

Fig. 4 (Color online) One-order rogue waves on breathing bright-dark solitons by choosing suitable pa-
rameters: ¢; = lep = 1,hg = 1,h = 1,hy = 1000.. (a) and (c) are the g; are the 3D surface plots of
first-order rogue wave, (b) and (d) are the g are the contour plots of first-order rogue wave.

Fig. 5 (Color online) One-order rogue waves on breathing bright-dark solitons by choosing suitable pa-
rameters: ¢; = 0,¢c3 = 1,hg = 1,h; = 1. (a) hy = 1, (b) hy = 100, (b) i = 1000,.

about the t-axis. Fig.4 shows that the Peregrine bump coexists and interacts with-
breather-like solitons. Form the figures, we note that the soliton slightly bends to-
wards the rogue wave. Such solutions are generated by using the seeding solutions as
the plane waves (¢; # 0 and ¢, # 0). A complicated breather-like pulse is produced by
the superposition of the dark and bright contributions. It is found that the peak height
in the ¢; component is lower than the peak height in the g, component in Fig 5. Ac-
cording to Fig.4 and Fig.5, whenc;c; # 0, the interference between dark and bright
components leads to Fig.5 shows a vector dark-bright soliton together with a single
Peregrine soliton. As shown in the Fig.5 (a) and (b) and (c),we note that increasing
the h,, the boomeron-type bright solitons is disappear and the Peregrine structure is
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about to die away, and according the Fig.5 (d) and (e) and (f) decreasing the A, the

rogue wave stay away from the dark solitons and generating the boomeron-type dark
solitons.

when N = 2,the second-order rogue wave solutions is obtained

2] (1 4wl Al
Bl )
(q[zz] q[ZI] |h{)”|2+|h111]|2+|h[2“|2 h[21]
with
3it
D1 = exp(= 72w + DwUP1QoZo + APoQ1Zo + APy Qo Z1),
h(x, 1)
o | = RV, +ivVod,
! (x, 1)
Dy D"
RY = 2ivo(l; -, 1= —0
V(I3 ) B+ Dy
where
hop(x, 1) a2
Dy = | hia(x, 1) [=AP202 2y, Zp =|axn |,
hao(x, 1) s
# + wzﬁ + wx —C“‘;zxz —Cz“;z’g
P = —ags o py22] Py[23] | (35)
2.3
-2 P1[23] P1[33]
O1[11] 1 01[13] O4[13]
01 =| —aQ1l13] 04[22] 01[23] ],
—O1[13]  01[23] 01[33]
with
x(cfa)zx2 - SC%a)x + 36‘% + 3c§ exp(—xa)))
Py[22] = - ,
3w
2.2
xcicp (W x” = 3wx + 3 — 3 exp(—xw)
Pi[23] = - ( ) (36)
3w
x(c2w?x? — 3cwx + 3¢2 + 3¢? exp(—xw)
sy =2 T )

3w
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(e ® [€9)

Fig. 6 (Color online) Second-order rogue waves on breathing bright-dark solitons by choosing suitable
parameters: ¢; = 1,cp = 1,10 = 1. (@) 11 = 1, (b) #; = 10, (¢) #; = 1000,.

- 6
oi[11] = (576iw12 + 144i0'° + 12i0° + %) P~ (1440° + 4800 + 30*) 1 — (40iw* + 4iw?) 1,

.5

0.112] = ¢, (576iw“ + 144i0° + 12i0 + %)ﬁ —¢1 (240 + 20°) 2 — ¢ (28iw® + i) 1,
.5

0.113] = & (576;@“ + 1440 + 12i0" + %)ﬁ — 2 (2400° +20°) 2 — ¢ (28i) + iw)1,

4
01[22] = (—576iw1° ~ 144i0® - 12i0° - “’?1) £ - ¢ (14400 - 0?) 7

itw*(10w?* + 1)

+ c40iw’t + 32ickw? exp( >

o,
4
0:[23] = c1c» (576w10 + 14408 + 120° + %) £ —cicr (1440)6 - 24iw* + 240" - 2iw* + w2) I

itw?(10w?* + 1)
2

4
01[33] = 2 (—576iw1° ~ 144i0® - 12i0° - %1) £ - &3 (14400 - 0?) 7

—cica (4Ow2 + 20+ 2) t— 32iclczw2 exp( )t,

itw*(10w* + 1)

+ c340iw’t + 32ictw? exp( >

)t.

(37

According to the calculation, when c¢; = ¢, = 1, the second-order rogue wave q;
equal g;, and the distance between the three peaks become increases as ¢ increases
(see Figs.6). Here, we only plot ¢;. Fig. 7 (a) to (c) reveals the interaction between
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Fig. 7 (Color online) Second-order rogue waves on breathing bright-dark solitons by choosing suitable
parameters: ¢; = 0,¢cp = 1,70 = 0. (a) 11 = 1, (b) #; = 100, (b) #; = 1000,.

second-order rogue waves and bright-soliton waves. Fig. 7 (d) to (f) displays the
interaction between second-order rogue waves and dark-soliton waves.

5 Conclusions

In conclusion, the rational solutions of the vector Lakshmanan-Porsezian-Daniel e-
quation(1) has been investigated via the DDT with Lax pair. In order to help the reader
to better understand the rational solution, the new breather wave and new rogue wave
solutions are drawn by looking for the appropriate parameters (Figure 1 to Figure 7).
All figures in this paper are drawn according to the explicit analytical formulas of so-
Iutions. When A # iw and selecting appropriate parameters, Figure 1 and 2 show the
AB wave and KMs under bright-dark soliton background. When A = iw, Figures 4
to 7 show the interaction between rogue waves and dark-bright soliton waves. These
presented phenomena should be used to predict rogue wave phenomena in optics,
fluid, dynamics, BECs, and finance, etc
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