Reference
1 Parsons, P. A. Environments and evolution: interactions between
stress, resource inadequacy and energetic efficiency. Biol Rev Camb
Philos Soc 80, 589-610 (2005).
2 Haim, A. & Levi, G. Role of Body-Temperature in Seasonal
Acclimatization - Photoperiod-Induced Rhythms and Heat-Production in
Meriones-Crassus. J Exp Zool 256, 237-241 (1990).
3 Hayes, J. P. & Garland, T., Jr. The Evolution of Endothermy: Testing
the Aerobic Capacity Model. Evolution 49, 836-847 (1995).
4 Cannon, B. & Nedergaard, J. Brown adipose tissue: function and
physiological significance. Physiol Rev 84, 277-359 (2004).
5 Heldmaier, G., Steinlechner, S., Ruf, T., Wiesinger, H. &
Klingenspor, M. Photoperiod and Thermoregulation in Vertebrates -
Body-Temperature Rhythms and Thermogenic Acclimation. J Biol Rhythm 4,
251-265 (1989).
6 Nicholls, D. G. & Locke, R. M. Thermogenic Mechanisms in Brown Fat.
Physiological Reviews 64, 1-64 (1984).
7 Hughes, D. A., Jastroch, M., Stoneking, M. & Klingenspor, M.
Molecular evolution of UCP1 and the evolutionary history of mammalian
non-shivering thermogenesis. Bmc Evol Biol 9, 4 (2009).
8 Rowlatt, U., Mrosovsky, N. & English, A. A comparative survey of
brown fat in the neck and axilla of mammals at birth. Biol Neonate 17,
53-83 (1971).
9 Saito, S., Saito, C. T. & Shingai, R. Adaptive evolution of the
uncoupling protein 1 gene contributed to the acquisition of novel
nonshivering thermogenesis in ancestral eutherian mammals. Gene 408,
37-44 (2008).
10 Klingenberg, M. Uncoupling protein - A useful energy dissipator. J
Bioenerg Biomembr 31, 419-430 (1999).
11 Kajimura, S., Seale, P. & Spiegelman, B. M. Transcriptional control
of brown fat development. Cell Metab 11, 257-262 (2010).
12 Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis
in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor.
Cell 79, 1147-1156 (1994).
13 Barak, Y. et al. PPAR gamma is required for placental, cardiac, and
adipose tissue development. Mol Cell 4, 585-595 (1999).
14 Nedergaard, J., Petrovic, N., Lindgren, E. M., Jacobsson, A. &
Cannon, B. PPARgamma in the control of brown adipocyte differentiation.
Biochim Biophys Acta 1740, 293-304 (2005).
15 Puigserver, P. et al. A cold-inducible coactivator of nuclear
receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
16 Handschin, C. & Spiegelman, B. M. Peroxisome proliferator-activated
receptor gamma coactivator 1 coactivators, energy homeostasis, and
metabolism. Endocr Rev 27, 728-735 (2006).
17 Seale, P. et al. Transcriptional control of brown fat determination
by PRDM16. Cell Metab 6, 38-54 (2007).
18 Lai, S. J., Liu, Y. P., Liu, Y. X., Li, X. W. & Yao, Y. G. Genetic
diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence
variation. Mol Phylogenet Evol 38, 146-154 (2006).
19 Lei, C. Z. et al. Origin and phylogeographical structure of Chinese
cattle. Anim Genet 37, 579-582 (2006).
20 Cai, D. W. et al. The origins of Chinese domestic cattle as revealed
by ancient DNA analysis. J Archaeol Sci 41, 423-434 (2014).
21 Payne, W. J. A. & Hodges, J. Tropical cattle : origins, breeds, and
breeding policies. (Blackwell Science, 1997).
22 Li, H. & Durbin, R. Inference of human population history from
individual whole-genome sequences. Nature 475, 493-496 (2011).
23 Qiu, Q. et al. Yak whole-genome resequencing reveals domestication
signatures and prehistoric population expansions. Nat Commun 6, 10283
(2015).
24 Zhao, S. et al. Whole-genome sequencing of giant pandas provides
insights into demographic history and local adaptation. Nat Genet 45,
67-71 (2013).
25 Zhou, X. et al. Whole-genome sequencing of the snub-nosed monkey
provides insights into folivory and evolutionary history. Nat Genet 46,
1303-1310 (2014).
26 Chen, N. et al. Whole-genome resequencing reveals world-wide ancestry
and adaptive introgression events of domesticated cattle in East Asia.
Nat Commun 9, 2337 (2018).
27 Mei, C. et al. Genetic Architecture and Selection of Chinese Cattle
Revealed by Whole Genome Resequencing. Mol Biol Evol 35, 688-699 (2018).
28 Lan, D. et al. Genetic Diversity, Molecular Phylogeny, and Selection
Evidence of Jinchuan Yak Revealed by Whole-Genome Resequencing. G3
(Bethesda) 8, 945-952 (2018).
29 Murray, C., Huerta-Sanchez, E., Casey, F. & Bradley, D. G. Cattle
demographic history modelled from autosomal sequence variation. Philos
Trans R Soc Lond B Biol Sci 365, 2531-2539 (2010).
30 Bradley, D. G., MacHugh, D. E., Cunningham, P. & Loftus, R. T.
Mitochondrial diversity and the origins of African and European cattle.
Proc Natl Acad Sci U S A 93, 5131-5135 (1996).
31 Petrillo, E., Godoy Herz, M. A., Barta, A., Kalyna, M. & Kornblihtt,
A. R. Let there be light: regulation of gene expression in plants. RNA
Biol 11, 1215-1220 (2014).
32 Nguyen, K. D. et al. Alternatively activated macrophages produce
catecholamines to sustain adaptive thermogenesis. Nature 480, 104-108
(2011).
33 Ke, M. et al. Differential proteomic analysis of white adipose
tissues from T2D KKAy mice by LC-ESI-QTOF. Proteomics 17 (2017).
34 Obata, T. Diabetes and semicarbazide-sensitive amine oxidase (SSAO)
activity: a review. Life Sci 79, 417-422 (2006).
35 Guilherme, A. et al. Adipocyte lipid synthesis coupled to neuronal
control of thermogenic programming. Mol Metab 6, 781-796 (2017).
36 Quan, L. H. et al. Myristoleic acid produced by enterococci reduces
obesity through brown adipose tissue activation. Gut (2019).
37 Heeren, J. & Scheja, L. Brown adipose tissue and lipid metabolism.
Curr Opin Lipidol 29, 180-185 (2018).
38 Li, Z. et al. Butyrate reduces appetite and activates brown adipose
tissue via the gut-brain neural circuit. Gut 67, 1269-1279 (2018).
39 Zheng, X. Y., Yu, B. L., Xie, Y. F., Zhao, S. P. & Wu, C. L.
Apolipoprotein A5 regulates intracellular triglyceride metabolism in
adipocytes. Mol Med Rep 16, 6771-6779 (2017).
40 Gerst, F. et al. The Expression of Aldolase B in Islets Is Negatively
Associated With Insulin Secretion in Humans. J Clin Endocrinol Metab
103, 4373-4383 (2018).
41 Lynes, M. D., Schulz, T. J., Pan, A. J. & Tseng, Y. H. Disruption of
Insulin Signaling in Myf5-Expressing Progenitors Leads to Marked Paucity
of Brown Fat but Normal Muscle Development. Endocrinology 156, 1637-1647
(2015).
42 Montanari, T., Poscic, N. & Colitti, M. Factors involved in
white-to-brown adipose tissue conversion and in thermogenesis: a review.
Obes Rev 18, 495-513 (2017).
43 Scarpace, P. J., Matheny, M., Borst, S. & Tumer, N. Thermoregulation
with age: role of thermogenesis and uncoupling protein expression in
brown adipose tissue. Proc Soc Exp Biol Med 205, 154-161 (1994).
44 Kirov, S. A., Talan, M. I., Kosheleva, N. A. & Engel, B. T.
Nonshivering thermogenesis during acute cold exposure in adult and aged
C57BL/6J mice. Exp Gerontol 31, 409-419 (1996).
45 Alexander, G. & Bell, A. W. Quantity and calculated oxygen
consumption during summit metabolism of brown adipose tissue in new-born
lambs. Biol Neonate 26, 214-220 (1975).
46 Lidell, M. E. et al. Evidence for two types of brown adipose tissue
in humans. Nat Med 19 (2013).
47 Carstens, G. E. Cold Thermoregulation in the Newborn Calf. Vet Clin N
Am-Food A 10, 69-106 (1994).
48 Smith, S. B., Carstens, G. E., Randel, R. D., Mersmann, H. J. &
Lunt, D. K. Brown adipose tissue development and metabolism in
ruminants. J Anim Sci 82, 942-954 (2004).
49 Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).
50 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome Res 20,
1297-1303 (2010).
51 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of
genetic variants from high-throughput sequencing data. Nucleic Acids Res
38, e164 (2010).
52 Price, A. L. et al. Principal components analysis corrects for
stratification in genome-wide association studies. Nat Genet 38, 904-909
(2006).
53 Plotree, D. & Plotgram, D. PHYLIP-Phylogeny inference package
(version 3.2). Vol. 5 (1989).
54 Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput
phylogenetic tree processing in the UNIX shell. Bioinformatics 26,
1669-1670 (2010).
55 Alexander, D. H., Novembre, J. & Lange, K. Fast model-based
estimation of ancestry in unrelated individuals. Genome Res 19,
1655-1664 (2009).
56 Danecek, P. et al. The variant call format and VCFtools.
Bioinformatics 27, 2156-2158 (2011).
57 Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am J Hum Genet 81, 559-575 (2007).